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Abstract— SAGA is a high-level programming abstraction,
which significantly facilitates the development and deployment
of Grid-aware applications. The primary aim of this paper is to
discuss how each of the three main components of the SAGA
landscape – interface specification, specific implementation and
the different adaptors for middleware distribution – facilitate
application-level interoperability. We discuss SAGA in relation
to the ongoing GIN Community Group efforts and show the
consistency of the SAGA approach with the GIN Group efforts.
We demonstrate how interoperability can be enabled by the use
of SAGA, by discussing two simple, yet meaningful applications:
in the first, SAGA enables applications to utilize interoperability
and in the second example SAGA adaptors provide the basis for
interoperability.

I. INTRODUCTION

Attempts to make the Grid – a global computational infras-
tructure a reality [1], have been ongoing for some time. While
there exist islands of infrastructure that can be successfully
marshaled for a task, the fundamental idea that inspired the
“Grid” analogy – indistinguishable computational resources
and seamless sharing of resources across administrative, tech-
nical and distributed domains is not reality yet.

A lot of effort has been invested in trying to connect these
islands1. In particular the pioneering efforts of the GIN Com-
munity Group[2] at the OGF [3] at identifying and solving the
problems related to interoperation are laudable. On the other
hand, there have been impressive application-centric efforts to
interoperate across distinct Grids, as illustrated in References
[4], [5] - to name just a few 2. These attempts at providing
interoperation – that is quick, workable solutions – represent
two different approaches to the problem. In the first approach
(symbolized by the GIN group efforts), the focus has been on
attempting to provide the basic services that are required for
Grids to interoperate; approaches symbolized by the applica-
tion groups have been aimed at enabling specific applications
to utilize federated Grids. The successful interoperation of
Grids in the latter case, is thus specific to the application(s)
under consideration, i.e., what might represent interoperation
for one application might not represent interoperation for a
different application. GIN efforts can be viewed as a bottom-
up approach, whilst application-centric efforts as top-down. So
far all attempts – whether aimed at providing interoperation

1We consider the following – Grid-of-Grids, Federated Grids and Inter-
Grids – to be equivalent and representative of the situation when resources
from two or more distinct Grids are utilized. Distinct Grids are those which
differ either at the administrative, middleware or service & policy level

2The conference series - Challenges of Large Scale Applications in Dis-
tributed Environments, provides an interesting sample of application-centric
efforts at utilizing federated Grids

at the service-level or application-level – have been quick and
short term solutions, in order to begin utilizing Grid resources,
for it is not practical, nor desirable that applications wait for
federated resources to get every last detail and requirement in
place.

e-Science applications must be able to utilize e-
Infrastructure – whether sophisticated services, or the next
generation networks or customized supercomputers – to per-
form better, faster and different domain specific research [6],
[7]. The question is how can we design and develop e-Science
applications, that on the one hand are not limited by the
heterogeneity of infrastructure that exists at any given point in
time, while on the other hand being immune to the evolving
nature of such infrastructure? In other words, how can we
compose applications so as to not depend on the underlying
infrastructure – either in a dynamical sense (i.e., over a period
of time), or different infrastructure at essentially the same time.

We contest that there exists at least one approach that
address both: design applications using widely supported,
standardized high-level interfaces. It is reasonable to posit
that a necessary requirement for applications to work over
federated Grids is to abstract out the non-essential details
of the specific Grids and one way of effectively doing this
is through the use of such standardized, application-level
interfaces. Specifically, we suggest that SAGA [8] - which
provides simple method calls at the right level of abstraction
for the most commonly required Grid-functionality provides
most of the application requirements for interoperability.
We follow the working-definitions of interoperation and in-
teroperability as provided by the GIN group [2] and Refer-
ence [9]. We extend them to include application level inter-
operation or interoperability, which to a first approximation,
can be thought of as the ability of applications that require
explicit Grid functionality to be able to utilize resources across
federated Grids. The primary aim of this paper is to discuss
and highlight SAGA as a critical enabling technology for
such application-level interoperability (ALI). In principle, any
sufficiently high-level programming interface with widespread
support and commitment to being supported can be used in
lieu of SAGA; it just happens to be the case that no such
similarly broadly usable interface exist3! In section 4, in
addition to SAGA enabling interoperability both in principle
and in practise, we will discuss how the specific details of
our implementation enhance the ability to interoperate across

3If, for example, OGSA would provide an application level interface to
OGSA services, which would in fact be supported by the majority of Grid
middlewares, there would be no need for an API such as SAGA.



federated Grids.
This paper is structured as follows: In the next section
we elaborate further what we refer to as Application-level
interoperability (ALI), and distinguish it from service level
interoperability/interoperation (SLI). Section III presents the
motivation and the basic design principles behind the spec-
ification of a high-level programming abstraction such as
SAGA; this section also sketches the main packages that
are currently specified and implemented. An interesting and
pedagogically important part of Section III is a discussion of
how SAGA relates to the five current areas of GIN activity.
Section IV discusses how good software design principles have
been employed in the (first) implementation of the SAGA
specification and how it supports application-level interop-
erability across distinct middleware distributions. Section V
discusses a couple of simple, yet interesting applications that
we have developed using SAGA, that not only require, but also
implement application-level interoperability. We conclude with
a discussion and analysis of our work and some implications
for the future of interoperability.

II. APPLICATION LEVEL INTEROPERABILITY

In this section we will elaborate further on what we mean by
application level interoperability, but before that it is important
to clarify the type of applications in the scope of this paper.
Using a high-level taxonomy, we can classify4 applications as
either Grid-aware or Grid-unaware. Any application can to a
first approximation, be thought of as a Grid-aware application
if it is cognizant of the underlying distributed infrastructure,
and/or for which there is a requirement to explicitly exploit,
run or utilize the distributed infrastructure. Simple examples
of Grid-aware applications are the class of tightly coupled
MPI jobs – which are generalizations of parallel applica-
tions to parallelized and distributed applications. For example,
MPICH-G2 applications require cognizance of the distributed
resources in their RSL description. Additionally, there are
“first principles” Grid applications, such as GridSAT [10]
and applications which based upon resource aware “learning”
algorithms [11], which need to explicitly marshal distributed
resources. For these applications the resource utilization is
often dynamic and unpredictable; interestingly, the resource
requirements and utilization might possibly be dependent upon
both the execution trajectory and underlying infrastructure.

Grid-unaware applications, are those that are not cognizant
of the environment that they are executed in, and their be-
havior, resource requirement and possible execution trajectory
is independent of the resources. Examples include sandboxed
applications developed using say BOINC infrastructure, or an
application launched in a portal or using a meta-scheduler such
as GridWay. Both portals and meta-schedulers qualify as Grid-
enabled Programming Environments as shown in Fig.1.
Some defining features of ALI include:

1) Other than compiling on a different or new platform,
there are no further changes required of the application

4The aim is not to provide rigorous definition, but a classification scheme.
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Fig. 1: A high level classification of applications into Grid aware
versus Grid unaware. Most Grid-unaware applications can make
do with service-level interoperation.This diagram also illustrates the
typical mechanisms (and differences) in how Grid-aware and Grid-
unaware applications access the service and resource layer.

2) Automated, scalable and extensible solution to use new
resources, and not via bilateral or customized arrange-
ments

3) Semantics of any services that an application depends
upon are consistent and similar, e.g., consistency of
underlying error handling and catching and return

For Grid-unaware applications, it should be easy to see
why applications that utilize distributed resources via portals,
or by sandboxing or through other Grid-enabled Program-
ming Environments, don’t require ALI, but they do require
SLI, such as the ability to submit jobs and transfer files
directly between middleware distributions. Establishing inter-
operation/interoperability across Grid-unaware applications is
relatively easier than to do so for Grid-aware applications.
Not surprisingly, interoperability is a necessary condition for
any successful Grid-aware application and thus is the real
challenge. For the remainder of this paper, we will discuss
ALI with a focus on Grid-aware applications. In addressing
the relationship between ALI and service-level interoperabil-
ity/interoperation (SLI), the issue is not that of whether ALI
and SLI are orthogonal problems, or if SLI is a necessary
condition for ALI, but how does one influence the other. For
example, applications based upon the master-client program-
ming model don’t really require SLI but do require ALI. It
might be obvious that ALI would benefit from SLI, i.e., if
SLI is available, ALI is easier to implement, but the converse
is not always true, or even intuitive.

The first point almost necessarily implies the need for
a high-level, standardized API; as we will discuss such an
API provides a necessary condition for ALI, but by itself
does not provide a sufficient condition if not implemented
or supported completely. ALI can be achieved in various
ways: probably the simplest example of ALI comes from
the successful deployment of MPICH-G2 based applications,
which in turn requires simply extending the MPI library to
an MPICH-G2 library where appropriate. Also as alluded
to, high-level interfaces that provide functionality beyond
messaging are useful. In addition to the above three require-



ment, there exist features that would be nice to have, as
they would make interoperability more robust and extensible.
Such features include performance estimates/guarantees, or
service-level agreements (SLA) between resource providing
Grids. For example, there are Grid-aware applications for
which, interoperability is predicated on the ability to federate
resources from distincts Grids synchronously, which in turn
requires features such co-scheduling, or at the very least a
Quality of Service (QoS) assurance or SLA that facilitate this.
In such cases ALI requires consistency and agreements at the
policy level (going beyond firewalls); this is unlikely to be the
case for SLI. Not having these agreements will lead to adhoc
arrangements, say over the phone and system administrator
exchanges, and which at best, can lead to interoperation. Such
interoperation has been shown to work for tightly-coupled
applications such as NeKTAR and Vortonics[5], but it is also
realized that such solutions are not scalable.

Finally and to state the obvious, for both Grid-aware and/or
Grid-unaware applications, there needs to be operating-system
level and middleware level support for whatever framework
the application is developed on. Revisiting the MPICH-G2
application for example, the platform should not only provide
a local implementation of MPI, but also compatible Globus
services; however, much of this requirement is not specific to
distributed computing hence we do not elaborate further.

III. SAGA

The Simple API for Grid Applications (SAGA) is an API
standardization effort within the Open Grid Forum (OGF) [12]
– an international committee that coordinates the standardiza-
tion of Grid middleware and architectures. SAGA provides a
simple, POSIX-style API to the most common Grid functions
at a sufficiently high-level of abstraction so as to be able to be
independent of the diverse and dynamic Grid environments.
SAGA has been often been referred to as the MPI [13] for
Grid Programming, in that is a simple, high-level programming
abstraction that provides most of the functionality. In addition
to being simple, a noteworthy and critical feature of SAGA
is that it is on the road to becoming a community standard,
thus strengthening the analogy with MPI. The interface defined
by the SAGA specification is grouped as a set of functional
packages, which we discuss in this section. Version 1.0 [14]
of the specification has been submitted to the OGF editorial
pipeline and is currently under review.

A. SAGA Packages:

The SAGA packages are as follows:
• File package - provides methods for accessing local

and remote filesystems, browsing directories, moving,
copying, and deleting files, setting access permissions,
as well as zero-copy reading and writing

• Replica package - provides methods for replica man-
agement such as browsing logical filesystems, moving,
copying, deleting logical entries, adding and removing
physical files from a logical file entry, and search logical
files based on attribute sets.

• Job package - provides methods for describing, submit-
ting, monitoring, and controlling local and remote jobs.
Many parts of this package were derived from the largely
adopted DRMAA [15] specification.

• Stream package - provides methods for authenticated lo-
cal and remote socket connections with hooks to support
authorization and encryption schemes.

• RPC package - is an implementation of the GGF
GridRPC API [16] definition and provides methods for
unified remote procedure calls.

The two critical aspects of SAGA are its simplicity of
use and the fact that it is well on the road to becoming
a community standard. Simplicity arises from being able to
limit the scope to only the most common and important
grid-functionality required by applications. There a major
advantages arising from its simplicity and imminent standard-
ization. Standardization represents the fact that the interface is
derived from a wide-range of applications using a collaborative
approach and the output of which is endorsed by the broader
community.

B. SAGA In Relation to GIN:

Having outlined SAGA, its features and design goals, we
now discuss its relationship to the (five) areas of GIN.

1) SAGA and Information Services and Modeling: The
GIN effort for interoperation of various information services
focuses mainly on the identification of common information
elements, and of schema translators and data providers (adap-
tors) to access these information elements. That additional
layer on top of the individual middleware solution provides
a GLUE based representation of the individual information
resources, via a BDII-based (i.e. LDAP based) infrastructure.

SAGA on the other hand provides the application level
access mechanisms (API, storage management, query lan-
guage) which allows applications to easily access and use
Grid resource and application information. SAGA exposes,
however, only those information elements which are of interest
to the applications (i.e. does not expose information which are
internally used for scheduling decisions). Additionally, SAGA
allows the transparent management of custom information
items within the same framework, which enables Grid-aware
applications to use the information service paradigm to persis-
tently store, search and retrieve application level information.
The resource level information used by GIN for SLI are thus
extended by application level information used for ALI.

2) SAGA and Job Submission and Management: GIN, and
indeed many recent and relevant Grid projects, rely on OGSA-
BES (OGSA Basic Execution Service) and JSDL (Job Sub-
mission and Description Language) for interoperation of job
submission and job management. BES and JSDL can indeed
be used on a wide variety on Grid middleware distribution, as
both standards are intentionally easy to map to other, existing
job description languages and submission systems.

The SAGA job management API exposes the same basic
functionality as BES, and provides additional program level



simplifications and abstractions to the application. For ex-
ample, the id of a submitted job in SAGA, is represented
as an object, so that actions on that job can be performed
directly, without the need to explicitly contact the respective
job service.

Incidentally, the job state model exposed by SAGA is
exactly the same as the job state model defined by BES. This
is not a coincidence, as the state model was designed by the
SAGA and BES groups at the OGF together. Due to the two-
level state-model, it can, (a) accommodate all higher level
states which SAGA calls and BES actions can actually act
upon, and (b) can represent all additional states any specific
job management system may internally use.

The SAGA Job description is represented by a subset of
JSDL and JSDL-SPMD keywords, and has some additional
keywords which are used to allow for application level job
scheduling. Even though JSDL is not supported explicitly, the
application level job descriptions are thus easily mapped to
JSDL documents, and the SAGA implementation can transpar-
ently use the BES/JSDL layers to submit and manage the jobs.
For application level interoperation it is important to mention
that jobs created from within an application can be controlled,
communicated with, and reaped by that application: this allows
for extremely simple application level implementations of job
cloning, spawning, and task farming scenarios. Also, SAGA
allows easy bootstrapping of distributed applications, as job
IDs can easily be exchanged over the information service
interfaces mentioned before.

3) SAGA Data Management and Movement: The GIN
community identified [9] GridFTP [17] as ”lowest common
denominator for data movement in Grids today”. Other, more
advanced data movement infrastructures, such as various Grid
storage managers or replica systems, are assumed to form
islands, i.e. disconnected sets of resources which do not
(easily) allow the interchange of data sets.

The SAGA approach differs in that it completely hides the
details and differences of all data movement and data manage-
ment infrastructures. As an API, SAGA cannot really provide
the interoperability the infrastructure seem (according to GIN)
to be inherently missing, but can at least free the application
programmer from the need to differentiate at a programmatic
level. For example, SAGA allows to specify the location of
a file as ’any://remote.host.net/dir/file.typ’.
The pseudo-schema any allows the SAGA implementation
to automatically choose a suitable schema, depending on the
deployed middleware. That mechanism cannot, of course,
guarantee that the file is indeed available via (literally) any
schema or protocol, or that the available schema provides the
full scope of access mechanisms defined by SAGA, but the
application programmer is nevertheless freed from the need to
explicitly switch the application code for each island.

4) SAGA Authorization and Identity Management: “Iden-
tity management and authorization of resource usage should,
be performed transparently at the application level” is a
repeatedly stated end user requirement, and the SAGA API
follows that guideline. It exposes only minimal interfaces for
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Fig. 2: An example of how SAGA is an effective mechanism for Grid
Interoperability for job submission.

identity management, and most authentication and authoriza-
tion processes are not exposed at the application level. That
allows to interface a SAGA implementation to a wide variety
of security approaches, including of course GIN-AUTH/GIN-
VOMS services.

5) SAGA and Cross-Grid Applications: SAGA as an API
cannot, by design, provide service level Grid interoperability.
SAGA implementations can, however, very well complement
the GIN efforts at the application level, as they allow ap-
plications to be easily written and to seamlessly utilize the
infrastructure. With SAGA, the same application code can, (a)
run on multiple Grids, and (b) interoperate with applications
running on other Grids, thus allowing for truly interoperable
Grid aware applications..

C. SAGA and ALI:

The previous section discussed how SAGA relates to the five
areas of GIN. In this brief section, using the example of job
launching, we will outline how SAGA provides ALI. Figure 2
shows how the appropriate adaptors (i.e. middleware bindings)
are invoked by the SAGA engine in order to provide correct
execution on different Grid middleware distributions. The
basic architecture and the mechanism are the same for other
(functional) packages (e.g. Files and RPC). We will provide
details in the next section about the design and intelligence
required for SAGA to implement this properly. But as shown
in Fig. 2 the relevant point here is, SAGA provides ALI by
having the same function calls from within the application but,
with the appropriate execution and different implementation
within adaptors on varied middleware distributions. Thus in
addition to the implementation of the core engine, SAGA’s
ability to provide ALI is as good as the adaptor set for the
middleware distribution that it aims to work on. As each
adaptor usually is aimed at connecting to a specific middleware
and all Grid related API calls are dispatched by the adaptors to
the appropriate middleware functionality, the adaptor quality
and their syntactic and semantic uniformity with regard to the
SAGA specification is of central importance for ALI.

SAGA as it stands can provide most, but not all require-
ments for ALI as outlined in Section II. Specifically, it cannot
provide features such as QoS, co-scheduling and currently



does not have support for SLA. We contest that this is not
an intrinsic limitation in the design of SAGA, but a design
decision to ensure the “S” (for simple) in SAGA as well as
reflection of the complexity of solving implementation details
of co-scheduling across federated Grids.

IV. SAGA IMPLEMENTATION AND HOW IT SUPPORTS
INTEROPERABILITY

There are at least two ongoing independent implementations
of the SAGA specification (this is a necessary requirement
for an OGF specification to become a standard) – one in
Java and the other in C++. In the remainder of this paper,
we will refer to the SAGA C++ reference implementation
as the “implementation”. The C++ implementation is being
developed in close conjunction with the OGF standard and
aims for a complete and strict adoption of the described
interfaces. Due to characteristics of Grids, an implementation
must cope with a number of dynamic requirements. Some
of the major requirements of any implementation in order to
ensure flexibility and interoperability are:

• The implementation must be portable and, both syntacti-
cally and semantically, platform independent.

• It must be amenable to evolving Grid standards and
changing Grid environments.

• It must be able to cope with future SAGA extensions,
without breaking backward compatibility.

• It must shield application programmers from the evolving
middleware, and it should allow different Grid middle-
ware distributions and versions to co-exist.

• It must actively support fail safety mechanisms, and hide
the dynamic nature of resource availability.

• It must meet other end user requirements outside of the
actual API scope, such as ease of deployment, ease of
configuration, documentation, and support of multiple
language bindings.

It is interesting to note that the design objectives are all
consistent with ALI; almost as if SAGA were designed to
provide ALI by design.

A. The Overall Architecture

Although the Simple API for Grid Applications is, by
definition simple for application developers, this doesn’t imply
that the implementation itself will be simple. A major effort
was made to build as much logic and functionality as possible
into the SAGA library core, providing all the needed common
functionality for the functional packages. To understand the
features of the SAGA implementation, it is useful to present
the library components along three orthogonal dimensions –
horizontal, vertical and feature-level extensibility. For purposes
of interoperability, we believe the vertical extensibility feature
is the most significant.

1) Horizontal Extensibility – API Packages: The SAGA
specification is object oriented and defines a set of API groups
keeping objects of related functionality together (packages).
Our implementation uses this functional grouping to define
API packages. Current packages are: file management, job

management, remote procedure calls, replica management,
and data streaming. Each of these packages constitutes a
separate and independent module. These modules depend only
on the SAGA engine, the user is free to use and link only
those modules actually needed by the application, minimizing
the memory footprint. Each of these packages benefits from
features of the core engine that promote interoperability such
as middleware independence.

2) Extensibility for Optimization and Features: Many fea-
tures of the engine module are implemented by intercepting,
analyzing, managing, and rerouting function calls between
the API packages, (where they are issued) and the adaptors
(where they are executed and forwarded to the middleware).
To generalize this management layer, a PIMPL [18] (Private
Implementation) idiom was chosen, and is rigorously used
throughout the SAGA implementation. This PIMPL layering
allows for a number of additional properties to be transparently
implemented, and experimented with, without any change in
the API packages or adaptor layers. These features include:

• generic call routing
• task monitoring and optimization
• security management
• late binding
• fallback on adaptor invocation errors
• latency hiding mechanisms
The decoupling of these features from the API and the

adaptors succeeds because, these properties affect only the
IMPL side of the PIMPL layers. The engine module is
completely generic, and loosely coupled to both the API and
adaptor layers. Any changes to the engine, optimizations,
latency hiding techniques, monitoring features etc., can be
implemented in the engine, and do not influence the API and
adaptor extensions. This facilitates interoperability because it
minimizes the dependency on a concrete middleware bound
to a given SAGA API object.

3) Vertical Extensibility – Middleware Bindings: A layered
architecture (see figure 2) allows us to vertically decouple
the SAGA API from the used middleware. Separate adaptors,
either loaded at runtime, or pre-bound at link time, dispatch
the various API function calls to the appropriate middleware.
Usually there will be a separate set of adaptors for each type
of supported middleware. These adaptors implement a well
defined Capability Provider Interface (CPI) and expose that to
the top layer of the library, which makes it possible to switch
adaptors at runtime and hence switch between different (and
even concurrent) middleware services providing the requested
functionality. The top library layer dispatches the API func-
tion calls to the corresponding CPI function. It additionally
contains the SAGA engine module, which implements:

• core SAGA objects such as session, context, task or
task container – these objects are responsible for the
SAGA look & feel, and are needed by all API packages;

• common functions to load and select matching adap-
tors, to perform generic call routing from API functions
to the selected adaptor, to provide necessary fall back
implementations for the synchronous and asynchronous



variants of the API functions (if these are not supported
by the selected adaptor).

The dynamic nature of this layered architecture enables
easy future extensions by adding new adaptors, coping with
emerging grid standards and new grid middleware, enabling
interoperability.

B. Generic Call Routing

The core SAGA engine has the built in ability to generically
route SAGA API method calls to middleware adaptors. This
is one of the central features that enable our implementation
with interoperability, because it provides a generic means of
selecting proper middleware services based upon the specific
application environment, execution context, and user prefer-
ences. The essential idea of this routing mechanism is to
represent any SAGA API call as abstract objects, and to
redirect their execution depending on several attributes and the
availability of suitable adaptors. For example, an asynchronous
method call for a saga::file instance is preferably directed
to a asynchronous file adaptor, or, if such is not available, to a
synchronous file adaptor (the method gets executed in a thread
then, making it asynchronous to some extent), or, if that is not
available either, returns an error (NotImplemented).

This routing mechanism allows for:
• trivial (synchronous) adaptor implementations,
• late binding: a different adaptor can be selected for each

call, even on the same API object instance,
• variable adaptor selection strategies, e.g. based on adaptor

meta data, user preferences and heuristics,
• latency hiding, e.g. by clustering related method calls

(bulk optimization), or by automatic load distribution over
multiple adaptors (not implemented yet).

Figure 3 depicts the point in the sequence of calls where
this call routing mechanism is injected by the SAGA engine.

CPI function call

Activate adaptor

API objects Implementation objects Adaptor objects

Facade instance Implementation Adaptor selector CPI instance

API function call

impl function call

Select adaptor

Call routing

Routed call
Middleware 
invocation

Fig. 3: API function call: Diagram illustrating the execution sequence
through the different object instances during a call to any adaptor
supplied function. The generic implementation of this call routing in
the SAGA engine enables interoperability because it provides the
means of uniform selection of proper middleware services based
upon the specific application environment, execution context, and user
preferences.

As stated above, in terms of interoperability the selection
of suitable adaptors at runtime is a central feature in our

library implementation (see figure 3). Conceptually this is
a simple mechanism: on loading, the adaptor components
register their capabilities in the adaptor registry. If a method
is to be executed, the adaptor selector searches that registry
for all adaptors implementing that methods capability. All
suitable adaptors are then ordered (best/most suitable first),
and are tried one-by-one, until the method invocation succeeds.
The adaptor selection again is routed through SAGA engine
components, generically implementing this for any function to
be routed to a CPI instance.

C. Lessons Learnt

This section will summarize the most important implemen-
tation properties form the interoperability standpoint:

• Uniformity over Programming Languages: Our imple-
mentation follows the SAGA API specification closely.
It is also designed to accommodate wrappers in other
languages, to provide the same semantics, and similar
look & feel to other language bindings. A Python wrapper
for our library is in alpha status, and we plan to add sim-
ilar thin wrappers to provide bindings to C, FORTRAN,
Perl, and possibly others.

• Adaptability to Heterogeneous and Dynamic Environ-
ments: Flexible adaptor selection, late binding, and fall
back mechanisms allow for additional resilience against
a dynamic and evolving run time environment.

• Modularity makes the Implementation Extensible: The
adaptor mechanism allows for easy extensions of the
library, to provide additional middleware bindings.

• Portability and Scalability: Our library implementation
is in fact very portable, as we strictly adhere to the
C++ standard and portable libraries. In fact, we currently
develop the library on Windows, Mac and Linux concur-
rently, so we are confident that we are able to cover the
three major target platforms without any problems.

V. DEMONSTRATING INTEROPERABILITY

We will outline two applications that demonstrate the con-
nection between SAGA and ALI. In the first application, we
show how a SAGA based application exploits ALI in order to
implement its functionality; in the second example, we show
how SAGA provides simple implementation of file access and
management for different applications.

A. Network Performance Aware Application:

We being with a discussion of a network-centric applica-
tion, that is capable of acquiring application-specific network
characteristic data, determining ideal migration target based
on network characteristics and then to migrate itself across
heterogeneous Grids without any changes at the application
level. We demonstrate how it can be used for gathering
network characteristics for a Poisson Equation solver; details
of the application can be found in Ref. [19].

The general architecture of the model application is based
on the programming abstraction provided by SAGA and the
Cactus framework citeX0. A set of thorns that provide specific
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Fig. 4: The components of the application. The Cactus framework
orchestrates the WaveToy thorn as an example for a distributed
calculation, the NetPerf thorn for network performance measurement,
and the SAGA Migration thorn for replication and migration. The
Advert DB stores and archives the measurement results. Note that
the application runs under the control of a Resource Manager (RM)
using SAGA’s job management package.

functionality are orchestrated by the Cactus flesh as depicted
in Fig. 4. With the SAGA functionality available it was easy to
implement Cactus thorns that can interact with remote resource
mangers (e.g. Globus GRAM2), copy, read, and write files
from and to remote locations (e.g. Globus GridFTP), and
access a remote PostgreSQL based advert service as logging
and storage facility. We refer the reader to Ref. [19] for a
detailed discussion of the architecture, implementation and de-
scription of the individual thorns; here we will discuss mainly
the PerfMatrix thorn, which takes care of the intrinsic network
performance measurement and persistent storage of the results.
PerfMatrix Thorn: The PerfMatrix algorithm uses a list of
computational resources which are potential migration targets
for the application. After starting up, the initial application
spawns itself onto all available hosts. Once all jobs have been
launched, the original spawning application first establishes
netperf [20] connections with all the spawned applications;
this is followed by the spawned applications establishing
netperf connections amongst each other, following the scheme
shown in Fig. 5. Job spawning, control, and I/O redirection is
done entirely using SAGA’s job management package. Once
a netperf process returns a throughput result, the PerfMatrix
thorn uses the SAGA advert-service package to announce
the result to a central database. After all netperf processes
have finished and published their results, the database contains
a host-to-host throughput performance matrix along with a
timestamp which is available to other thorns as well as other
applications.
SAGAMigrate The SAGAMigrate thorn is a Cactus thorn
written in C++ that uses SAGA functions (for example
file.copy and job description.create job) to
perform a simulation migration. SAGAMigrate copies a restart
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Fig. 5: The algorithm used by the PerfMatrix thorn. Based on a list of
resources, the application spawns itself, launches Netperf endpoints
and measures the throughput of all possible connections.

parameter file and the checkpoint file(s) from one machine to
another (for example using the SAGA Globus adaptors).

An interesting feature of this application is the ability to
separate the computational logic from the distributed logic.
For example, jobs on different resources, establish connections
pairwise and collect information which is published to an ad-
vert service through SAGA’s job-management package, whilst
the PerfMatrix thorn remains independent of the distributed
aspects of the set of netperf end-points. This arises from using
the correct abstractions (SAGA and Cactus) and enables the
application to be easily generalized to more complex network
performance requirement scenarios. This application can be
deployed on any resource independent of the middleware
stack. All that is required is support for SAGA adaptors
and the corresponding client side middleware bindings. Thus
beyond compiling the application code on the other resources,
there is no need for the application to know about the details
of the middleware or platform details of the remote resources,
whilst all along working across distinct Grids!

B. Seamless Integration of Heterogeneous Grid Resources
using SAGA and FUSE

Another demonstration of how SAGA can enable seamless
data management and movement across different Grids, is the
implementation of a filesystem driver. The filesystem driver
is written using the FUSE (Filesystem in UserSpace) [21]
library and allows any remote filesystem supported by a SAGA
adaptor to be mounted onto a local directory. This driver uses
SAGA to access remote filesystems through different services,
such as GridFTP or SSH. Figure 6 shows the architecture
of this application. Other filesystem types can be seamlessly
added just by writing appropriate SAGA adaptors. Since the
filesystem drivers are integrated into the operating system, it
makes the remote files available to any application running on
this system.
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operation.

VI. CONCLUSION

As efforts by the GIN community-group and other
application-specific groups have shown, interoperation is a
hard problem to solve and interoperability even harder! In
this paper we discuss how each level of the SAGA land-
scape – interface specification, the engine and middleware
specific adaptors - contributes to providing application level
interoperability. There are many applications that need to use
federated Grids [5], [9], and utilizing SAGA to develop the
Grid functionality of these applications provides an effective
way to do so.

On the other hand, if the development and deployment of
applications across federated Grids is to be facilitated, support
and development for SAGA adaptors for different middleware
needs to be forth-coming and self-sustaining and will thus
require explicit support, from both the middleware developers
and resource providers. Although, it might be debatable as to
when exactly a critical mass of the community threw their
support behind MPI, but irrespective of the timing, it is clear
that the technical merits of MPI coupled with the fact that it
was a community standard played a great role in increasing the
number of applications developed using MPI and the number
of vendors that were willing to support it – thus providing
MPI-based applications the ability to interoperate across dif-
ferent parallel platforms. As SAGA becomes a standard [22],
[23], [14] there will be increased willingness on the part
of middleware developers and resource providers to provide
these adaptors to the application community. Additionally,
as the deployment of SAGA and required adaptors becomes
wider (pervasive) and deeper (greater functionality), there is an
increased incentive for application developers to use SAGA.

Making the global infrastructure a reality, critically depends
upon the availability of computational infrastructure that pro-
vides resources that can be seamlessly used; developing both
applications and tools using SAGA is an effective mechanism
for ensuring such interoperability.
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