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Understanding performance of distributed
data-intensive applications
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Grids, clouds and cloud-like infrastructures are capable of supporting a broad range
of data-intensive applications. There are interesting and unique performance issues
that appear as the volume of data and degree of distribution increases. New
scalable data-placement and management techniques, as well as novel approaches to
determine the relative placement of data and computational workload, are required.
We develop and study a genome sequence matching application that is simple to
control and deploy, yet serves as a prototype of a data-intensive application. The
application uses a SAGA-based implementation of the All-Pairs pattern. This paper
aims to understand some of the factors that influence the performance of this
application and the interplay of those factors. We also demonstrate how the SAGA
approach can enable data-intensive applications to be extensible and interoperable
over a range of infrastructure. This capability enables us to compare and contrast
two different approaches for executing distributed data-intensive applications—simple
application-level data-placement heuristics versus distributed file systems.

Keywords: data-intensive computing; distributed computing; cloud computing;
grid computing

1. Introduction

The role of data-intensive computing is increasing in many aspects of science
and engineering (Hey 2009) and other disciplines. For example, Google processes
around 20 petabytes of data per day (Dean & Ghemawat 2008); trends
suggest a continued growth in volumes. In addition to increasing volumes
of data, there are several reasons driving the need for computation on
distributed data, such as the proliferation of distributed services and the
localization of data owing to security and privacy issues. The challenges
in developing effective and efficient distributed data-intensive applications
that meet a range of design and performance metrics arise from a complex
interplay of the challenges in developing distributed applications on the
one hand with those in developing data-intensive applications on the other.
New programming approaches, cyber-infrastructure and data-management
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techniques are required to handle and analyse large data-volumes effectively.
In general, at large scales, data placement, scheduling and management need
increased attention.

An important design consideration and objective for data-intensive distributed
applications and systems is the ability to determine and support an optimal
distribution of data and computational workloads. An important challenge is
to find broadly applicable strategies to distribute data and computation that can
support a range of different mechanisms to achieve this objective. In general,
there are many factors that determine the performance of a given application
on distributed infrastructure, such as the degree of distribution, granularity
of workload decomposition and type of infrastructure to name just a few. In
this paper, we investigate two ways to handle the optimal data-computation
distribution problem and try to understand their relative performance as a
function of these factors.

In the first approach, we encode a simple metric to determine the workload
placement into a ‘heuristic framework’. We contrast this approach with
the use of an open-source distributed file system (DFS). A DFS typically
controls the distributed data placement and provides a uniform interface for
accessing files on multiple hosts. But the underlying algorithms, scheduling
strategies and implementations vary greatly between different offerings; hence,
it is difficult to estimate a priori the application-level performance on a
given DFS. Thus having the ability to compare and contrast different DFSs
for a given application is an important requirement. More generally, the
ability to provide repeatable, extensible and verifiable performance tests
on different distributed platforms is required in order to understand the
interplay and trade-offs between these factors. We hope to provide the first
steps towards a comprehensive and a rigorous benchmarking process for
distributed data-intensive applications, analogous to the suite of benchmarks for
high-performance computing.

In §3, we will establish how the use of adaptors enables SAGA-based
applications to make comparisons across platforms effectively. Specifically, an aim
of this paper is to present a credible initial benchmarking template, and to suggest
ways to answer the question of whether ‘to move computational workload to where
data resides or to redistribute the data’. As we will show, the actual answer
will depend significantly on the specific dataset sizes, algorithm/applications and
infrastructure used. Data privacy, security and access policy are crucial issues,
but typically are not determinants of performance for distributed applications;
thus, we will not consider them in this paper.

In §2, we present a very brief discussion of SAGA, which provides the
distributed programming capability to develop the All-Pairs-based application
(§3). The work in this paper uses a SAGA-based application that we developed
to support genome sequence matching to determine and analyse performance that
we developed. SAGA encodes the All-Pairs pattern in a distributed context; we
chose All-Pairs as it is a representative and common data-access pattern found
in many data-intensive distributed applications.

Section 4 offers an overview of the various parameters used to understand the
experimental configurations, discusses the experiments carried out to understand
the performance, as well as provides a local analysis of the results. In §5, we
review the understanding gained and look ahead.
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2. SAGA and SAGA-based frameworks for large-scale
and distributed computation

The Simple API for Grid Applications (SAGA) provides a simple, POSIX-
style application programming interface (API) to the most common distributed
functions at a sufficiently high level of abstraction so as to be independent
of diverse Grid environments. The SAGA specification defines interfaces for
the most common Grid-programming functions grouped as a set of functional
packages (figure 1). Some key packages are as follows. (i) File package—provides
methods for accessing local and remote file systems, browsing directories, moving,
copying and deleting files, setting access permissions, as well as zero-copy reading
and writing. (ii) Job package—provides methods for describing, submitting,
monitoring and controlling local and remote jobs. Many parts of this package were
derived from the largely adopted DRMAA specification. (iii) Stream package—
provides methods for authenticated local and remote socket connections with
hooks to support authorization and encryption schemes. (iv) Other packages,
such as the RPC (remote procedure call) and Replica package.

SAGA provides the basic API to implement distributed functionality required
by applications, and is also used to implement higher level APIs, abstractions and
frameworks that, in turn, support the development, deployment and execution
of distributed applications (El-Khamra & Jha 2009). In the absence of a
formal theoretical taxonomy of distributed applications, figure 1 can act as
a guide. Using this classification system, there are three types of distributed
applications: (i) applications where local functionality is swapped for distributed
functionality, or where distributed execution modes are provided, (ii) applications
that are naturally decomposable or have multiple components that are then
aggregated or coordinated by some unifying or explicit mechanism, and, finally,
(iii) applications that are developed using frameworks, where a framework
supports specific application characteristics (e.g. hierarchical job submission),
and/or recurring patterns (e.g. MapReduce, All-Pairs). SAGA has been used
to develop system-level tools and applications of each of these types. In
Merzky et al. (2009), we discussed how SAGA was used to implement a higher
level API to support workflows. In Miceli et al. (2009), we discussed how a
SAGA-based MapReduce was developed; here, we will discuss a SAGA-based
All-Pairs application.

3. All-Pairs: design, development and infrastructure

We use an application based upon an All-Pairs abstraction whose distributed
capabilities are developed using SAGA. The All-Pairs pattern was chosen because
of its pervasive nature and applicability to many other data-intensive distributed
applications. This enables the results to be abstracted to describe and predict
different applications in addition to the genome sequence matching with similar
structured data-access patterns.

The All-Pairs abstraction applies an operation on two datasets such that every
possible pair containing one element from the first set and one element from the
second set has some operation applied to it (Moretti et al. 2008). Essentially,
All-Pairs is a function of two sets, A and B, with number of elements m and n,
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Figure 1. (a) A layered schematic of the different components of the SAGA landscape. At the
topmost level is the simple integrated API, which provides the basic functionality for distributed
computing. The BigJob abstraction is built upon this SAGA layer using Python API bindings.
(b) The ways in which SAGA can be used to develop distributed applications. The different shaded
boxes represent the three different types; frameworks in turn can capture either common patterns
or common application requirements/characteristics.

respectively, which creates a matrix P of size m × n. Each element Pi,j of the
matrix is the result of the operation f applied to the elements Ai and Bj ,

All-Pairs(A, B, f ) → Pm×n | Pi,j = f (Ai , Bj). (3.1)

The result of this application is stored in a matrix similar to figure 2. The
application spawns distributed jobs to run sets of these function operations.
Examples of problems that fall into this category are image comparison for
facial recognition, and genome comparison. The usefulness of All-Pairs comes
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Figure 2. An example result from an All-Pairs enabled application. Each matrix element describes
the similarity between the corresponding sets. (Larger values indicate greater similarity.)

from the ability to easily change the function without whole-scale refactoring. We
use a SAGA-based All-Pairs framework and simply implemented the comparison
function. The comparison function compares genomes to find the best matching
gene in a genome. The function finds the number of similarities among the
genes and returns the percentage of the genes that are identical. Despite having
a relatively small output O(KB), the genome comparison application can be
classified as having a large data throughput as it has large input O(GB) with
many data reads.

The problem becomes a two-level assignment problem: first, which pairs to put
into an assignment set, and, second, which distributed resource to use to compute
on that set. In a distributed context, it is important to consider time to transfer
a dataset to an assigned resource. Simple heuristics based upon transfer times
and network performance can in conjunction with a knowledge of the affinity of
data (set) to a specific resource be used for an efficient assignment.

(a) Infrastructure used

In the experiments we use the stable, open-source DFS CloudStore (formerly
KFS), which is written in C++ and released under the Apache License
Version 2.0 (CloudStore 2009). It is inspired by the highly successful Google
Filesystem (GFS), which is closed source and unavailable for research (Ghemawat
et al. 2003). CloudStore was chosen for its high performance focus, C++
implementation, and its source code availability. It also provides a means to
automatically replicate data on different hosts to provide efficient data access
and fault tolerance. In general, DFSs are useful and effective tools to consider
for data-intensive scientific applications, with multiple open-source, reliable file
systems now available. DFSs are becoming increasingly common as part of Cloud
infrastructures and available machine images. The most common parameters
in determining the performance of using a DFS are the performance overhead
compared with a normal local file system, the number of replicas of each
datum/file and the number of servers. While a DFS removes the responsibility of
replica management and data server placement, the abstraction often increases
the difficulty in determining where in the DFS the data are being stored.

We use a heuristic-based method, which differs from a DFS in that it
determines where data are located and, based upon application-level information,
decides where the work should be placed. Determining data location can be as
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simple as looking at the IP address of the worker and finding where it is located,
or as complicated as using network analysis tools to determine the optimal data
transfer minimization time. For file transfer during these heuristic framework-
based experiments, we use GRIDFTP—a tool that can support high-performance
transfers (GRIDFTP 2009).

For the experiments, to use both CloudStore and GRIDFTP within one
application, we wrote adaptors for SAGA that implement the file system package.
SAGA allows the application to handle seamlessly the DFS and GRIDFTP-based
data stores on clouds and grids, enabling us to compare both. For accurate
comparisons, we must consider the overhead introduced by SAGA. We have
measured a slight difference in times when using SAGA compared with native
applications; however, the adaptor implementations grew at the same rate as
GRIDFTP and CloudStore usage without SAGA.

4. Experiments and performance analysis

We designed three types of experiments in order to understand the interplay
of different determinants of performance and make a meaningful comparison of
CloudStore’s behaviour to heuristic-based data placement and file management.
To help understand the issues at play, we define the time to completion tc as

tc = tx + tI/O + tcompute, (4.1)

where tx is the pre-processing time, the dominant component of which is the time
for transfer, tI/O is the time it takes to read and write files, and tcompute is the time
it takes the comparison function to run. We focus on three variables that influence
the value of tc: degree of distribution, data dependency and workload. The degree
of distribution (Dd) is defined as the number of resources that are used for a given
computation/problem. For example, if data are distributed over three machines,
Dd = 3; if data are distributed over three machines but the computational tasks
are distributed over four machines, Dd = 4. We try to answer questions such as:
How does tc for KFS compare with a heuristic-based approach as dataset sizes
vary and the degree of distribution changes?

(a) Experimental configuration

As explained before, for the experiments, we use an All-Pairs implementation
that uses SAGA. An XML configuration file defines various initial parameters of
the All-Pairs implementation. The configuration file defines the location of data
that constitute the two input sets, the grouping of pairs from these sets to be
provided to the compute resources, and the available machines that will perform
the operation on these sets of pairs. The application takes these groups of pairs
and maps them to a computational resource dynamically at run-time.

Furthermore, variables external to the All-Pairs implementation also influence
experimental results. The experiments can be completely described by a system
configuration (Si) that is captured by tuple of the form

(cs, Nc, Mc, fs, m, r), (4.2)
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Table 1. The machine configurations Mc (tuple 4.2) that we used in the experiments, for one, two
and three machines. Both c and d can have yes/no (Y/N) values. A c = Y means the machine Xi
does computation, and a d = Y means the machine has data stored. For C4 and C5, we divide the
data equally among the machines.

configurations X(c, d); c = compute, d = data storage description

C1 X1(Y , Y ) X1 computes and stores data
C2 X1(Y , N ), X2(N , Y ) X1 computes, X2 stores data
C3 X1(Y , Y ), X2(N , Y ) X1 computes, X1 and X2 store data
C4 X1(Y , Y ), X2(Y , Y ) X1 and X2 compute and store data
C5 X1(Y , Y ), X2(Y , Y ), X3(Y , Y ) X1, X2 and X3 compute and store data

where cs is the total amount of data in each file of a set (i.e. cs = chunk size);
Nc is the number of workload assignments generated; Mc represents machine
configurations C1, C2, C3, C4 or C5 ; fs is the type of file system used; m is the
method used to access that filesystem; and r is the degree of replication used in the
experiment (with a default value of 1). However, for CloudStore, we investigate
performance with r = 1, 2 and 3.

Furthermore, each machine configuration (Mc) is a comma-separated list of
the machine configurations of the following form: X(c, d), where X is a shorthand
reference for the computational resource. c shows if the computational resource X
was used in the computational workloads/calculations, and d if the computational
resource X assisted in data storage; both have a yes/no (Y /N ) value (see table 1).

In the experiments, we have three (fs, m) configurations and five X
configurations. The (fs, m) configurations are (local, local), (local, GRIDFTP) and
(CloudStore, direct). By direct we mean CloudStore controls the data access. The
X configurations are enumerated in table 1. For one machine, C1 = X1(Y , Y ),
where resource X1 is used for both data and the computing workloads; for two
machines, we have three configurations; and for three machines we only work
with only one configuration. Nc is a very important configuration parameter as
it determines the granularity of work, which in turn determines the ability for
distribution. If Nc is too small, there may exist idle resources unable to assist the
workload while those that are participating could be overloaded.

A sample description of an experiment will now be explained: (287 MB, Nc = 8,
C2, CloudStore, r = 1) shows that each element of a set is 287 MB in size (i.e.
cs = 287 MB); we have eight assignments; the computational resource X1 supports
computational workloads, but does not have data stored, while computational
resource X2 does not take part in calculations, but stores the data; the file
system used is CloudStore, therefore it directly accesses the files, and we have a
replication factor of 1 for the data. The machines Xi we use for the experiments are
part of LONI (Louisiana Optical Network Initiative). In the experiments, we find
tc as we vary the number of workers Nw, keeping Nc = 8, unless otherwise specified.
As described above, the All-Pairs implementation used for the experiments has a
fixed distribution of data, fixed available computational resources and fixed sets
of pairs to operate with. It is also notable that the experiments were reproducible
and consistent over a given time of a few hours, but could vary if run more than a
few hours apart. This variance is attributable to the load-factor of the computing
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Figure 3. GRIDFTP versus local run. We plot the time to completion tc versus the number of
workers Nw. Note the scale. In general for similar configurations, the local case took less tc than
the GRIDFTP case. In (a), we note that on doubling the dataset size tc also doubled (S2 versus
S0). As a result of having more files, we created an overhead in S1 (versus S2) by increasing tx .
In (b), the two-machine configurations took more time than using a single machine. As expected,
computing on one machine, while having the data stored on another (tc = 7360 s for Nw = 1 in S1—
not shown), took longer than having some data stored on the resource performing computations
(S3). In general, tc decreased as Nw increased, for up to eight workers (with the possible exception
of a single machine where we reached an I/O bound). Here, we also compare the GRIDFTP and
heuristic approaches for two and three machines (§4.3). For the two-machine case, we observed a
performance improvement by using a data-placement heuristic approach (S2 versus S3). However,
with more resources involved, the heuristic did not improve tc (S4 versus S5). (a) One machine
(C1), local case; (b) cs = 287 MB, GRIDFTP case.

environment (LONI) experienced over the course of the experiments. However,
it is beyond the scope of this paper to quantify the variance with the load of
compute systems.

(b) Experiment I: baseline performance

In the first experiment, we assign a null computational workload applied
on the pairs, giving us tcompute = 0. We evaluate data dependencies without
the added variable of computation. We use this to examine the I/O, transfer
and coordination costs. We run the SAGA-based All-Pairs application on one,
two and three unique machines on the LONI grid of Linux Clusters, without
any specific data-placement strategy; also, no replication or fault tolerance is
invoked. The application sequentially assigns sets of pairs to the first available
computational resource. All data are accessed via the GRIDFTP protocol.
An important fact to notice is the essentially random mapping of datasets
to computational resources based on availability. This is to mimic a naive
data-intensive application.

In figure 3, we show the results for tc, for data accessed locally, and data
accessed via GRIDFTP. Using the All-Pairs framework accessing the data using
the GRIDFTP protocol had an overhead which can be noted by looking at the
y-axes of both graphs. In figure 3a, the local cases, we see that working with
a smaller dataset (cs ∼ 144 MB, Nc = 8, for 1.15 GB total) took about half the
time that working with a dataset double the size took (cs = 287 MB, Nc = 8, for
2.3 GB total). We also see that when working with the same dataset size (2.3 GB),
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but partitioned differently, tc can differ; for example, in S0 (cs = 287 MB, Nc = 8)
versus S1 (cs = 144 MB, Nc = 16), tc increased for S1, owing to added transfer
time by doubling the number of files, although we decreased the file size by half.

In figure 3b, in which we used GRIDFTP to access the files, we see that
a single machine took less time than the configurations that involved two
machines. Also, having to access data remotely was a disadvantage, tc(S0) >
tc(S1). For the one-machine configuration, tc was approximately constant,
probably caused by an I/O bound. For all the cases, it is expected that tc
decreases with increasing number of workers; however, after a critical value of
Nw (defined as N c

w), tc will increase because it will take more time to coordinate
the workers.

(c) Experiment II: heuristic-based data placement

The second experiment is similar to the first, except that the application
is aware of the location of data before determining where to assign a set of
data-dependent computation to an idle worker. Inspired by earlier work (Jha
et al. 2007), this version of the application performs an extra step during
application start-up that approximates the performance of the network by
pinging the hosts that may be either a computational resource or a data store.
This information is then assembled into a graph data structure. This graph
is used at run-time when the application needs to map an idle worker to an
unprocessed workload (set of pairs) defined in the XML file. This changes the
first available computational resource assignment mechanism described in the first
experiment to a heuristic-based approach. Although ping is not very sophisticated
in terms of describing a network’s behaviour, it is a first approximation to
a performance aware data-placement strategy. We also experimented with the
Netperf (Netperf 2009) to capture the network’s behaviour. Even though Netperf
has the advantage of being able to determine throughput and bandwidth
over multiple protocols, it did not yield different results. We attribute this
to the fact that we were working with a static set of resources (LONI), the
same data graph was generated as with ping. The Netperf-based heuristic
system added approximately 8 s per resource of overhead; hence, we used a
ping-based approach.

These approaches know where the files are located and their distance to
available computational resources, thus allowing more intelligent decisions when
mapping a set of pairs to a computational resource. An even more involved
approach would be to manage locations of files dynamically at run-time depending
on usage patterns. We leave this approach to future research.

The overhead of heuristics includes the time spent pinging hosts and building
the graph data structure. The total time spent for this overhead was negligible
at approximately 2 s per application run. In figure 3b, we see that we achieved
a reduction in time to completion owing to the use of heuristics. However,
when the same tests were performed using three resources instead of two, the
heuristic seemed to offer no significant reduction. The explanation that we
propose for this is that all datasets comprised non-collocated files. Because
of this, the data dependencies for any given dataset were similar to all other
datasets. Each set of pairs would take the same time to transfer using any
computational resource.
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Figure 4. (287 MB, CloudStore). (a) All-Pairs’ performance with CloudStore locally and on
two different machines. (b) A demonstration of how this scales to three machines, for degree
of replication r = 1, 2 and 3. CloudStore performed better than the local and heuristic-based
approaches (see figure 3). Again, having data in the resource with the workload decreased tc. When
data were spread across all the computational resources, having a degree of replication r = 1, 2 or
3 did not significantly decrease tc, except to the case of three machines and two workers. (a) One
and two machines; (b) three machines.

(d) Experiment III: CloudStore

The third experiment provides information on CloudStore’s performance in
handling data locality. The same All-Pairs application as in experiments I and
II is used, except all data are stored on the DFS CloudStore under various
configurations. Some variables of importance include number of data servers
that store data, replication value for data in these data servers, and, as above,
placement and number of computational resources. All read and writes also use
the DFS. Again, for the first set of results, we do not add the comparison function,
giving us tcompute = 0.

As with the first experiment, we attempted to capture how compute time scales
for different configurations (figure 4). Accessing data remotely adversely affected
the performance. We can see that computing in one resource while the data were
on another (S1) took the greatest amount of time. Having data in the resource
that was computing helped performance (S2, S3 and S4). The number of machines
to which workload was assigned was also important. Placing workload on two
machines also decreased tc (S2 versus S3). We varied the degree of replication for
the C4 and C5 configurations, i.e. for the cases of two and three machines, where
all the resources had workload assigned and data stored. With a replication degree
larger than 1, data were almost certainly collocated with the computational
resource. For C4, having r = 2 improved tc, but not considerably. For C5, different
degrees of replication only made a difference in the case of two workers.

We then added the actual genome comparison function and we compared it
with the base case where we did not include the function. We define Dtc, which
is the time difference between these two cases. In figure 5, we see that the time
taken to do the genome comparison was relatively small compared with the set-
up time, transfer and I/O time added together. The fact that Dtc for a given Nw
was not the same for most configurations shows that there was still an overhead;
tx and tI/O were not the same at the times we ran the All-Pairs framework for
both cases.
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Figure 5. (144 MB, CloudStore). Comparison of CloudStore using the All-Pairs application with
and without actual computation. Dtc is defined as the time it takes to run to completion, where
we include the genome comparison function, minus the time it takes to run it when we do not
include the comparison function. For the case of cs = 144 MB, the genome function took about two
orders of magnitude less than tx and tI/O combined. Dtc at a given Nw differed for most of the
configurations, showing an overhead, probably caused by different network conditions at the times
the runs were performed.

We also compared the results with no comparison function (tcompute = 0)
for two different dataset sizes, one with cs = 287 MB and the other one with
half the size, cs = 144 MB (rounded value). Both used CloudStore, and had
eight assignments. We defined two quantities, Dtd

c = tc(287 MB) − tc(144 MB)
and tOH = 2 × tc(144 MB) − tc(287 MB). Figure 6 shows that there are multiple
factors that can alter tc. Some of the factors are network conditions, I/O
time, as well as transferring time that can be size dependent, disk seek time,
etc. In figure 6a, we see that the difference did not scale linearly with the
number of workers. It is worth noticing that Dtc was almost zero (and negative)
for eight workers when all the resources had workload and data stored (S3);
that is, it took about 10 s less for a 2.3 GB set than for a 1.15 GB set.
Figure 6b shows that, for most of the cases, there was an overhead which
decreased with the number of workers. It also shows that the remote data
configuration was the one with the most overhead. Moreover, the S3 case
seemed to use a ‘non-scalable’ infrastructure, as the overhead increased with
eight workers.

In figure 7a, we compared the lowest times for both the heuristic approach and
CloudStore as a function of the number of resources Nr. CloudStore performed
better for one and two machines, but not three resources, where the performance
of CloudStore decreased. Using the heuristic approach, the lowest times were
about the same as Nr was increased from one up to three. In figure 7b we plot the
time to completion as a function of the number of workers when three resources
are used. All the resources had workload assigned and data stored. CloudStore’s
performance did not vary significantly with the number of workers, while the
heuristic approach performed better as we increased the number of resources
from one to three.
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Figure 6. (CloudStore). Here we define two quantities, Dtdc , and tOH. Dtdc is the difference between
tc found for dataset sizes 1.15 and 2.3 GB, that is, for chunk sizes cs = 144 and 287 MB. tOH is
the overhead time of working with chunks of 287 MB in size versus 144 MB chunks twice. (a)
We see that the difference Dtdc decreased with increasing number of workers, but did not scale
inversely proportional with Nw; this would be indicated by horizontal lines. (b) We see that S1
(remote data) was the one with the most overhead. (a) Dtdc (= tc(287 MB) − tc(144 MB)) × Nw; (b)
tOH = 2 × tc(144 MB) − tc(287 MB).
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Figure 7. (287 MB). (a) The lowest times obtained for a given number of resources (Nr). The
lowest times did not vary much for the heuristic-based method, while the performance of
CloudStore decreased with increasing number of resources (up to three). (b) Performance with
three resources for both GRIDFTP and CloudStore. The three resources computed and had data
stored. Performance using CloudStore remained about constant for two, four and eight workers,
while the performance of the heuristic approach improved with the number of workers. (a) Lowest
times as a function of Nr; (b) GRIDFTP versus CloudStore with Nr = 3.

5. Conclusions and future work

We set out to understand the factors that influence the performance of a
representative data-intensive application, and to understand their interplay. We
also aimed to demonstrate how the SAGA approach enables data-intensive
applications to be extensible and interoperable over a range of infrastructure.
It should be noted that using SAGA to access CloudStore-based and GRIDFTP-
based files introduced a small but negligible overhead; in contrast, the capability
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enabled us to compare and contrast two different approaches for executing
distributed data-intensive applications—simple application-level data placement
heuristics versus distributed file systems.

For the volume of data we worked with in the first set of experiments, the
local configuration (C1) took the least time to completion tc as a function of the
number of workers Nw. However, this will not necessarily continue to be the case
as the volume of data increases (which we anticipate to be tens of GB of data).
Configuration (C2) showed the highest time to completion, while tc decreased for
the mixed configuration (C3). Using configuration C4 decreased the time even
further, but not to the point of C1. tc appears to be bounded by tc(local), where
we exhausted the I/O bandwidth. In general, tc decreased as we added more
workers, but it is expected that, after a critical value of Nw (N c

w), tc will increase
owing to overhead of coordinating workers.

The second experiment implements a simple heuristic for efficient data and
work resource assignments. This staging phase only required performing pings,
not data transfer trials or reliability tests. The staging phase is worth the time
required to build a network graph, as it improved upon the results of the
naive baseline performance experiment. The experiments scaled to three distinct
resources not because of any fundamental scalability limitation in the approach,
but because of the inability to find more than three similar resources.

Overall, the use of CloudStore lowers tc compared with the heuristic and the
GRIDFTP approaches. The simple heuristic approach did not perform as well as
CloudStore for one and two machines, but performed better than a naive use
of GRIDFTP For three machines, the relative performance of CloudStore and the
heuristic approach depended upon the Nw. The results for three resources showed
that a heuristics-based use of GRIDFTP continued to experience improvements in
performance as the number of resources increased, while CloudStore levelled off.

We will extend this work not only to understand performance over a wider
range of infrastructure (DFS, distributed coordination and sharing infrastructure
such as BigTable, etc.) and different data-access patterns, but also to explore
correlations in data/file access. Such correlation in data access has been observed
elsewhere (Doraimani & Iamnitchi 2008); devising specific abstractions to support
such correlated access and ‘aggregation of files’ could enhance performance for
a broad range of data-intensive applications and would be both interesting
and rewarding.
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01. This work has also been made possible thanks to the internal resources of the Center
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