
Abstractions for Loosely-Coupled and Ensemble-based Simulations on Azure

André Luckow1, Shantenu Jha1,2,3,∗

1Center for Computation & Technology, Louisiana State University, USA
2Department of Computer Science, Louisiana State University, USA

3e-Science Institute, Edinburgh, UK
∗Contact Author: sjha@cct.lsu.edu

Abstract

Azure is an emerging cloud platform developed and op-
erated by Microsoft. It provides a range of abstractions and
building blocks for creating scalable and reliable scientific
applications. In this paper we investigate the applicability
of the Azure abstractions to the well-known class of loosely
coupled and ensemble-based applications. We propose the
BigJob API as a novel abstraction for managing groups
of Azure worker roles and for remotely executing tasks on
them. We demonstrate that Azure enhanced with BigJob
functionality provides performance comparable to other
grid and cloud offerings loosely-coupled applications.

I. Introduction
Emerging cloud platforms such as Microsoft’s

Azure [1], present relatively simple computing
environments compared to traditional grid computing
environments, in terms of resource management, capacity
planning capabilities, software environment & control etc.
In spite of the promise of clouds as a viable platform for
Science & Engineering applications, many fundamental
questions persist about how scientific applications will
utilize clouds as presented, both now and into the future?
Some existing legacy applications no doubt will adapt
and take advantage of new capabilities, but it is unclear
how clouds as currently presented are likely to change
(fundamentally?) the development and deployment of
scientific applications, and the process of scientific
investigation. The challenges surrounding the effective
uptake of clouds are both broad and deep, in that, there are
both application-level questions as well as system-level
questions. For example, are clouds viable alternatives
to production grid infrastructure or will they be part of
a larger production cyberinfrastructure? What kind of
scientific services can clouds support and how should
clouds be provisioned and provided to the scientific
community?

To understand some of these questions we investigate
Ensemble-based (enMD) approaches, which are commonly
used in simulations to facilitate drug discovery and to
provide fundamental insight into molecular structure, dy-

namics and interactions. Different kinds of ensemble-
based approaches are commonly deployed: Ensembles of
independent simulations aim to improve the statistical
sampling of MD simulations. In some scenarios, sampling
of physical-states can be improved by infrequent attempts
to exchange partial state information between pairs of
replicas; the replica-exchange (RE) algorithm [2] is a well-
known example of this class.

In Luckow et al. [3] efficient scale-out of RE simula-
tions was established for multiple TeraGrid (TG) resources.
We used the BigJob framework to decouple workload sub-
mission from resource assignment; this results in a flexible
execution model, which in turn enables the distributed
scale-out of applications on multiple and possibly hetero-
geneous resources concurrently. In Ref. [4] we extended
this work to support production grid infrastructures based
on Condor as well as EC2-style clouds (e. g. FutureGrid).

The primary aim of this paper is to explore the ab-
stractions that the Windows Azure platform provides, and
their suitability to for orchestrating distributed, loosely-
coupled workloads, as required by enMD simulations.
Furthermore, we determine how existing and established
abstractions for distributed computing can be extended to
Azure. We analyze the suitability of the different Azure
abstractions, such as the Azure Queue-service (AQS),
Azure Blob Storage (ABS) and the Worker Role API.We
propose the existing BigJob API as an viable and efficient
abstraction for managing a group of Azure worker roles
and for remotely executing tasks on them.

This paper is structured as follows: In § II we present
an overview of the Azure platform. In § III the pilot-
job concept and the BigJob framework is introduced. The
Azure BigJob implementation is presented in § IV. In § V
we discuss the architecture of the Azure-based enMD and
RE application. A significant issue in cloud computing is
performance. We provide an in-depth performance analysis
in § VI.

II. Windows Azure
Windows Azure offers a platform for on-demand com-

puting and for hosting generic server-side applications.
In contrast to infrastructure as a service clouds (IaaS),

such as Amazon EC2/S3, Azure follows the platform
as a service paradigm (PaaS). The platform encapsulates
common application patterns into so-called roles, removing
the need to manually manage low-level details on virtual
machine (VM) level. The so-called Azure fabric controller
automatically monitors all VMs, reacts to hardware and
software failures and manages application upgrades.

1) Compute: Windows Azure currently provides two
kind of roles: Web roles e. g. are used to host web
applications and front-end code, while worker roles are
well suited for background processing. While these roles
target specific scenarios and are not as flexible as bare
EC2 images, they are also customizable, e.g., Worker roles
can run native code. The application must implement the
worker role API, which provides a run method as a
defined entry point for executing the actual compute task.
Further, several additional API callbacks, e. g., for state
or configuration change notifications, are provided.The
Azure fabric controller automatically manages and mon-
itors applications, handles hardware and software failures
as well as updates to the operating system or the applica-
tion. Scientific applications commonly utilize worker roles
for compute and/or data-intensive tasks. AzureBlast [5]
e. g. heavily relies on worker roles for computing bio-
sequences.

2) Storage: Azure provides three key services or stor-
ing large amounts of data: the Azure Blob Storage (ABS)
for storing large objects of raw data; the Azure Table
Storage (ATS) for semi-structured data, and the Azure
Queue Storage (AQS) for implementing message queues.
The stored data is replicated across multiple data centers
to protect it against hardware and software failures. In
contrast to other services (e. g. Amazon S3) [6], the Azure
Storage Services provide strong consistency guarantees,
i. e., all changes are immediately visible to all future calls.
While eventual consistency offers a better performance and
scalability, it has some disadvantages mainly caused by the
fact that the complexity is moved to the application space.

ABS can store file up to a size of 1 TB, which makes it
particularly well suited for data-intensive applications. S3
e. g. restricts the maximum file size to 5 GB. Further, the
access to the ABS blob storage can be optimized for certain
usage modes: block blob can be split into chunks which
can be uploaded and downloaded separately and in parallel.
Thus, block blobs are well suited for large amounts of data.
Page blob manage the storage as an array of pages. Each
of these pages can be addressed individually, which makes
page blobs a good tool for random read/write scenarios.

AQS provides reliable storage for the delivery of mes-
sages for distributed applications. It is ideal to orchestrate
the various components of a distributed application, e. g.
by distributing work packages or collecting results.

III. Pilot-Jobs and SAGA BigJob
Pilot-Jobs are a useful abstraction for efficiently execut-

ing an ensemble of batch jobs on distributed infrastructures
without the necessity to queue each individual job. The
pilot-job itself is a regular grid job, which is started through
a grid resource manager, such as the Globus GRAM. Once
the batch queue assigns the requested resources to the
pilot-job, the pilot-job circumvents the necessity to queue
each individual sub-job, and is responsible for managing
the resources. Thus queuing times for sub-jobs can be
reduced and the predictability for application execution
can be increased. In effect, pilot-jobs decouple resource
allocation from resource binding and allow the efficient
utilization of resources. By delaying the resource binding,
and enabling scheduling decision at the application-level,
dynamic execution and usage modes can be supported.
For example, the load-dependent sizing of sub-jobs, or the
dynamic addition of resources to meet deadlines [4].

As more applications take advantage of dynamic exe-
cution, the pilot-job concept has grown in popularity and
has been extensively researched and implemented for dif-
ferent usage scenarios and infrastructure including clouds.
Nimbus [7] e. g. provides a pilot-job like abstractions for
clouds. For this purpose, Nimbus allows the launch of auto-
configured virtual machine clusters that contain a Torque
and Globus installation. The Atlas computing framework
developed at CERN also heavily relies on the PanDA pilot-
job framework [8] to implement resource leases. Using
the VIRM API, PanDA was extended to support different
virtualization backends, e. g. OpenNebula and Nimbus.
Both frameworks are strongly coupled to a particular
backend infrastructure – Globus in the case of Nimbus and
gLite in the case of PanDA. The advantage of the SAGA
pilot-job is that it allows applications to seamlessly utilize
different backend infrastructure, e. g. Condor, Globus and
different kinds of clouds, at the same time.

SAGA [9] is a simple, POSIX-style API to the most
common distributed functions, which is a sufficiently high-
level of abstraction so as to be independent of the diverse
and dynamic grid environments. BigJob is a SAGA-based
pilot-job implementation [4], which can, in contrast to
other pilot-job implementations, natively works indepen-
dent of the underlying distributed infrastructure and across
different heterogeneous backend, e. g. grids, Condor pools
as well as EC2-based and Azure clouds, reflecting the
advantage of using a SAGA-based approach (see Figure 2).
Furthermore, the framework is extensible and provides
several hooks that can be used to support other resource
types, pilot-job frameworks and application-specific cus-
tomization.

Figure 1 shows an overview of the SAGA BigJob
implementation for computational grids. The grid BigJob
comprises of three components: (i) the BigJob Manager

6) poll

Resource

2) submit

3) Start job

4) run sub-job

1) run big-job

Resource Manager

Application
SAGA BigJob Framework

Advert Service

ReplicaApp
Task 1

sub-job

ReplicaApp
Task 2

sub-job

ReplicaApp
Task 3

sub-job

5) create_job_entry

Application

ReplicaApp
Task 4

sub-job

BigJob Agent
big-job

7) Spawn sub-jobs

Pilot-Job Abstraction

SAGA BigJob
Manager

Resource

User Desktop

Resource

Fig. 1: BigJob Architecture: The core of the framework, the
BigJob Manager, orchestrates a set of sub-jobs via a BigJob
Agent using the SAGA job and file APIs. The BigJob Agent
is responsible for managing and monitoring sub-jobs.

Fig. 2: Overview of the BigJob Architecture: BigJob can cur-
rently be used with four different infrastructures: grids, Condor
pools, EC2-style and Azure clouds.

(BM) that provides the pilot-job abstraction to the appli-
cation, and manages the orchestration and scheduling of
BigJobs (which in turn allows the management of both
big-job objects and sub-jobs), (ii) the BigJob Agent (BA)
that represents the pilot-job, and (iii) the advert service
which is used for communication between the BM and
BA.

Applications can utilize the framework via the big-job
and sub-job classes. Both interfaces are syntactically and
semantically consistent with the other SAGA APIs: a sub-
job for example, is described using the standard SAGA
job description; job states are expressed using the SAGA
state model. Before running sub-jobs, an application must
initialize a big-job object. The BM then queues a job,
which actually runs a BigJob Agent on the respective
remote resource. For this agent a specified number of
resources is requested. Subsequently, sub-jobs can be sub-
mitted through the BM using the job-id of the BigJob as
reference. The BM ensures that sub-jobs are launched onto
the correct resource based upon the specified job-id using
the right number of processes.

IV. Azure BigJob
Figure 3 illustrates the architecture of the Azure-based

BigJob. Similarly to the grid BigJob BM, the Azure BM
is responsible for accepting simulation requests from the

start
replicas

query
state

SubJob 1 SubJob 2

BigJob Agent 1

Azure Worker Role

BigJob-Manager

Azure
Blob

Azure
Queue

Azure Client

SubJob
n-1 SubJob n

BigJob Agent m

Azure Worker Role

 query
 post results

Azure Portal
Service

Managment API

start
VMs

Fig. 3: Azure-based BigJob: The framework utilizes the queue
storage for distributing work packages from the BigJob Manager
to the BigJob agents running on multiple worker roles.

end-user and for orchestrating the sub-job runs. In contrast,
to the grid BigJob, which utilizes different packages of the
SAGA API [9], the Azure BigJob is built directly on top of
the Azure APIs. With the exception of using the BigJob
API – and thus presenting an interface that is identical
to the SAGA-based pilot-job and that which is used for
other infrastructures, Azure BigJob is self-contained and
independent of any (SAGA) details used to implement a
SAGA-based pilot-job.

Initially, the BM launches the requested number of
worker roles using the Service Management API – a
RESTful HTTP API. As part of this project we developed
a Python library that can be used to access this Azure
capability [10]. The BigJob Agents run within the worker
roles and are implemented in C#/.NET. The main respon-
sibility of the agent is to execute the specified MD code,
(e. g. NAMD [11], or AMBER [12]), on the worker. Azure
restricts communication between worker roles to a set
of pre-defined endpoints. Since MPI utilizes dynamically
assigned ports, MPI computations cannot be run across
multiple worker roles. The size of a parallel simulation is
therefore limited to the VM size (the largest Azure VM
has currently 8 cores).

For each sub-job the BM creates a work-package. These
are distributed to the agents using the AQS, which by offer-
ing a reliable and scalable way for delivering messages to
distributed components, provide an ideal abstraction. These
can, but do not have to be hosted on Azure.

Once the agents are started, they query the AQS for new
work packages. If a package is found, a simulation task is
started, e. g. by running the requested MD code with right
parameters. The framework supports both the staging of
parameter files as well as of the executable using ABS.
If staging is requested in the job description, the manager
uploads the respective files to the storage and the agents
downloads them before the run.

The framework supports Azure affinity groups. If re-
quested, BigJob uses affinity groups to place the VMs for
the sub-jobs and the Azure storage for file staging close to

each other in the same data center. This is particularly use-
ful for data-intensive tasks, e. g. MapReduce applications.
At the same time the BM can also orchestrate worker roles
that are distributed across multiple affinity groups.

V. EnMD and RE Simulations on Azure
Using the BigJob framework we have deployed and

executed both the independent and coupled ensemble sce-
narios (enMD & REMD). Both scenarios utilize the BigJob
API to create pilot-jobs, and subsequently to submit sub-
jobs. When a pilot-job is created the BigJob framework
initializes the requested number of worker roles with the
specified size and launches a virtual cluster of Azure
workers. The replicas themselves are submitted as sub-
jobs. After the sub-job terminates, the application can
collect results via the BigJob API. NAMD is used to
perform MD simulations. In the REMD case the output
is parsed to obtain the energy level of the replica. The
Metropolis scheme is used to determine whether an ex-
change is accepted. Finally, a new generation of replicas
is launched.

VI. Performance Analysis
The aim of this section is not to perform detailed

systematic performance measures and analysis, but to illus-
trate the representative usage modes BigJob can support,
and to explain how they are supported. We focus our
attention on RE MD-simulations, and a workload of 8
replicas of a Hepatitis-C virus (HCV) model, with each
replica running for 500 timesteps.
A. BigJob Startup Times

Initially, we analyze the overhead resulting from the
usage of BigJob across different infrastructures. Typically,
the main overhead when using BigJob results from either
the queueing time at individual resources for grids or from
the VM creation time for cloud environments. Figure 4
compares the average startup times of the different BigJob
backends for grids, Condor pools and clouds. Each exper-
iment was repeated at least 10 times.

Interestingly for experiments conducted, startup times
for the cloud environments were observed to be larger than
the queue waiting time for the LONI resource Poseidon.
Obviously, the startup of a VM involves higher overheads
than spawning a job on an already running machine: a
resource for the VM must be allocated, the VM must be
staged to the target and booted up. The data show that the
already over-subscribed intra-cloud network and thus, the
staging of the VM can be a bottleneck. Azure VMs had
the longest waiting time (> 10 min; about 200 sec longer
than EC2). Further, high fluctuations in waiting times can
be observed. These waiting time usually correlate to the
current load of the chosen data center, which again depends
on external factors, such as the location of the data center
and/or the date/time of the request.

0	

100	

200	

300	

400	

500	

600	

700	

EC2	
m1.large	

Future	 Grid	
Nimbus	

LONI	 Condor	
Pool	

Azure	

St
ar
tu
p	
Ti
m
e	
(in

	 s
ec
)	

Fig. 4: BigJob Startup Times: In grids the startup time greatly
depends upon the queuing time at the local resource manager.
However, in our experiments also clouds showed a high fluctua-
tion in the queueing time. Azure shows a slightly higher startup
time than the science and the EC2 clouds.

BigJob can manage sets of VMs, and thus removes
the need for applications to manage individual VMs. By
utilizing the different BigJob cloud and grid backends,
fluctuations in the waiting times can be smoothened out.
Furthermore, BigJob provides the possibility to dynam-
ically add resources to an application, e. g. in case a
resource is heavily loaded and thus has long wait-times.

Another critical issue is the time needed to launch a sub-
job onto a remote resource. Figure 5 compares the grid and
Azure sub-job launch times. Both BigJob implementation
are comparable and introduce a low overhead of 1-2 sec
for launching a single sub-job. A sub-job submission
comprises of two phases: the submission phase, i. e., the
writing of the sub-job meta-data to the advert or to the
AQS service, and the spawning phase. In the spawning
phase the agent reads the sub-job meta-data from the infor-
mation service and starts the sub-job process. The Azure
BigJob requires about 0.7 sec more time for submitting a
subjob mainly due to the fact that Azure submissions were
conducted from a remote machine outside of an Azure
datacenter. In the grid case the submission machine, advert
service and HPC resource were located on the same site.
However, the spawning time of the Azure BigJob is much
lower than of the grid BigJob. The grid BigJob agent is
required to eagerly poll the advert service for new sub-job
entries, while the Azure BigJob can utilize AQS, which
allows threads to sleep until new queue messages arrive.

B. Ensembles on Different Resource Types
We ran experiments with NAMD in different environ-

ments with varying characteristics: FutureGrid (Nimbus),
Amazon EC2, Azure and LONI/TG. Each FutureGrid VM
provides 2 virtual cores and 3.7 GB memory. Amazon
offers different VM types with up to 8 cores. We used,
(i) the largest VM type (m2.4xlarge) with 8 cores and
68.4 GB of memory, (ii) the m1.large instance type with
2 cores and 7.5 GB, and (iii) the recently launched cluster

0	

0,5	

1	

1,5	

2	

2,5	

Azure	 Grid	

Ti
m
e	
(in

	 s
ec
)	

Time-‐to-‐Submit	 Time-‐to-‐Start	

Fig. 5: BigJob Sub-Job Submission: The submission time for a
single sub-job. The submission times to Azure and a grid resource
are comparable. Experiments are repeated 20 times.

 50

 100

 150

 200

 250

 300

 350

 10 15 20 25 30

R
u
n
ti
m

e
 (

in
 s

)

Number of Cores

EC2 (cc1.4xlarge)
EC2 (m2.4xlarge)

EC2 (m1.large)
Science Cloud

LONI (QB)
LONI (Poseidon)

Fig. 6: NAMD Runtimes on Different Resource Types: The
graph shows that the new EC2 cluster compute instances are able
to outperform other cloud resources as well as traditional HPC
resources as QB and Poseidon.

compute instances [13], which provide a pair of quad-core
Intel X5570 (Nehalem) processors with 23 GB memory. In
contrast to other instance types, cluster compute instances
are connected using 10 Gbps Ethernet. The results of this
experiment are depicted in figure 6 and show that cloud
resources can achieve a comparable and in some cases even
a better performance than the used grid resources.

Figure 7 compares the performances of Azure and EC2.
For this purpose, an EC2 instance type with a similar
core count and price is chosen. Azure outperforms EC2
Windows instances in most cases; which is noteworthy,
since the costs for 2, 4 and 8 core VMs are drastically
lower on Azure. Table I summarizes the costs of selected
EC2 and Azure scenarios. In particular, the EC2 Linux in-
stances show a good price/performance ratio. For Windows
instances Azure provides a favorable optimum.

VM Type CPU h #Core #VM TC Costs
EC2 m2.4xlarge (Lin) 2.40$ 8 1 128 sec 0.08$
EC2 cc1.4xlarge (Lin) 1.60$ 8 1 45 sec 0.04$
EC2 c1.xlarge (Win) 1.16$ 8 1 290 sec 0.09$
Azure XL (Win) 0.96$ 8 1 301 sec 0.08$

TABLE I: EC2 vs. Azure Costs

0	

500	

1000	

1500	

2000	

2500	

3000	

1	 2	 4	 8	

Ru
n,

m
e	
(in

	 s
ec
)	

Number	 of	 Cores	 	

EC2	 Azure	

Fig. 7: NAMD Performance on Azure and EC2: In particular
on smaller VM sizes (1-4 cores) Azure outperforms EC2. The
8 core EC2 VM cc1.xlarge shows a slightly better performance
than the Azure 8 core VM, however at a higher cost.

0	

2	

4	

6	

8	

10	

12	

14	

16	

EU-‐US	 EU-‐Asia	 EU	 EU	 	 	 	 	 	
(same	 DC)	

EU	 (w/	
Affinity)	

Ba
nd

w
id
th
	 (i
n	
M
B/
s)
	

Fig. 8: ABS Bandwidths Between Different Regions: The
achievable vary greatly with the distance between data and
compute. Using affinity groups a bandwidth of approx. 12 MiB/s
is achievable.

C. Data-Management on Azure
Azure provides various options to distribute data and

compute. Users can either select one of the six data centers
(as of Sept. 2010), or a geographic region (i. e. US, Europe,
Asia). Further, Azure offers so-called affinity groups as
abstractions to control the co-location of data/compute.

To evaluate the available bandwidths and storage op-
tions, we conducted the following experiment: a 4.3 GB
file is stored in the ABS in the “West-EU‘” data center.
This file is then downloaded by worker roles in different
locations: the same data center, “Anywhere US”, “Any-
where Asia”, “Anywhere Europe” and the same affinity
group.

Figure 8 presents the results of this experiment. Obvi-
ously, the further away the worker role, the smaller the
available bandwidth. Interestingly, even when staying in
the same region (“Anywhere Europe”) the most optimal
bandwidth is not achieved.

The best result (approx. 12 MB/s) can be achieved when
placing worker roles and storage in the same data center
or the same affinity group. While affinity groups provide a
good abstraction to manage compute/storage locations, it
influences the placement solely at the data-center level. The

0	

20	

40	

60	

80	

100	

120	

140	

EU	 Asia	 US	 EU/Asia/US	

Ru
n3

m
e	
(in

	 m
in
)	

Fig. 9: TC for RE Run in Different Azure Regions: Runtime
for a RE simulation with 16 replicas each running on a small VM
with 1 core for 500 timesteps and a total of 4 generations. The
performance of the Azure fluctuates with the data center region.

same bandwidths can be achieved by a manual placement.
Enhanced affinity groups that can be used to control the
locality on rack/switch-level would be desirable.

While data locality is not critical for the EnMD
and RE use case – the Azure service package has a
size of 8 MByte, for data-intensive applications, such as
MapReduce-based applications, this is an important fea-
ture. By supporting the Azure affinities within the BigJob
framework, these requirements can be addressed.

D. Replica-Exchange on Azure
Figure 9 shows the time-to-completion (TC) of an RE

simulation with 16 replicas each running on a single core
VM for 500 NAMD timesteps on Azure. In total, we
measured the time for 4 generations, i. e., for 64 attempted
exchanges. As shown in the graph, the runtime of this
scenario fluctuates with the chosen Azure region. The EU
and Asia show a better performance than the US data
centers. BigJob also supports the distribution of sub-jobs
across multiple data centers. However, due to the coupling
between the replicas, the performance in this case depends
on the slowest machine.

Figure 10 shows TC for different numbers of replicas
and VM types. Again, each replica is run for 500 timesteps
before an exchange is attempted. As the number of replicas
increases, it is expected that the coordination overhead
will increase. As seen in Figure 10, this overhead for
upto 32 replicas is at maximum 2.3 percent of the overall
runtime.

The chosen VM type greatly influences TC . Azure cur-
rently offers four types: small VMs with 1 core, medium
VMs with 2 cores, large VMs with 8 cores and extra-
large VMs with 8 cores. The larger the VM, the shorter
the overall runtime. However, the efficiency – defined as,
the run-time on one resource divided by the run-time on
multiple resources scaled by the number of resources, for
this problem instance on going from the 4 to 8 cores
drops to less than 0.4. This is mainly a limitation of
the used setup: in this scenario the replicas consist of
relatively short-running NAMD tasks. For longer-running

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 2 4 8 16 32

R
u
n
ti
m

e
 (

in
 m

in
)

Number of Replicas

small (1 cores)
medium (2 cores)

large (4 cores)
extra−large (8 cores)

Fig. 10: TC for Different VM Sizes and Number of Replicas:
With an increasing number of replicas a small coordination can
be observed in most scenarios. The VM type has a great impact
on the overall runtime. The larger the VM, the shorter TC .

tasks greater efficiency can be expected.
Nevertheless, the best performance is achieved on an

extra-large VM. The largest ensemble comprised of 32
replicas running on extra-large VMs on a total of 256
cores. With a runtime of 30 minutes for the 16 replica
case this setup is able to almost match the performance
of the TG resource QueenBee, where the same scenario
was executed in 26 minutes (see [3] for details).

VII. Conclusion and Future Directions
Ensemble-based MD simulations are commonly used

bio-molecular simulation approaches. We have imple-
mented the computational and coordination pattern repre-
sented by RE to Azure, by extending the BigJob framework
to utilize the native abstractions provided by Azure, such
as worker roles, Azure storage and affinity groups.

In contrast to other cloud offerings, Azure provides
not only bare-metal VMs to applications, but a managed
PaaS environment for running them. It also monitors and
automatically restarts VMs and applications if necessary.
Additional resources can be dynamically spawned, e. g.,
if a higher accuracy is required or a deadline must be
met. Further, Azure provides an integrated development
environment and a higher-level API, which simplifies the
development considerably, in particular compared to the
efforts necessary when running an application distributed
across multiple TG sites (which to date does not have a
system-level tool for multi-site data or job coordination).
Using Azure we were able to achieve almost the same
sampling speed as on comparable grid resources, such as
QueenBee. Thus given its “rich” features, and simplicity
invoking them, not only is Azure a viable alternative to
the TG for medium-level parallel tasks, but it may even be
the preferred alternative!

Future Directions: SAGA [9] provides a simple, single
interface to the common distributed functionality (file/data,
job/VM launch etc.) for a range of distributed infras-

tructure. Given the benefit of using the same application
across different infrastructures, it makes eminent sense to
support Azure from within SAGA and to provide SAGA
adaptors to important Azure services. We are exploring
novel abstractions, as well as extensions to those already
provided by Azure for data-intensive applications; we are
also investigating task placement algorithms in conjunction
with different Azure worker roles, storage and affinity
group setups.

Acknowledgements
SJ acknowledges the e-Science Institute, Edinburgh for supporting the
research theme. “Distributed Programming Abstractions” & 3DPAS. We
thank J Kim (CCT) for assistance with the RNA models, and H Kaiser
(CCT) for assistance with SAGA/Windows. We thank FutureGrid and
Microsoft for providing the resources for the experiments.

References
[1] http://www.microsoft.com/windowsazure/.
[2] U. Hansmann, “Parallel Tempering Algorithm for Conformational

Studies of Biological Molecules,” Chemical Physics Letters, vol.
281, pp. 140–150, 1997.

[3] A. et al. Luckow, “Adaptive Distributed Replica–Exchange Simu-
lations,” in Theme Issue of the Philosophical Transactions of the
Royal Society A, vol. 367, 2009.

[4] A. Luckow and et al, “Saga bigjob: An extensible and interoperable
pilot-job abstraction,” CCGrid10, pp. 135–144, 2010.

[5] W. Lu and et al, “AzureBlast: A Case Study of Developing Science
Applications on the Cloud,” in First Workshop on Scientific Cloud
Computing (Science Cloud 2010). ACM, 2010.

[6] G. et al. DeCandia, “Dynamo: amazon’s highly available key-value
store,” SIGOPS Oper. Syst. Rev., vol. 41, no. 6, pp. 205–220, 2007.

[7] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky com-
puting,” IEEE Internet Computing, vol. 13, no. 5, pp. 43–51, 2009.

[8] P.-H. Chiu and M. Potekhin, “Pilot factory – a condor-based system
for scalable pilot job generation in the panda wms framework,”
Journal of Physics: Conference Series, vol. 219, no. 6, p. 062041,
2010. [Online]. Available: http://stacks.iop.org/1742-6596/219/i=6/
a=062041

[9] http://saga.cct.lsu.edu.
[10] A. Luckow, “Azure Service Management API Implementation

for Python,” http://github.com/drelu/winazurestorage/blob/master/
winazureservice.py, 2010.

[11] J. P. et al, “Scalable molecular dynamics with NAMD,” Journal of
Computational Chemistry, vol. 26, pp. 1781–1802, 2005.

[12] D. Case, T. Cheatham et al., “The amber biomolecular simulation
programs,” J. Comp. Chem., vol. 26, pp. 1668–1688, 2005.

[13] W. Vogels, “Expanding the Cloud - Cluster Compute Instances
for Amazon EC2,” http://www.allthingsdistributed.com/2010/07/
cluster compute instance amazon ec2.html, 2010.

