Contents

Preface ... ix
 Intended Audience ... ix
 Documentation Accessibility ... ix
 Related Documents .. x
 Conventions ... xi

What's New in Oracle Clusterware Installation and Configuration? ... xiii
 Changes in Installation Documentation ... xiii
 Enhancements and New Features for Installation .. xiv

1 Summary List: Installing Oracle Clusterware
 Verify System Requirements ... 1-1
 Check Network Requirements ... 1-1
 Check Operating System Packages .. 1-2
 Set Kernel Parameters ... 1-2
 Configure Groups and Users ... 1-3
 Create Directories ... 1-3
 Configure Oracle Installation Owner Shell Limits .. 1-3
 Configure SSH ... 1-4
 Check Existing SSH Configuration on the System .. 1-4
 Configure SSH on Cluster Member Nodes ... 1-4
 Enable SSH User Equivalency on Cluster Member Nodes .. 1-4
 Create Storage ... 1-4
 Verify Oracle Clusterware Requirements with CVU .. 1-4
 Install Oracle Clusterware Software .. 1-5
 Prepare the System for Oracle RAC and ASM ... 1-5

2 Oracle Clusterware Preinstallation Tasks
 Reviewing Upgrade Best Practices ... 2-1
 Logging In to a Remote System as root Using X Terminal .. 2-2
 Overview of Groups and Users for Oracle Clusterware Installations ... 2-3
 Creating Groups and Users for Oracle Clusterware .. 2-3
 Understanding the Oracle Inventory Group ... 2-4
 Understanding the Oracle Inventory Directory ... 2-4
 Determining If the Oracle Inventory and Oracle Inventory Group Exists ... 2-4
Creating the Oracle Inventory Group If an Oracle Inventory Does Not Exist.......................... 2-5
Creating the Oracle Clusterware User ... 2-5
Example of Creating the Oracle Clusterware User and OraInventory Path 2-7
Checking the Hardware Requirements .. 2-7
Checking the Network Requirements .. 2-9
Network Hardware Requirements ... 2-9
IP Address Requirements ... 2-10
Node Time Requirements .. 2-12
Network Configuration Options .. 2-12
Configuring the Network Requirements .. 2-12
Identifying Software Requirements .. 2-13
Software Requirements List for Solaris Operating System (SPARC 64-Bit) Platforms 2-13
Checking the Software Requirements .. 2-15
Verifying Operating System Patches ... 2-16
Verifying Solaris Operating System (SPARC 64-bit) Patches ... 2-16
Configuring Kernel Parameters ... 2-17
Configuring Kernel Parameters On Solaris 9 .. 2-17
Configuring Kernel Parameters on Solaris 10 .. 2-18
Running the Rootpre.sh Script on x86-64 with Sun Cluster .. 2-20
Configuring SSH on All Cluster Nodes ... 2-20
Checking Existing SSH Configuration on the System ... 2-21
Configuring SSH on Cluster Member Nodes ... 2-21
Enabling SSH User Equivalency on Cluster Member Nodes ... 2-22
Setting Display and X11 Forwarding Configuration ... 2-23
Preventing Oracle Clusterware Installation Errors Caused by stty Commands 2-25
Configuring Software Owner User Environments .. 2-26
Environment Requirements for Oracle Clusterware Software Owner 2-26
Environment Requirements for Oracle Database and Oracle ASM Owners 2-26
Procedure for Configuring Oracle Software Owner Environments 2-27
Setting Shell Limits for Oracle Installation Owner Users ... 2-29
Requirements for Creating an Oracle Clusterware Home Directory 2-29
Understanding and Using Cluster Verification Utility .. 2-30
Entering Cluster Verification Utility Commands ... 2-30
Using CVU to Determine if Installation Prerequisites are Complete 2-31
Using the Cluster Verification Utility Help ... 2-31
Using Cluster Verification Utility with Oracle Database 10g Release 1 or 2 2-32
Verbose Mode and "Unknown" Output ... 2-32
Checking Oracle Clusterware Installation Readiness with CVU ... 2-32
Checking the Network Setup with CVU .. 2-32
Checking the Hardware and Operating System Setup with CVU ... 2-33
Checking the Operating System Kernel Requirements Setup with CVU 2-33

3 Oracle Real Application Clusters Preinstallation Tasks

Creating Standard Configuration Operating System Groups and Users 3-1
Overview of Groups and Users for Oracle Database Installations .. 3-2
Creating Standard Operating System Groups and Users ... 3-2
Creating Custom Configuration Groups and Users for Job Roles 3-4
Overview of Creating Operating System Group and User Options Based on Job Roles 3-4
Creating Database Operating System Groups and Users with Job Role Separation 3-6
Understanding the Oracle Base Directory Path .. 3-11
Creating the Oracle Base Directory Path .. 3-12
Environment Requirements for Oracle Database and Oracle ASM Owners 3-12

4 Configuring Oracle Clusterware Storage

Reviewing Storage Options for Oracle Clusterware .. 4-1
Overview of Storage Options .. 4-1
Checking for Available Shared Storage with CVU .. 4-3
Configuring Storage for Oracle Clusterware Files on a Supported Shared File System 4-3
Requirements for Using a File System for Oracle Clusterware Files ... 4-4
Checking UDP Parameter Settings ... 4-5
Checking NFS Mount and Buffer Size Parameters for Clusterware ... 4-6
Creating Required Directories for Oracle Clusterware Files on Shared File Systems 4-7
Configuring Storage for Oracle Clusterware Files on Raw Devices .. 4-8
Identifying Required Raw Partitions for Clusterware Files .. 4-8

5 Configuring Oracle Real Application Clusters Storage

Reviewing Storage Options for Oracle Database and Recovery Files ... 5-1
Overview of Oracle Database and Recovery File Options .. 5-1
General Storage Considerations for Oracle RAC .. 5-2
After You Have Selected Disk Storage Options ... 5-3
Checking for Available Shared Storage with CVU .. 5-4
Choosing a Storage Option for Oracle Database Files ... 5-4
Configuring Storage for Oracle Database Files on a Supported Shared File System 5-5
Requirements for Using a File System for Oracle Database Files ... 5-5
Deciding to Use NFS for Data Files ... 5-6
Deciding to Use Direct NFS for Datafiles .. 5-6
Enabling Direct NFS Client Oracle Disk Manager Control of NFS ... 5-8
Disabling Direct NFS Client Oracle Disk Management Control of NFS 5-8
Checking NFS Mount and Buffer Size Parameters for Oracle RAC .. 5-9
Creating Required Directories for Oracle Database Files on Shared File Systems 5-9
Configuring Disks for Automatic Storage Management ... 5-10
Identifying Storage Requirements for Automatic Storage Management 5-11
Using an Existing Automatic Storage Management Disk Group ... 5-13
Configuring Storage for Oracle Database Files on Shared Storage Devices 5-15
Planning Your Shared Storage Device Creation Strategy ... 5-15
Identifying Required Shared Partitions for Database Files ... 5-15
Creating Raw Devices on IDE or SCSI Devices ... 5-16
Desupport of the Database Configuration Assistant Raw Device Mapping File 5-17
Checking the System Setup with CVU .. 5-17
6 Installing Oracle Clusterware

Verifying Oracle Clusterware Requirements with CVU ... 6-1
Interpreting CVU Messages About Oracle Clusterware Setup 6-2
Preparing to Install Oracle Clusterware with OUI .. 6-4
Installing Oracle Clusterware with OUI .. 6-7
Running OUI to Install Oracle Clusterware ... 6-7
Installing Oracle Clusterware Using a Cluster Configuration File 6-8
Troubleshooting OUI Error Messages for Oracle Clusterware 6-8
Confirming Oracle Clusterware Function ... 6-9

7 Oracle Clusterware Postinstallation Procedures

Required Postinstallation Tasks ... 7-1
Back Up the Voting Disk After Installation ... 7-1
Download and Install Patch Updates ... 7-1
Recommended Postinstallation Tasks ... 7-2
Back Up the root.sh Script .. 7-2
Run CVU Postinstallation Check .. 7-2

8 Deinstallation of Oracle Clusterware

Deciding When to Deinstall Oracle Clusterware ... 8-1
Relocating Single-instance ASM to a Single-Instance Database Home 8-1
Removing Oracle Clusterware .. 8-2
About the rootdelete.sh Script .. 8-2
Example of the rootdelete.sh Parameter File .. 8-2
About the rootdeinstall.sh Script .. 8-3
Removing Oracle Clusterware .. 8-3

A Troubleshooting the Oracle Clusterware Installation Process

Install OS Watcher and RACDDT ... A-1
General Installation Issues .. A-2
Missing Operating System Packages On Solaris ... A-3
Performing Cluster Diagnostics During Oracle Clusterware Installations A-4
Interconnect Errors .. A-4

B How to Perform Oracle Clusterware Rolling Upgrades

Back Up the Oracle Software Before Upgrades .. B-1
Restrictions for Clusterware Upgrades to Oracle Clusterware 11g B-1
Verify System Readiness for Patchset and Release Upgrades B-2
Installing a Patch Set On a Subset of Nodes .. B-3
Installing an Upgrade On a Subset of Nodes .. B-4

Index
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–1</td>
<td>System Requirements for Solaris Operating System (SPARC 64-Bit)</td>
<td>2-13</td>
</tr>
<tr>
<td>2–2</td>
<td>Solaris Operating System (SPARC 64-bit) Patches</td>
<td>2-16</td>
</tr>
<tr>
<td>4–1</td>
<td>Shared File System Volume Size Requirements</td>
<td>4-5</td>
</tr>
<tr>
<td>4–2</td>
<td>Raw Partitions Required for Oracle Clusterware Files</td>
<td>4-8</td>
</tr>
<tr>
<td>5–1</td>
<td>Supported Storage Options for Oracle Database and Recovery Files</td>
<td>5-2</td>
</tr>
<tr>
<td>5–2</td>
<td>Shared File System Volume Size Requirements</td>
<td>5-6</td>
</tr>
<tr>
<td>5–3</td>
<td>Shared Devices or Logical Volumes Required for Database Files on Solaris</td>
<td>5-15</td>
</tr>
<tr>
<td>B–1</td>
<td>Minimum Oracle Clusterware Patch Levels Required for Rolling Upgrades to 11g</td>
<td>B-2</td>
</tr>
</tbody>
</table>
Oracle Clusterware Installation Guide for Solaris Operating System explains how to install and configure Oracle Clusterware, and how to configure a server and storage in preparation for an Oracle Real Application Clusters installation.

This preface contains the following topics:

- Intended Audience
- Documentation Accessibility
- Related Documents
- Conventions

Intended Audience

Oracle Clusterware Installation Guide for Solaris Operating System provides configuration information for network and system administrators, and database installation information for database administrators (DBAs) who install and configure Oracle Clusterware.

For customers with specialized system roles who intend to install Oracle Real Application Clusters (Oracle RAC), this book is intended to be used by system administrators, network administrators, or storage administrators to complete the process of configuring a system in preparation for an Oracle Clusterware installation, and complete all configuration tasks that require operating system root privileges. When configuration and installation of Oracle Clusterware is completed successfully, a system administrator should only need to provide configuration information and to grant access to the database administrator to run scripts as root during Oracle RAC installation.

This guide assumes that you are familiar with Oracle database concepts. For additional information, refer to books in the Related Documents list.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
To reach AT&T Customer Assistants, dial 711 or 1.800.855.2880. An AT&T Customer Assistant will relay information between the customer and Oracle Support Services at 1.800.223.1711. Complete instructions for using the AT&T relay services are available at http://www.consumer.att.com/relay/tty/standard2.html. After the AT&T Customer Assistant contacts Oracle Support Services, an Oracle Support Services engineer will handle technical issues and provide customer support according to the Oracle service request process.

Related Documents
For more information, refer to the following Oracle resources:

Oracle Clusterware and Oracle Real Application Clusters Documentation
Most Oracle error message documentation is only available in HTML format. If you only have access to the Oracle Documentation media, then browse the error messages by range. When you find a range, use your browser’s "find in page" feature to locate a specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle online documentation. However, error messages for Oracle Clusterware and Oracle RAC tools are included in *Oracle Clusterware Administration and Deployment Guide*, or *Oracle Database Oracle Clusterware and Oracle Real Application Clusters Administration and Deployment Guide*.

This installation guide reviews steps required to complete an Oracle Clusterware installation, and to perform preinstallation steps for Oracle RAC. If you intend to install Oracle Database or Oracle RAC, then review those installation guides for additional information.

Installation Guides
- Oracle Diagnostics Pack Installation
- Oracle Database Installation Guide for Solaris Operating System
- Oracle Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide for Linux

Operating System-Specific Administrative Guides
- Oracle Clusterware Administration and Deployment Guide
- Oracle Database Administrator’s Reference, 11g Release 1 (11.1) for UNIX Systems
Oracle Real Application Clusters Management
- Oracle Database Oracle Clusterware and Oracle Real Application Clusters Administration and Deployment Guide
- Oracle Database 2 Day + Real Application Clusters Guide
- Oracle Database 2 Day DBA
- Getting Started with the Oracle Diagnostics Pack

Generic Documentation
- Oracle Database New Features
- Oracle Database Net Services Administrator’s Guide
- Oracle Database Concepts
- Oracle Database Reference

Printed documentation is available for sale in the Oracle Store at the following Web site:
http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at the following Web site:
http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at the following Web site:
http://otn.oracle.com/documentation/

Oracle error message documentation is available only in HTML. You can browse the error messages by range in the Documentation directory of the installation media. When you find a range, use your browser’s “find in page” feature to locate a specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle online documentation.

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site:
http://otn.oracle.com/documentation/

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
What's New in Oracle Clusterware Installation and Configuration?

This section describes Oracle Database 11g release 1 (11.1) features as they pertain to the installation and configuration of Oracle Clusterware and Oracle Real Application Clusters (Oracle RAC). The topics in this section are:

- Changes in Installation Documentation
- Enhancements and New Features for Installation

Changes in Installation Documentation

With Oracle Database 11g release 1, Oracle Clusterware can be installed or configured as an independent product, and additional documentation is provided on storage administration. For installation planning, note the following documentation:

Oracle Database 2 Day + Real Application Clusters Guide
This book provides an overview and examples of the procedures to install and configure a two-node Oracle Clusterware and Oracle RAC environment.

Oracle Clusterware Installation Guide
This book (the guide that you are reading) provides procedures either to install Oracle Clusterware as a standalone product, or to install Oracle Clusterware with either Oracle Database, or Oracle RAC. It contains system configuration instructions that require system administrator privileges.

Oracle Real Application Clusters Installation Guide
This platform-specific book provides procedures to install Oracle RAC after you have completed successfully an Oracle Clusterware installation. It contains database configuration instructions for database administrators.

Oracle Database Storage Administrator’s Guide
This book provides information for database and storage administrators who administer and manage storage, or who configure and administer Automatic Storage Management (ASM).

Oracle Clusterware Administration and Deployment Guide
This is the administrator’s reference for Oracle Clusterware. It contains information about administrative tasks, including those that involve changes to operating system configurations and cloning Oracle Clusterware.
Enhancements and New Features for Installation

The following is a list of enhancements and new features for Oracle Database 11g release 1 (11.1):

New SYSASM Privilege and OSASM operating system group for ASM Administration
This feature introduces a new SYSASM privilege that is specifically intended for performing ASM administration tasks. Using the SYSASM privilege instead of the SYSDBA privilege provides a clearer division of responsibility between ASM administration and database administration.

OSASM is a new operating system group that is used exclusively for ASM. Members of the OSASM group can connect as SYSASM using operating system authentication and have full access to ASM.

OPROCD Monitors Cluster Nodes
With Oracle Clusterware 11g, on systems that are not using vendor clusterware, the Oracle Clusterware Process Monitor Daemon (oprocd) monitors the system state of cluster nodes.
The following is a summary list of installation configuration requirements and commands. This summary is intended to provide an overview of the installation process.

In addition to providing a summary of the Oracle Clusterware installation process, this list also contains configuration information for preparing a system for Automatic Storage Management (ASM) and Oracle Real Application Clusters (Oracle RAC) installation.

Verify System Requirements

For more information, review the following section in Chapter 2: "Checking the Hardware Requirements"

Enter the following commands to check available memory:

grep MemTotal /proc/meminfo
grep SwapTotal /proc/meminfo

The minimum required RAM is 1 GB, and the minimum required swap space is 1 GB. Oracle recommends that you set swap space to twice the amount of RAM for systems with 2 GB of RAM or less. For systems with 2 GB to 8 GB RAM, use swap space equal to RAM. For systems with over 8 GB RAM, use .75 times the size of RAM.

df -h

This command checks the available space on file systems. If you use standard redundancy for Oracle Clusterware files, which is 2 Oracle Cluster Registry (OCR) partitions and 3 voting disk partitions, then you should have at least 1 GB of disk space available on separate physical disks reserved for Oracle Clusterware files. Each partition for the Oracle Clusterware files should be 256 MB in size.

The Oracle Clusterware home requires 650 MB of disk space.

df -h /tmp

Ensure that you have at least 400 MB of disk space in /tmp. If this space is not available, then increase the partition size, or delete unnecessary files in /tmp.

Check Network Requirements

For more information, review the following section in Chapter 2: "Checking the Network Requirements"
The following is a list of address requirements that you must configure on a domain name server (DNS), or configure in the `/etc/hosts` file for each cluster node:

- You must have three network addresses for each node:
 - A public IP address
 - A virtual IP address, which is used by applications for failover in the event of node failure
 - A private IP address, which is used by Oracle Clusterware and Oracle RAC for internode communication

- The virtual IP address has the following requirements:
 - The IP address and host name are currently unused (it can be registered in a DNS, but should not be accessible by a ping command)
 - The virtual IP address is on the same subnet as your public interface

- The private IP address has the following requirements:
 - It should be on a subnet reserved for private networks, such as 10.0.0.0 or 192.168.0.0
 - It should use dedicated switches or a physically separate, private network, reachable only by the cluster member nodes, preferably using high-speed NICs
 - It must use the same private interfaces for both Oracle Clusterware and Oracle RAC private IP addresses
 - It cannot be registered on the same subnet that is registered to a public IP address

After you obtain the IP addresses from a network administrator, you can use the utility `system-config-network` to assign the public and private IP addresses to NICs, or you can configure them manually using `ifconfig`. Do not assign the VIP address.

Ping all IP addresses. The public and private IP addresses should respond to ping commands. The VIP addresses should not respond.

Check Operating System Packages

Refer to the tables listed in Chapter 2 "Identifying Software Requirements" for details, or use a system configuration script such as the Oracle Validated RPM.

Set Kernel Parameters

For more information, review the following section in Chapter 2: "Configuring Kernel Parameters"

Kernel parameters are set differently, depending on which Solaris release you have installed on your server. The minimum values for the parameters are the following:

- `noexec_user_stack=1`
- `semsys:seminfo_semmni=100`
- `semsys:seminfo_semmns=1024`
- `semsys:seminfo_semmsl=256`
- `semsys:seminfo_semvmx=32767`
- `shmsys:shminfo_shmmax=4294967295`
Configure Groups and Users

For more information, review the following sections in Chapter 2:
"Overview of Groups and Users for Oracle Clusterware Installations"
"Creating Groups and Users for Oracle Clusterware"

For information about creating Oracle Database homes, review the following sections in Chapter 3:
"Creating Standard Configuration Operating System Groups and Users"
"Creating Custom Configuration Groups and Users for Job Roles"

For purposes of evaluation, we will assume that you have one Oracle installation owner, and that this oracle installation software owner name is oracle. You must create an Oracle installation owner group (oinstall) for Oracle Clusterware. If you intend to install Oracle Database, then you must create an OSDBA group (dba). Use the id oracle command to confirm the correct group and user configuration.

/usr/sbin/groupadd oinstall
/usr/sbin/groupadd dba
/usr/sbin/useradd -m -g oinstall -G dba oracle
id oracle

Set the password on the oracle account:

passwd oracle

Create Directories

For more information, review the following section in Chapter 2:
"Requirements for Creating an Oracle Clusterware Home Directory"

For information about creating Oracle Database homes, review the following sections in Chapter 3:
"Understanding the Oracle Base Directory Path"
"Creating the Oracle Base Directory Path"

For installations with Oracle Clusterware only, Oracle recommends that you let Oracle Universal Installer (OUI) create the Oracle Clusterware and Oracle Central Inventory (oraInventory) directories for you. However, as root, you must create a path compliant with Oracle Optimal Flexible Architecture (OFA) guidelines, so that OUI can select that directory during installation. For OUI to recognize the path as an Oracle software path, it must be in the form u0[1-9]/app.

For example:

mkdir -p /u01/app
chown -R oracle:oinstall /u01/app

Configure Oracle Installation Owner Shell Limits

For information, review the following section in Chapter 2:
Configure SSH

For information, review the following section in Chapter 2:
"Configuring SSH on All Cluster Nodes"
To configure SSH, complete the following tasks:

Check Existing SSH Configuration on the System
To determine if SSH is running, enter the following command:

```
$ pgrep sshd
```

If SSH is running, then the response to this command is one or more process ID numbers. In the home directory of the software owner that you want to use for the installation (crs, oracle), use the command `ls -al` to ensure that the .ssh directory is owned and writable only by the user.

Configure SSH on Cluster Member Nodes
Complete the following tasks on each node. You must configure SSH separately for each Oracle software installation owner that you intend to use for installation.
- Create .ssh, and create either RSA or DSA keys on each node
- Add all keys to a common authorized_keys file

Enable SSH User Equivalency on Cluster Member Nodes
After you have copied the authorized_keys file that contains all keys to each node in the cluster, start SSH on the node, and load SSH keys into memory. Note that you must either use this terminal session for installation, or reload SSH keys into memory for the terminal session from which you run the installation.

Create Storage
Create partitions as needed. For OCR and voting disks, create 280MB partitions for new installations, or use existing partition sizes for upgrades.
For information, review the following sections in Chapter 4:
"Configuring Storage for Oracle Clusterware Files on a Supported Shared File System"
"Configuring Storage for Oracle Clusterware Files on Raw Devices"

Verify Oracle Clusterware Requirements with CVU
For information, review the following section in Chapter 6:
"Verifying Oracle Clusterware Requirements with CVU"

Using the following command syntax, log in as the installation owner user (oracle or crs), and start Cluster Verification Utility (CVU) to check system requirements for installing Oracle Clusterware. In the following syntax example, replace the variable `mountpoint` with the installation media mountpoint, and replace the variable `node_list` with the names of the nodes in your cluster, separated by commas:
Install Oracle Clusterware Software

For information, review the following sections in Chapter 6:
"Preparing to Install Oracle Clusterware with OUI"
"Installing Oracle Clusterware with OUI"

1. Ensure SSH keys are loaded into memory for the terminal session from which you run the Oracle Universal Installer (OUI).

2. Navigate to the installation media, and start OUI. For example:
 $ cd /Disk1
 ./runInstaller

3. Select Install Oracle Clusterware, and enter the configuration information as prompted.

Prepare the System for Oracle RAC and ASM

For information, review the following section in Chapter 5:
"Configuring Disks for Automatic Storage Management"

Note: Every server running one or more database instances that use ASM for storage has an ASM instance. In an Oracle RAC environment, there is one ASM instance for each node, and the ASM instances communicate with each other on a peer-to-peer basis.

Only one ASM instance is permitted for each node regardless of the number of database instances on the node.

If you are upgrading an existing installation, then shut down ASM instances before starting installation, unless otherwise instructed in the upgrade procedure for your platform.

Oracle Clusterware Preinstallation Tasks

This chapter describes the system configuration tasks that you must complete before you start Oracle Universal Installer (OUI) to install Oracle Clusterware.

This chapter contains the following topics:

- Reviewing Upgrade Best Practices
- Logging In to a Remote System as root Using X Terminal
- Overview of Groups and Users for Oracle Clusterware Installations
- Creating Groups and Users for Oracle Clusterware
- Checking the Hardware Requirements
- Checking the Network Requirements
- Identifying Software Requirements
- Checking the Software Requirements
- Verifying Operating System Patches
- Configuring Kernel Parameters
- Running the Rootpre.sh Script on x86-64 with Sun Cluster
- Configuring SSH on All Cluster Nodes
- Configuring Software Owner User Environments
- Requirements for Creating an Oracle Clusterware Home Directory
- Understanding and Using Cluster Verification Utility
- Checking Oracle Clusterware Installation Readiness with CVU

Reviewing Upgrade Best Practices

If you have an existing Oracle installation, then document version numbers, patches, and other configuration information, and review upgrade procedures for your existing installation. Review Oracle upgrade documentation before proceeding with installation, to decide how you want to proceed.

For late-breaking updates and best practices about preupgrade, post-upgrade, compatibility, and interoperability discussions, refer to "Oracle Upgrade Companion." "Oracle Upgrade Companion" is available through Note 466181.1 on OracleMetaLink:

https://metalink.oracle.com
Logging In to a Remote System as root Using X Terminal

Before you install the Oracle software, you must complete several tasks as the root user on the system where you install Oracle software. To complete tasks as the root user on a remote server, you must enable remote display as root.

Note: If you log in as another user (for example, oracle), then you must repeat this procedure for that user as well.

To enable remote display, complete one of the following procedures:

- If you are installing the software from an X Window System workstation or X terminal, then:
 1. Start a local terminal session, for example, an X terminal (`xterm`).
 2. If you are not installing the software on the local system, then enter a command using the following syntax to enable remote hosts to display X applications on the local X server:
     ```
     $ xhost +
     remote_host
     ```
 where `remote_host` is the fully qualified remote hostname. For example:
     ```
     $ xhost + somehost.example.com
     somehost.example.com being added to the access control list
     ```
 3. If you are not installing the software on the local system, then use the `ssh` command to connect to the system where you want to install the software:
     ```
     $ ssh remote_host
     ```
 where `remote_host` is the fully qualified remote hostname. For example:
     ```
     $ ssh somehost.example.com
     ```
 4. If you are not logged in as the root user, then enter the following command to switch the user to `root`:
     ```
     $ su - root
     password:
     #
     ```

- If you are installing the software from a PC or other system with X server software installed, then:

 Note: If necessary, refer to your X server documentation for more information about completing this procedure. Depending on the X server software that you are using, you may need to complete the tasks in a different order.

 1. Start the X server software.
 2. Configure the security settings of the X server software to permit remote hosts to display X applications on the local system.
 3. Connect to the remote system where you want to install the software and start a terminal session on that system, for example, an X terminal (`xterm`).
4. If you are not logged in as the root user on the remote system, then enter the following command to switch user to root:

```
$ su - root
password: #
```

Overview of Groups and Users for Oracle Clusterware Installations

You must create the following group and user to install Oracle Clusterware:

- **The Oracle Inventory group (typically, oinstall)**

 You must create this group the first time that you install Oracle software on the system. In Oracle documentation, this group is referred to as `oinstall`. Membership in this group controls access to OCR keys, CRS resources, and files and directories in the Oracle Clusterware home that are shared among all Oracle database owners.

 Note: If Oracle software is already installed on the system, then the existing Oracle Inventory group must be the primary group of the operating system user (`oracle` or `crs`) that you use to install Oracle Clusterware. Refer to "Determining If the Oracle Inventory and Oracle Inventory Group Exists" on page 2-4 to identify an existing Oracle Inventory group.

- **Oracle clusterware software owner user (typically, oracle, if you intend to create a single software owner user for all Oracle software, or crs, if you intend to create separate Oracle software owners.)**

 You must create at least one software owner the first time you install Oracle software on the system. This user owns the Oracle binaries of the Oracle Clusterware software, and you can also make this user the owner of the binaries of Automatic Storage Management and Oracle Database or Oracle RAC.

 See Also: Oracle Database Administrator's Reference for UNIX Systems and Oracle Database Administrator's Guide for more information about the OSDBA and OSOPER groups and the SYSDBA, SYSASM and SYSOPER privileges

Creating Groups and Users for Oracle Clusterware

Log in as root, and use the following instructions to locate or create the Oracle Inventory group and a software owner for Oracle Clusterware:

- **Understanding the Oracle Inventory Group**
- **Understanding the Oracle Inventory Directory**
- **Determining If the Oracle Inventory and Oracle Inventory Group Exists**
- **Creating the Oracle Inventory Group If an Oracle Inventory Does Not Exist**
- **Creating the Oracle Clusterware User**
- **Example of Creating the Oracle Clusterware User and OraInventory Path**
Understanding the Oracle Inventory Group

You must have a group whose members are given access to write to the Oracle Central Inventory (oraInventory). The Central Inventory contains the following:

- A registry of the Oracle home directories (Oracle Clusterware, Oracle Database, and Automatic Storage Management) on the system
- Installation logs and trace files from installations of Oracle software. These files are also copied to the respective Oracle homes for future reference.

Other metadata inventory information regarding Oracle installations are stored in the individual Oracle home inventory directories, and are separate from the Central Inventory.

Understanding the Oracle Inventory Directory

The first time you install Oracle software on a system, Oracle Universal Installer checks to see if you have created an Optimal Flexible Architecture (OFA) compliant path in the format u[01-09]/app, such as /u01/app, and that the user running the installation has permissions to write to that path. If this is true, then Oracle Universal Installer creates the Oracle Inventory directory in the path /u[01-09]/app/oraInventory. For example:

/u01/app/oraInventory

If you have set the environment variable $ORACLE_BASE for the user performing the Oracle Clusterware installation, then OUI creates the Oracle Inventory directory in the path $ORACLE_BASE/../oraInventory. For example, if $ORACLE_BASE is set to /opt/oracle/11, then the Oracle Inventory directory is created in the path /opt/oracle/oraInventory.

If you have created neither an OFA-compliant path nor set $ORACLE_BASE, then the Oracle Inventory directory is placed in the home directory of the user that is performing the installation. For example:

/home/oracle/oraInventory

As this placement can cause permission errors during subsequent installations with multiple Oracle software owners, Oracle recommends that you either create an OFA-compliant installation path, or set an $ORACLE_BASE environment path.

For new installations, Oracle recommends that you allow OUI to create the Central Inventory directory. By default, if you create an Oracle path in compliance with OFA structure, such as /u01/app, that is owned by an Oracle software owner, then the Central Inventory is created in the path /u01/app/oraInventory using correct permissions to allow all Oracle installation owners to write to this directory.

Determining If the Oracle Inventory and Oracle Inventory Group Exists

When you install Oracle software on the system for the first time, OUI creates the oraInst.loc file. This file identifies the name of the Oracle Inventory group (typically, oinstall), and the path of the Oracle Central Inventory directory. An oraInst.loc file has contents similar to the following:

inventory_loc=central_inventory_location
inst_group=group
In the preceding example, `central_inventory_location` is the location of the Oracle Central Inventory, and `group` is the name of the group that has permissions to write to the central inventory.

If you have an existing Oracle Inventory, then ensure that you use the same Oracle Inventory for all Oracle software installations, and ensure that all Oracle software users you intend to use for installation have permissions to write to this directory.

To determine if you have an Oracle Inventory on your system:

```
# more /var/opt/oracle/oraInst.loc
```

If the `oraInst.loc` file exists, then the output from this command is similar to the following:

```
inventory_loc=/u01/app/oracle/oraInventory
inst_group=oinstall
```

In the previous output example:
- The `inventory_loc` group shows the location of the Oracle Inventory
- The `inst_group` parameter shows the name of the Oracle Inventory group (in this example, `oinstall`).

Creating the Oracle Inventory Group If an Oracle Inventory Does Not Exist

If the `oraInst.loc` file does not exist, then create the Oracle Inventory group by entering a command similar to the following:

```
# /usr/sbin/groupadd -g 501 oinstall
```

The preceding command creates the group `oinstall`, with the group ID number 501.

Creating the Oracle Clusterware User

You must create a software owner for Oracle Clusterware in the following circumstances:
- If an Oracle software owner user does not exist; for example, if this is the first installation of Oracle software on the system
- If an Oracle software owner user exists, but you want to use a different operating system user, such as `crs`, with different group membership, to give separate clusterware and database administrative privileges to those groups in a new Oracle Clusterware and Oracle Database installation.

In Oracle documentation, a user created to own only Oracle Clusterware software installations is called the `crs` user. A user created to own either all Oracle installations, or only Oracle database installations, is called the `oracle` user.
Determining if an Oracle Software Owner User Exists

To determine whether an Oracle software owner user named oracle or crs exists, enter a command similar to the following (in this case, to determine if oracle exists):

id oracle

If the user exists, then the output from this command is similar to the following:

uid=501(oracle) gid=501(oinstall) groups=502(dba),503(oper)

Determine whether you want to use the existing user, or create another user.

If you want to use the existing user, then ensure that the user’s primary group is the Oracle Inventory group (oinstall).

Creating or Modifying an Oracle Software Owner User for Oracle Clusterware

If the Oracle software owner (oracle, crs) user does not exist, or if you require a new Oracle software owner user, then create it. The following procedure uses crs as the name of the Oracle software owner.

1. To create a user, enter a command similar to the following:

 # /usr/sbin/useradd -u 501 -g oinstall crs

 In the preceding command:
 - The -u option specifies the user ID. Using this command flag is optional, as you can allow the system to provide you with an automatically generated user ID number. However, you must make note of the user ID number of the user you create for Oracle Clusterware, as you require it later during preinstallation.
 - The -g option specifies the primary group, which must be the Oracle Inventory group. For example: oinstall.

 Use the usermod command to change user id numbers and groups. For example:

 # id oracle
 uid=500(oracle) gid=500(oracle) groups=500(oracle)
 # /usr/sbin/usermod -u 500 -g 501 -G 500,502 oracle
 # id oracle
 uid=500(oracle) gid=501(oinstall) groups=501(oinstall),500(oracle),502(dba)

2. Set the password of the user that will own Oracle Clusterware. For example:
passwd crs

3. Repeat this procedure on all of the other nodes in the cluster.

Example of Creating the Oracle Clusterware User and OraInventory Path

The following is an example of how to create the Oracle Clusterware software owner (in this case, `crs`), and a path compliant with OFA structure with correct permissions for the oraInventory directory. This example also shows how to create separate Oracle Database and Oracle ASM homes with correct ownership and permissions:

```
# mkdir -p /u01/app/crs
# chown -R crs:oinstall /u01/app
# mkdir /u01/app/oracle
# chown oracle:oinstall /u01/app/oracle
# chmod 775 /u01/app/
# mkdir /u01/app/asm
# chown asm:oinstall /u01/app/asm
```

At the end of this procedure, you will have the following:

- `/u01` owned by root.
- `/u01/app` owned by `crs:oinstall` with 775 permissions. This ownership and permissions enables OUI to create the oraInventory directory, in the path `/u01/app/oraInventory`.
- `/u01/app/crs` owned by `crs:oinstall` with 775 permissions. These permissions are required for installation, and are changed during the installation process.
- `/u01/app/oracle` owned by `oracle:oinstall` with 775 permissions.
- `/u01/app/asm` owned by `asm:oinstall` with 775 permissions.

Checking the Hardware Requirements

Each system must meet the following minimum hardware requirements:

- At least 1 GB of physical RAM
- Swap space equivalent to the multiple of the available RAM, as indicated in the following table:

<table>
<thead>
<tr>
<th>Available RAM</th>
<th>Swap Space Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between 1 GB and 2 GB</td>
<td>1.5 times the size of RAM</td>
</tr>
<tr>
<td>Between 2 GB and 8 GB</td>
<td>Equal to the size of RAM</td>
</tr>
<tr>
<td>More than 8 GB</td>
<td>.75 times the size of RAM</td>
</tr>
</tbody>
</table>

- 400 MB of disk space in the `/tmp` directory
- 2 GB of disk space for Oracle Clusterware files, in partitions on separate physical disks, assuming standard redundancy (2 Oracle Cluster Registry partitions and 3 voting disks)
- 650 MB of disk space for the Oracle Clusterware home
- 5 GB of disk space for the Oracle database software (Oracle base), depending on the installation type and platform
1.2 GB of disk space for a preconfigured database that uses file system storage (optional)

Additional disk space, either on a file system or in an Automatic Storage Management disk group, is required for the flash recovery area if you choose to configure automated backups.

See Also: The storage chapters in this book for information about Oracle Clusterware files and Oracle Database files disk space requirements

To ensure that each system meets these requirements:

1. To determine the physical RAM size, enter the following command:
   ```
   # /usr/sbin/prtconf | grep "Memory size"
   ```
 If the size of the physical RAM installed in the system is less than the required size, then you must install more memory before continuing.

2. To determine the size of the configured swap space, enter the following command:
   ```
   # /usr/sbin/swap -s
   ```
 If necessary, refer to your operating system documentation for information about how to configure additional swap space.

3. To determine the amount of disk space available in the `/tmp` directory, enter the following command:
   ```
   # df -k /tmp
   ```
 If there is less than 400 MB of disk space available in the `/tmp` directory, then complete one of the following steps:
 - Delete unnecessary files from the `/tmp` directory to meet the disk space requirement.
 - Set the `TEMP` and `TMPDIR` environment variables when setting the `oracle` user’s environment (described later).
 - Extend the file system that contains the `/tmp` directory. If necessary, contact your system administrator for information about extending file systems.

4. To determine the amount of free disk space on the system, enter the following command:
   ```
   # df -k /tmp
   ```

The following table shows the approximate disk space requirements for software files for each installation type:

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Requirement for Software Files (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Edition</td>
<td>4</td>
</tr>
<tr>
<td>Standard Edition</td>
<td>4</td>
</tr>
<tr>
<td>Custom (maximum)</td>
<td>4</td>
</tr>
</tbody>
</table>

5. To determine if the system architecture can run the Oracle software, enter the following command:
/bin/isainfo -kv

Note: The following is the expected output of this command:

64-bit SPARC installation:

64-bit sparcv9 kernel modules

Ensure that the Oracle software you have is the correct Oracle software for your processor type.

If the output of this command indicates that your system architecture does not match the system for which the Oracle software you have is written, then you cannot install the software. Obtain the correct software for your system architecture before proceeding further.

Checking the Network Requirements

Review the following sections to check that you have the networking hardware and internet protocol (IP) addresses required for an Oracle Real Application Clusters installation:

- Network Hardware Requirements
- IP Address Requirements
- Node Time Requirements
- Network Configuration Options
- Configuring the Network Requirements

Note: For the most up-to-date information about supported network protocols and hardware for Oracle RAC installations, refer to the Certify pages on the OracleMetaLink Web site at the following URL:

https://metalink.oracle.com

Network Hardware Requirements

The following is a list of requirements for network configuration:

- Each node must have at least two network adapters or network interface cards (NICs): one for the public network interface, and one for the private network interface (the interconnect).

 If you want to use more than one NIC for the public network or for the private network, then Oracle recommends that you use NIC bonding, or "link aggregation," IPMP.

- The public interface names associated with the network adapters for each network must be the same on all nodes, and the private interface names associated with the network adaptors should be the same on all nodes.

 For example: With a two-node cluster, you cannot configure network adapters on node1 with eth0 as the public interface, but on node2 have eth1 as the public interface. Public interface names must be the same, so you must configure eth0 as public on both nodes. You should configure the private interfaces on the same
network adapters as well. If eth1 is the private interface for node1, then eth1 should be the private interface for node2.

- For the public network, each network adapter must support TCP/IP.

- For the private network, the interconnect must support the user datagram protocol (UDP) using high-speed network adapters and switches that support TCP/IP (Gigabit Ethernet or better recommended).

Note: UDP is the default interconnect protocol for Oracle RAC, and TCP is the interconnect protocol for Oracle Clusterware. Oracle recommends that you use a dedicated switch for the interconnect.

Oracle does not support token-rings or crossover cables for the interconnect.

- For the private network, the endpoints of all designated interconnect interfaces must be completely reachable on the network. There should be no node that is not connected to every private network interface. You can test whether an interconnect interface is reachable using a ping command.

IP Address Requirements

Before starting the installation, you must have the following IP addresses available for each node:

- An IP address with an associated host name (or network name) registered in the DNS for the public interface. If you do not have an available DNS, then record the host name and IP address in the system hosts file, /etc/hosts.

- One virtual IP (VIP) address with an associated host name registered in a DNS. If you do not have an available DNS, then record the host name and VIP address in the system hosts file, /etc/hosts. Select an address for your VIP that meets the following requirements:
 - The IP address and host name are currently unused (it can be registered in a DNS, but should not be accessible by a ping command)
 - The VIP is on the same subnet as your public interface

- A private IP address with a host name for each private interface

Oracle recommends that you use private network IP addresses for these interfaces (for example: 10.*.*.* or 192.168.*.*).

In addition:

- Using Oracle Clusterware only or Sun Cluster 3.1 older than 10/03: Use the /etc/hosts file on each node to associate private network names with private IP addresses. If you use the /etc/hosts file for private network names, then the private IP address must be available in each node's /etc/hosts file.

- Using Sun Cluster 3.1 or later: Do not enter the private interconnect in the /etc/hosts file, but instead use clusternodeX-priv to indicate the private interconnect for Oracle Clusterware and Oracle RAC.

For the private interconnects, because of Cache Fusion and other traffic between nodes, Oracle strongly recommends using a physically separate, private network. You should ensure that the private IP addresses are reachable only by the cluster
member nodes. After installation, if you define multiple RAC private interfaces by using the Oracle Interface Configuration (oifcfg) tool, or by or using the CLUSTER_INTERCONNECTS parameter, then all of the interconnects you define must be available, or Oracle RAC instances will fail or fail to start.

During installation, you are asked to identify the planned use for each network interface that OUI detects on your cluster node. You must identify each interface as a public or private interface, and you must use the same private interfaces for both Oracle RAC and Oracle Clusterware.

You can bond separate interfaces to a common interface to provide redundancy, in case of a NIC failure, but Oracle recommends that you do not create separate interfaces for Oracle RAC and Oracle Clusterware. If you use more than one NIC for the private interconnect, then Oracle recommends that you use NIC bonding. Note that multiple private interfaces provide load balancing but not failover, unless bonded.

For example, if you intend to use the interfaces eth2 and eth3 as interconnects, then before installation, you must configure eth2 and eth3 with the private interconnect addresses. If the private interconnect addresses are 10.10.1.1 for eth2 and 10.10.2.1 for eth3, then bond eth2 and eth3 to an interface, such as bond0, using a separate subnet such as 10.10.222.0. During installation, define the Oracle Clusterware private node names on 10.10.222.0, and then use the oifcfg tool to define 10.10.222.0 (and only that one) as a private interconnect. This ensures that Oracle Clusterware and Oracle RAC are using the same network.

After installation, if you modify interconnects with the CLUSTER_INTERCONNECTS initialization parameter, then you must change it to a private IP address, on a subnet that is not used with a public IP address, nor marked as a public subnet by oifcfg. Oracle does not support changing the interconnect to an interface using a subnet that you have designated as a public subnet.

You should not use a firewall on the network with the private network IP addresses, as this can block interconnect traffic.

Before installation, check that the default gateway can be accessed by a ping command. To find the default gateway, use the route command, as described in your operating system's help utility. After installation, configure clients to use either the VIP address, or the host name associated with the VIP. If a node fails, then the node's virtual IP address fails over to another node.

For example, with a two node cluster where each node has one public and one private interface, you might have the configuration shown in the following table for your network interfaces, where the hosts file is /etc/hosts:

<table>
<thead>
<tr>
<th>Node</th>
<th>Host Name</th>
<th>Type</th>
<th>IP Address</th>
<th>Registered In</th>
</tr>
</thead>
<tbody>
<tr>
<td>rac1</td>
<td>rac1</td>
<td>Public</td>
<td>143.46.43.100</td>
<td>DNS (if available, else the hosts file)</td>
</tr>
<tr>
<td>rac1</td>
<td>rac1-vip</td>
<td>Virtual</td>
<td>143.46.43.104</td>
<td>DNS (if available, else the hosts file)</td>
</tr>
<tr>
<td>rac1</td>
<td>rac1-priv</td>
<td>Private</td>
<td>10.0.0.1</td>
<td>Hosts file</td>
</tr>
<tr>
<td>rac2</td>
<td>rac2</td>
<td>Public</td>
<td>143.46.43.101</td>
<td>DNS (if available, else the hosts file)</td>
</tr>
<tr>
<td>rac2</td>
<td>rac2-vip</td>
<td>Virtual</td>
<td>143.46.43.105</td>
<td>DNS (if available, else the hosts file)</td>
</tr>
</tbody>
</table>

See Also: Oracle Database Oracle Clusterware Administration and Deployment Guide for further information about setting up and using bonded multiple interfaces.
Checking the Network Requirements

To enable VIP failover, the configuration shown in the preceding table defines the public and VIP addresses of both nodes on the same subnet, 143.46.43. When a node or interconnect fails, then the associated VIP is relocated to the surviving node, enabling fast notification of the failure to the clients connecting through that VIP. If the application and client are configured with transparent application failover options, then the client is reconnected to the surviving node.

<table>
<thead>
<tr>
<th>Node</th>
<th>Host Name</th>
<th>Type</th>
<th>IP Address</th>
<th>Registered In</th>
</tr>
</thead>
<tbody>
<tr>
<td>rac2</td>
<td>rac2-priv</td>
<td>Private</td>
<td>10.0.0.2</td>
<td>Hosts file</td>
</tr>
</tbody>
</table>

Node Time Requirements

Before starting the installation, ensure that each member node of the cluster is set as closely as possible to the same date and time. Oracle strongly recommends using the Network Time Protocol feature of most operating systems for this purpose, with all nodes using the same reference Network Time Protocol server.

Network Configuration Options

The precise configuration you choose for your network depends on the size and use of the cluster you want to configure, and the level of availability you require.

If storage for Oracle RAC is provided by Ethernet-based networks, such as network-attached storage (NAS), network file storage (NFS), or iSCSI, then you must have a third network interface for I/O. Failing to provide three separate interfaces in this case can cause performance and stability problems under load.

For high capacity clusters with a small number of multiprocessor servers, to ensure high availability, you may want to configure redundant network interfaces to prevent a NIC failure from reducing significantly the overall cluster capacity. If you are using network storage, and want to provide redundant network interfaces, then Oracle recommends that you provide six network interfaces: two for the public network interface, two for the private network interface, and two for the network storage.

Configuring the Network Requirements

To verify that each node meets the requirements, follow these steps:

1. If necessary, install the network adapters for the public and private networks and configure them with either public or private IP addresses.
2. Register the host names and IP addresses for the public network interfaces in DNS.
3. For each node, register one virtual host name and IP address in DNS.
4. For each private interface on every node, add a line similar to the following to the /etc/hosts file on all nodes, specifying the private IP address and associated private host name:

```
10.0.0.1 rac1-priv1
```
5. To identify the interface name and associated IP address for every network adapter, enter the following command:

```
# /sbin/ifconfig
```

From the output, identify the interface name and IP address for all network adapters that you want to specify as public or private network interfaces.

Note: When you install Oracle Clusterware and Oracle RAC, you will require this information.

6. To prevent public network failures with Oracle RAC databases using NAS devices or NFS mounts, enter the following command as root to enable the Name Service Cache Daemon (nscd):

```
# /usr/sbin/svcadm enable system/name-service-cache
```

Identifying Software Requirements

Depending on the products that you intend to install, verify that the following software is installed on the system. The procedure following the table describes how to check these requirements.

Note: Oracle Universal Installer (OUI) performs checks on your system to verify that it meets minimum installation requirements. To ensure that these verifications succeed, verify the requirements before you start OUI.

The following is the list of supported Solaris platforms and requirements at the time of release:

- Software Requirements List for Solaris Operating System (SPARC 64-Bit) Platforms

Software Requirements List for Solaris Operating System (SPARC 64-Bit) Platforms

Table 2–1 System Requirements for Solaris Operating System (SPARC 64-Bit)

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system</td>
<td>One of the following 64-bit operating system versions:</td>
</tr>
<tr>
<td></td>
<td>■ Solaris 9 update 7 or later</td>
</tr>
<tr>
<td></td>
<td>■ Solaris 10 or later</td>
</tr>
</tbody>
</table>
Table 2–1 (Cont.) System Requirements for Solaris Operating System (SPARC 64-Bit)

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packages</td>
<td>Solaris 9</td>
</tr>
<tr>
<td></td>
<td>SUNWarc</td>
</tr>
<tr>
<td></td>
<td>SUNWbtool</td>
</tr>
<tr>
<td></td>
<td>SUNWhea</td>
</tr>
<tr>
<td></td>
<td>SUNWlibC</td>
</tr>
<tr>
<td></td>
<td>SUNWlibm</td>
</tr>
<tr>
<td></td>
<td>SUNWlibms</td>
</tr>
<tr>
<td></td>
<td>SUNWsprot</td>
</tr>
<tr>
<td></td>
<td>SUNWtoo</td>
</tr>
<tr>
<td></td>
<td>SUNWilog</td>
</tr>
<tr>
<td></td>
<td>SUNWlcs</td>
</tr>
<tr>
<td></td>
<td>SUNWl15cs</td>
</tr>
<tr>
<td></td>
<td>SUNWxwfont</td>
</tr>
<tr>
<td></td>
<td>SUNWsprox</td>
</tr>
<tr>
<td>Solaris 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identical to Solaris 9, except that SUNWsprox is not needed.</td>
</tr>
<tr>
<td></td>
<td>Note: You may also require additional font packages for Java, depending on your locale. Refer to the following Web site for more information:</td>
</tr>
<tr>
<td></td>
<td>http://java.sun.com/j2se/1.4.2/font-requirements.html</td>
</tr>
<tr>
<td>Oracle RAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oracle Clusterware, or a supported Sun Cluster version. Sun Cluster is supported for use with RAC on SPARC systems but it is not required.</td>
</tr>
<tr>
<td></td>
<td>If you use Sun Cluster, then you must install the following additional kernel packages:</td>
</tr>
<tr>
<td></td>
<td>SUNWscucm</td>
</tr>
<tr>
<td></td>
<td>SUNWudlmr</td>
</tr>
<tr>
<td></td>
<td>SUNWudlm</td>
</tr>
<tr>
<td></td>
<td>Note: You do not require the additional packages if you install Oracle Clusterware.</td>
</tr>
<tr>
<td></td>
<td>If you use a volume manager, then you may need to install the following additional kernel packages for your volume manager:</td>
</tr>
<tr>
<td></td>
<td>Clustered Solaris Volume Manager:</td>
</tr>
<tr>
<td></td>
<td>SUNWscmd</td>
</tr>
<tr>
<td></td>
<td>Clustered Veritas Volume Manager:</td>
</tr>
<tr>
<td></td>
<td>SUNWcvm</td>
</tr>
<tr>
<td></td>
<td>SUNWcvmr</td>
</tr>
<tr>
<td></td>
<td>Hardware RAID:</td>
</tr>
<tr>
<td></td>
<td>SUNWschr</td>
</tr>
<tr>
<td></td>
<td>Note: The SUNWschr package installs disk fencing to protect data on the disks. It should be installed if you are using RAID but are not using Oracle Clusterware or a supported cluster volume manager. The disk fencing is also contained in the volume manager packages, so when using either of the volume manager options for RAC, the SUNWschr package should not be installed even if the devices are hardware RAID.</td>
</tr>
</tbody>
</table>
| | Review the following additional information for your operating system:
Checking the Software Requirements

To ensure that the system meets these requirements, follow these steps:

1. To determine which version of Solaris is installed, enter the following command:

   ```
   # uname -r
   5.9
   ```

 In this example, the version shown is Solaris 9 (5.9). If necessary, refer to your operating system documentation for information about upgrading the operating system.

2. To determine whether the required packages are installed, enter a command similar to the following:

   ```
   # pkginfo -i SUNWarc SUNWbtool SUNWhea SUNWlibC SUNWlibm SUNWlibms SUNWsprot \ SUNWsprox SUNWtoo SUNWilof SUNWils cs SUNWilo x SUNWox fnt
   ```

 If a package that is required for your system architecture is not installed, then install it. Refer to your operating system or software documentation for information about installing packages.

Table 2–1 (Cont.) System Requirements for Solaris Operating System (SPARC 64-Bit)

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun Cluster 3.1 and Sun Cluster 3.2</td>
<td>ORCLudlm 64-Bit reentrant 3.3.4.9</td>
</tr>
<tr>
<td>For Sun Cluster, Oracle provides a UDLM patch that you must install onto each node in the cluster from the /udlm directory on the clusterware directory before installing and configuring RAC. Although you may have a functional version of the UDLM from a previous Oracle Database release, you must install the Oracle 11g Release 1 (11.1) UDLM.</td>
<td></td>
</tr>
<tr>
<td>Oracle Messaging Gateway</td>
<td>Oracle Messaging Gateway supports the integration of Oracle Streams Advanced Queuing (AQ) with the following software:</td>
</tr>
<tr>
<td>IBM MQSeries V5.3, client and server</td>
<td>Tibco Rendezvous 7.2</td>
</tr>
<tr>
<td>Pro*C/C++, Oracle Call Interface, Oracle C++ Call Interface, Oracle XML Developer’s Kit (XDK)</td>
<td>Sun ONE Studio 11 (C and C++ 5.8)</td>
</tr>
<tr>
<td>Oracle ODBC Driver</td>
<td>gcc 3.4.2</td>
</tr>
<tr>
<td>Programming languages Pro*COBOL for Oracle RAC database</td>
<td>Micro Focus Cobol 5.0</td>
</tr>
<tr>
<td>Pro*FORTRAN</td>
<td>Sun ONE Studio 11 (Fortran 95)</td>
</tr>
<tr>
<td>Oracle JDBC/OCI Drivers</td>
<td>You can use the following optional JDK versions with the Oracle JDBC/OCI drivers, however they are not required for the installation:</td>
</tr>
<tr>
<td>Sun JDK 1.5.0.</td>
<td>Note: JDK 1.5.0 is installed with this release.</td>
</tr>
</tbody>
</table>
Verifying Operating System Patches

You must verify that the required operating system patches for your system architecture are installed on the system. The procedure following the table describes how to check these requirements.

Note: Your system may have more recent versions of the listed patches installed on it. If a listed patch is not installed, then determine if a more recent version is installed before installing the version listed.

Select the table for your system architecture and review the list of required operating system patches:

- Verifying Solaris Operating System (SPARC 64-bit) Patches

Table 2–2 Solaris Operating System (SPARC 64-bit) Patches

<table>
<thead>
<tr>
<th>Installation Type or Product</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Solaris 9 installations</td>
<td>Patches for Solaris 9</td>
</tr>
<tr>
<td></td>
<td>■ 112233-11, SunOS 5.9: Kernel Patch</td>
</tr>
<tr>
<td></td>
<td>■ 111722-04, SunOS 5.9: Math Library (libm) patch</td>
</tr>
<tr>
<td></td>
<td>The following additional patches are required for Numa Systems on Solaris 9:</td>
</tr>
<tr>
<td></td>
<td>■ 115675-01, SunOS 5.9: liblgrp API</td>
</tr>
<tr>
<td></td>
<td>■ 113471-08, SunOS 5.9: Miscellaneous SunOS Commands Patch</td>
</tr>
<tr>
<td></td>
<td>■ 115675-01, SunOS 5.9: /usr/lib/liblgrp.so Patch</td>
</tr>
<tr>
<td>All Solaris 10 installations</td>
<td>127111-02 SunOS 5.10: libc patch</td>
</tr>
<tr>
<td>Oracle Messaging Gateway</td>
<td>Corrective Service Diskettes (CSDs) for WebSphere MQ:</td>
</tr>
<tr>
<td></td>
<td>■ CSD09 or later for MQSeries V5.1</td>
</tr>
<tr>
<td></td>
<td>■ MQSeries Client for Sun Solaris, Intel Platform Edition -V5.1 SupportPac MACE</td>
</tr>
<tr>
<td>ProC/C++, ProFORTRAN,</td>
<td>Patches for Solaris 9:</td>
</tr>
<tr>
<td>Oracle Call Interface,</td>
<td>112760-05, C 5.5: Patch for S1S8CC C compiler</td>
</tr>
<tr>
<td>Oracle C++ Call Interface,</td>
<td></td>
</tr>
<tr>
<td>Oracle XML Developer’s Kit (XDK)</td>
<td></td>
</tr>
<tr>
<td>Oracle RAC</td>
<td>Sun Cluster patches for Solaris 9:</td>
</tr>
<tr>
<td></td>
<td>■ 113801-12, Sun Cluster 3.1: Core/Sys Admin Patch</td>
</tr>
</tbody>
</table>
To ensure that the system meets these requirements:

1. To determine whether an operating system patch is installed, and whether it is the correct version of the patch, enter a command similar to the following:

```
# /usr/sbin/patchadd -p | grep patch_number
```

For example, to determine if any version of the 112760 patch is installed, use the following command:

```
# /usr/sbin/patchadd -p | grep 112760
```

If an operating system patch is not installed, then download it from the following Web site and install it:

http://sunsolve.sun.com

Configuring Kernel Parameters

Note: The kernel parameter and shell limit values shown in the following sections are recommended values only. For production database systems, Oracle recommends that you tune these values to optimize the performance of the system. Refer to your operating system documentation for more information about tuning kernel parameters.

Configuring Kernel Parameters On Solaris 9

On Solaris Operating System (SPARC 64-bit) installations running Solaris 9, on all nodes in the cluster, verify that the kernel parameters shown in the following table are set to values greater than or equal to the recommended value:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Recommended Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>noexec_user_stack</td>
<td>1</td>
</tr>
<tr>
<td>semsys:seminfo_semmni</td>
<td>100</td>
</tr>
<tr>
<td>semsys:seminfo_semmns</td>
<td>1024</td>
</tr>
<tr>
<td>semsys:seminfo_semmsl</td>
<td>256</td>
</tr>
<tr>
<td>semsys:seminfo_semvmx</td>
<td>32767</td>
</tr>
<tr>
<td>shmsys:shminfo_shmmmax</td>
<td>4294967295</td>
</tr>
<tr>
<td>shmsys:shminfo_shmmni</td>
<td>100</td>
</tr>
</tbody>
</table>

On Solaris 9 operating systems, use the following procedure to view the current value specified for these kernel parameters, and to change them if necessary:
To view the current value specified for these kernel parameters, and to change them if necessary:

1. To view the current values of these parameters, enter the following commands:

   ```
   # grep noexec_user_stack /etc/system
   # /usr/sbin/sysdef | grep SEM
   # /usr/sbin/sysdef | grep SHM
   ```

2. If you must change any of the current values, then:

 a. Create a backup copy of the `/etc/system` file, for example:

      ```
      # cp /etc/system /etc/system.orig
      ```

 b. Open the `/etc/system` file in any text editor and, if necessary, add lines similar to the following (edit the lines if the file already contains them):

      ```
      set noexec_user_stack=1
      set semsys:seminfo_semmni=100
      set semsys:seminfo_semmns=1024
      set semsys:seminfo_semmsl=256
      set semsys:seminfo_semvmx=32767
      set shmsys:shminfo_shmmax=4294967295
      set shmsys:shminfo_shmmni=100
      ```

 c. Enter the following command to restart the system:

      ```
      # /usr/sbin/reboot
      ```

 d. When the system restarts, log in and switch user to root.

3. Repeat this procedure on all other nodes in the cluster.

Configuring Kernel Parameters on Solaris 10

On Solaris 10 operating systems, verify that the kernel parameters shown in the following table are set to values greater than or equal to the recommended value shown. The table also contains the resource controls that replace the `/etc/system` files for specific kernel parameters. As Oracle Clusterware does not set project information when starting processes, some `/etc/system` processes that are deprecated but not removed must still be set for Oracle Clusterware.

The procedure following the table describes how to verify and set the values.

Note: In Solaris 10, you are not required to make changes to the `/etc/system` file to implement the System V IPC. Solaris 10 uses the resource control facility for its implementation. However, Oracle recommends that you set both resource control and `/etc/system` parameters. Operating system parameters not replaced by resource controls continue to affect performance and security on Solaris 10 systems. For further information, contact your Sun vendor.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Replaced by Resource Control</th>
<th>Recommended value</th>
</tr>
</thead>
<tbody>
<tr>
<td>noexec_user_stack</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td>semsys:seminfo_semmni</td>
<td>project.max-sem-ids</td>
<td>100</td>
</tr>
</tbody>
</table>
On Solaris 10, use the following procedure to view the current value specified for resource controls, and to change them if necessary:

1. To view the current values of the resource control, enter the following commands:

   ```
   # id -p // to verify the project id
   uid=0(root) gid=0(root) projid=1(user.root)
   # prctl -n project.max-shm-memory -i project user.root
   # prctl -n project.max-sem-ids -i project user.root
   ```

2. If you must change any of the current values, then:
 - To modify the value of max-shm-memory to 6 GB:
     ```
     # prctl -n project.max-shm-memory -v 6442450944 -r -i project user.root
     ```
 - To modify the value of max-sem-ids to 256:
     ```
     # prctl -n project.max-sem-ids -v 256 -r -i project user.root
     ```

Note:
When you use the command `prctl` (Resource Control) to change system parameters, you do not need to restart the system for these parameter changes to take effect. However, the changed parameters do not persist after a system restart.

Use the following procedure to modify the resource control project settings, so that they persist after a system restart:

1. By default, Oracle instances are run as the **oracle** user of the **dba** group. A project with the name **group.dba** is created to serve as the default project for the oracle user. Run the command `id` to verify the default project for the oracle user:

   ```
   # su - oracle
   $ id -p
   uid=100(oracle) gid=100(dba) projid=100(group.dba)
   $ exit
   ```

2. To set the maximum shared memory size to 2 GB, run the `projmod` command:

   ```
   # projmod -sK "project.max-shm-memory=(privileged,2G,deny)" group.dba
   ```

 Alternatively, add the resource control value
 `project.max-shm-memory=(privileged,2147483648,deny)` to the last field of the project entries for the Oracle project.

3. After these steps are complete, check the values for the `/etc/project` file using the following command:

   ```
   # cat /etc/project
   ```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Replaced by Resource Control</th>
<th>Recommended value</th>
</tr>
</thead>
<tbody>
<tr>
<td>semsys:seminfo.semmns</td>
<td>NA</td>
<td>1024</td>
</tr>
<tr>
<td>semsys:seminfo.semmssl</td>
<td>process.max-sem-nsems</td>
<td>256</td>
</tr>
<tr>
<td>semsys:seminfo.semvmx</td>
<td>NA</td>
<td>32767</td>
</tr>
<tr>
<td>shmsys:shminfo.shmax</td>
<td>project.max-shm-memory</td>
<td>4294967295</td>
</tr>
<tr>
<td>shmsys:shminfo.shmmni</td>
<td>project.max-shm-ids</td>
<td>100</td>
</tr>
</tbody>
</table>
The output should be similar to the following:

```
system:0:::
user.root:1:::
noproject:2:::
default:3:::
group.staff:10:::
group.db:10:Oracle default
project:::project.max-shm-memory=(privileged,2147483648,deny)
```

4. To verify that the resource control is active, check process ownership, and run the commands `id` and `prctl`, as in the following example:

```
# su - oracle
$ id -p
uid=100(oracle) gid=100(dba) projid=100(group.dba)
$ prctl -n project.max-shm-memory -i process $$
```

```
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
project.max-shm-memory
  privileged 2.00GB - deny
```

Note: For additional information, refer to the Solaris Tunable Parameters Reference Manual.

Running the Rootpre.sh Script on x86-64 with Sun Cluster

On x86-64 platforms running Solaris, if you install Sun Cluster in addition to Oracle Clusterware, then complete the following task:

1. Switch user to root:

   ```
   $ su - root
   ```

2. Complete one of the following steps, depending on the location of the installation:

 - If the installation files are on a DVD, then enter a command similar to the following, where `mountpoint` is the disk mount point directory or the path of the database directory on the DVD:

     ```
     # mountpoint/clusterware/rootpre/rootpre.sh
     ```

 - If the installation files are on the hard disk, change directory to the directory `/Disk1/rootpre` and enter the following command:

     ```
     # ./rootpre.sh
     ```

3. Exit from the root account:

   ```
   # exit
   ```

4. Repeat steps 1 through 3 on all nodes of the cluster.

Configuring SSH on All Cluster Nodes

Before you install and use Oracle Clusterware, you should configure secure shell (SSH) for the user that you plan to use to install Oracle Clusterware, on all cluster nodes. If you intend to install Oracle RAC or other Oracle software, then you should repeat this process for each of the other users (`oracle`, `asm` or other software owner) that you
plan to use to install the software, and ensure that you load SSH keys into memory before running the installation, as described in this procedure. In the examples that follow, the Oracle software owner listed is the crs user. As you perform this procedure, replace the example with the user name for which you are configuring SSH.

OUI uses the ssh and scp commands during installation to run remote commands on and copy files to the other cluster nodes. If you want to use SSH for increased security during installation, then you must configure SSH so that the ssh and scp commands used during installation do not prompt for a password.

The SSH configuration procedure in this section describes how to configure SSH using SSH1.

This section contains the following:

- Checking Existing SSH Configuration on the System
- Configuring SSH on Cluster Member Nodes
- Enabling SSH User Equivalency on Cluster Member Nodes
- Setting Display and X11 Forwarding Configuration
- Preventing Oracle Clusterware Installation Errors Caused by stty Commands

Checking Existing SSH Configuration on the System

To determine if SSH is running, enter the following command:

```
$ pgrep sshd
```

If SSH is running, then the response to this command is one or more process ID numbers. In the home directory of the software owner that you want to use for the installation (crs, oracle), use the command `ls -al` to ensure that the `.ssh` directory is owned and writable only by the user.

You need either an RSA or a DSA key for the SSH protocol. RSA is used with the SSH 1.5 protocol, while DSA is the default for the SSH 2.0 protocol. With OpenSSH, you can use either RSA or DSA. The instructions that follow are for SSH1. If you have an SSH2 installation, and you cannot use SSH1, then refer to your SSH distribution documentation to configure SSH1 compatibility or to configure SSH2 with DSA.

Configuring SSH on Cluster Member Nodes

To configure SSH, you must first create RSA or DSA keys on each cluster node, and then copy all the keys generated on all cluster node members into an authorized keys file that is identical on each node. Note that the SSH files must be readable only by root and by the software installation user (oracle, crs, asm), as SSH ignores a private key file if it is accessible by others. When this is done, then start the SSH agent to load keys into memory. In the examples that follow, the RSA key is used.

You must configure SSH separately for each Oracle software installation owner that you intend to use for installation.

To configure SSH, complete the following:

Create .SSH, and Create RSA Keys On Each Node

Complete the following steps on each node:

1. Log in as the software owner (in this example, the crs user).
2. To ensure that you are logged in as the Oracle user, and that the user ID matches the expected user ID you have assigned to the Oracle user, enter the commands `id` and `id oracle`. Ensure that Oracle user group and user and the terminal window process group and user IDs are identical. For example:

```
$ id
uid=502(crs) gid=501(oinstall) groups=501(oinstall),502(crs)
$ id crs
uid=502(crs) gid=501(oinstall) groups=501(oinstall),502(crs)
```

3. Ensure that the user home directory permissions are no greater than 750. For example:

```
$ ls -al /scratch/crs
```

```
drwxr-x---     4  crs     oinstall    512  Oct 9 21:33  .
```

```
drwxr-xr-x  10 root    other       512  Oct 12 06:95 ..
```

```
drw-------     2  crs     oinstall    512  Oct 23 21:14 .ssh
```

4. If necessary, create the `.ssh` directory in the `crs` user’s home directory, and set permissions on it to ensure that only the oracle user has read and write permissions:

```
$ mkdir ~/.ssh
$ chmod 700 ~/.ssh
```

5. Enter the following command:

```
$ /usr/bin/ssh-keygen -t rsa
```

At the prompts:

- Accept the default location for the key file (press Enter).
- Enter and confirm a pass phrase unique for this installation user.

This command writes the RSA public key to the `~/.ssh/id_rsa.pub` file and the private key to the `~/.ssh/id_rsa` file.

Never distribute the private key to anyone not authorized to perform Oracle software installations.

6. Repeat steps 1 through 4 on each node that you intend to make a member of the cluster, using the RSA key.

Add All Keys to a Common authorized_keys File

Complete the following steps:

1. On the local node, change directories to the `.ssh` directory in the Oracle Clusterware owner’s home directory (typically, either `crs` or `oracle`).

Then, add the RSA key to the `authorized_keys` file using the following commands:

```
$ cat id_rsa.pub >> authorized_keys
$ ls
```

In the `.ssh` directory, you should see the `id_rsa.pub` keys that you have created, and the file `authorized_keys`.

2. On the local node, use SCP (Secure Copy) or SFTP (Secure FTP) to copy the `authorized_keys` file to the oracle user `.ssh` directory on a remote node. The following example is with SCP, on a node called `node2`, with the Oracle Clusterware owner `crs`, where the `crs` user path is `/home/crs`:
You are prompted to accept an RSA key. Enter Yes, and you see that the node you are copying to is added to the known_hosts file.

When prompted, provide the password for the oracle user, which should be the same on all nodes in the cluster. The authorized_keys file is copied to the remote node.

Your output should be similar to the following:

```
[crs@node1 .ssh]$ scp authorized_keys node2:/home/crs/.ssh/
The authenticity of host 'node2 (130.00.173.152) can't be established. RSA key fingerprint is 7e:60:60:ae:40:40:d1:a6:f7:4e:zz:me:a7:48:ae:f6:7e. Are you sure you want to continue connecting (yes/no)? yes Warning: Permanently added 'node1,130.00.173.152' (RSA) to the list of known hosts
```

crs@node2’s password:

```
authorized_keys     100%     828     7.5MB/s      00:00
```

3. Using SSH, log in to the node where you copied the authorized_keys file, using the pass phrase you created. Then change to the .ssh directory, and using the cat command, add the RSA keys for the second node to the authorized_keys file:

```
[crs@node1 .ssh]$ ssh node2
The authenticity of host node2 (xxx.xxx.100.102) can't be established. RSA key fingerprint is z3:z3:33:z3:33:zz:76:z3:zz:z3:z3:z3.
Are you sure you want to continue connecting? (yes/no)? yes
Enter passphrase for key '/home/oracle/.ssh/id_rsa':
[crs@node2 crs]$ cd .ssh
[crs@node2 ssh]$ cat id_rsa.pub >> authorized_keys
```

Repeat steps 2 and 3 from each node to each other member node in the cluster.

When you have added keys from each cluster node member to the authorized_keys file on the last node you want to have as a cluster node member, then use scp to copy the authorized_keys file with the keys from all nodes back to each cluster node member, overwriting the existing version on the other nodes.

If you want to confirm that you have all nodes in the authorized_keys file, enter the command `more authorized_keys`, and check to see that there is an RSA key for each member node. The file lists the type of key (ssh-rsa), followed by the key, and then followed by the user and server. For example:

```
ssh-rsa AAAABBBB . . . = crs@node1
```

Note: The crs user's /.ssh/authorized_keys file on every node must contain the contents from all of the /.ssh/id_rsa.pub files that you generated on all cluster nodes.

Enabling SSH User Equivalency on Cluster Member Nodes

After you have copied the authorized_keys file that contains all keys to each node in the cluster, complete the following procedure, in the order listed. In this example, the Oracle Clusterware software owner is named crs:

1. On the system where you want to run OUI, log in as the crs user.
2. Use the following command syntax, where \textit{hostname1}, \textit{hostname2}, and so on, are the public hostnames (alias, and fully qualified domain name) of nodes in the cluster, to run SSH from the local node to each node, including from the local node to itself, and from each node to each other node:

\begin{verbatim}
[crs@nodename]$ ssh hostname1 date
[crs@nodename]$ ssh hostname2 date
\end{verbatim}

For example:

\begin{verbatim}
[crs@node1 crs]$ ssh node1 date
The authenticity of host 'node1 (xxx.xxx.100.101)' can't be established.
RSA key fingerprint is 7z:60:60:zz:48:48:z1:a0:f7:4e.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'node1,xxx.xxx.100.101' (RSA) to the list of
known hosts.
Enter passphrase for key '/home/crs/.ssh/id_rsa':
Mon Dec 4 11:08:13 PST 2006
[crs@node1 crs]$ ssh node1.somehost.com date
The authenticity of host 'node1.somehost.com (xxx.xxx.100.101)' can't be
established.
RSA key fingerprint is 7z:60:60:zz:48:48:z1:a0:f7:4e.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'node1,xxx.xxx.100.101' (RSA) to the list of
known hosts.
Enter passphrase for key '/home/crs/.ssh/id_rsa':
Mon Dec 4 11:08:13 PST 2006
[crs@node1 crs]$ ssh node2 date
Enter passphrase for key '/home/crs/.ssh/id_rsa':
Mon Dec 4 11:08:35 PST 2006
[crs@node1 crs]$
\end{verbatim}

At the end of this process, the public hostname for each member node should be registered in the \texttt{known_hosts} file for all other cluster member nodes.

If you are using a remote client to connect to the local node, and you see a message similar to "Warning: No xauth data; using fake authentication data for X11 forwarding," then this means that your authorized keys file is configured correctly, but your ssh configuration has X11 forwarding enabled. To correct this issue, proceed to "Setting Display and X11 Forwarding Configuration" on page 2-25.

3. Repeat step 2 on each cluster node member.

4. On each node, enter the following commands to start the SSH agent, and to load the SSH keys into memory:

\begin{verbatim}
$ exec /usr/bin/ssh-agent $SHELL
$ /usr/bin/ssh-add
\end{verbatim}

At the prompt, enter the pass phrase for each key that you generated.

For example:

\begin{verbatim}
[crs@node1 .ssh]$ exec /usr/bin/ssh-agent $SHELL
[crs@node1 .ssh]$ ssh-add
Enter passphrase for /home/crs/.ssh/id_rsa
Identity added: /home/crs/.ssh/id_rsa (/home/crs/.ssh/id_rsa)
\end{verbatim}
These commands start the ssh-agent on the node, and load the RSA keys into memory so that you are not prompted to use pass phrases when issuing SSH commands.

If you have configured SSH correctly, then you can now use the `ssh` or `scp` commands without being prompted for a password or a pass phrase. For example:

```
[crs@node1 ~]$ ssh node2 date
Mon Feb 26 23:34:42 UTC 2007
[crs@node1 ~]$ ssh node1 date
Mon Feb 26 23:34:48 UTC 2007
[crs@node1 ~]$ ssh node2
```

If any node prompts for a password or pass phrase, then verify that the `~/.ssh/authorized_keys` file on that node contains the correct public keys, and that you have created an Oracle software owner with identical group membership and IDs.

Note: You must run OUI from this session, or make a note of your SSH pass phrase, and remember to repeat step 4 before you start OUI from a different terminal session.

Setting Display and X11 Forwarding Configuration

- If you are on a remote terminal, and the local node has only one visual (which is typical), then use the following syntax to set the DISPLAY environment variable:

 Bourne, Korn, and Bash shells
  ```
  $ export DISPLAY=hostname:0
  ```

 C shell:
  ```
  $ setenv DISPLAY=hostname:0
  ```

 For example, if you are using the Bash shell, and if your hostname is `node1`, then enter the following command:
  ```
  $ export DISPLAY=node1:0
  ```

- To ensure that X11 forwarding will not cause the installation to fail, create a user-level SSH client configuration file for the Oracle software owner user, as follows:

 a. Using any text editor, edit or create the `~oracle/.ssh/config` file.

 b. Make sure that the `ForwardX11` attribute is set to `no`. For example:

  ```
  Host *
  ForwardX11 no
  ```

Preventing Oracle Clusterware Installation Errors Caused by `stty` Commands

During an Oracle Clusterware installation, OUI uses SSH to run commands and copy files to the other nodes. During the installation, hidden files on the system (for example, `.bashrc` or `.cshrc`) will cause makefile and other installation errors if they contain `stty` commands.
To avoid this problem, you must modify these files to suppress all output on STDERR, as in the following examples:

- Bourne, Bash, or Korn shell:
  ```bash
  if [ -t 0 ]; then
    stty intr ^C
  fi
  ```

- C shell:
  ```bash
  test -t 0
  if ($status == 0) then
    stty intr ^C
  endif
  ```

Note: When SSH is not available, the Installer uses the `rsh` and `rcp` commands instead of `ssh` and `scp`. If there are hidden files that contain `stty` commands that are loaded by the remote shell, then OUI indicates an error and stops the installation.

Configuring Software Owner User Environments

You run OUI from the user account that you want to own the Oracle Clusterware installation (`oracle` or `crs`). However, before you start OUI you must configure the environment of the user performing the Oracle Clusterware installation. In addition, create other required Oracle software owners, if needed.

This section contains the following topics:

- Environment Requirements for Oracle Clusterware Software Owner
- Environment Requirements for Oracle Database and Oracle ASM Owners
- Procedure for Configuring Oracle Software Owner Environments

Environment Requirements for Oracle Clusterware Software Owner

Complete the following tasks to configure the Oracle Clusterware software owner environment:

- Create an Oracle Clusterware home. For example: `/crs`.
- Set the installation software owner user (`crs`, `oracle`) default file mode creation mask (umask) to 022 in the shell startup file. Setting the mask to 022 ensures that the user performing the software installation creates files with 644 permissions.
- Set the software owner’s environment variable DISPLAY environment variables in preparation for the Oracle Clusterware installation.

Environment Requirements for Oracle Database and Oracle ASM Owners

If you intend to install Oracle Database or Oracle ASM, then complete the following additional tasks. If you plan to install other software using the role-based privileges method, then complete the following tasks for the Oracle Database software owner (`oracle`) and Oracle ASM software owner (`asm`).

2-26 Oracle Clusterware Installation Guide
Create an Oracle Base path. The Optimal Flexible Architecture path for the Oracle Base is /u01/app/user, where user is the name of the user account that you want to own the Oracle Database software. For example: /u01/app/oracle.

Note: Do not create the Oracle Clusterware home under Oracle base. Creating an Oracle Clusterware installation in an Oracle base directory path will cause succeeding Oracle installations to fail.

Set the installation software owner user (asm, oracle) default file mode creation mask (umask) to 022 in the shell startup file. Setting the mask to 022 ensures that the user performing the software installation creates files with 644 permissions.

Set the software owners’ environment variable DISPLAY environment variables in preparation for the ASM or Oracle Database installation.

Procedure for Configuring Oracle Software Owner Environments

To set the Oracle software owners’ environments, follow these steps, for each software owner (crs, oracle, asm):

1. Start a new terminal session; for example, start an X terminal (xterm).
2. Enter the following command to ensure that X Window applications can display on this system:
 `$ xhost + hostname`
 The hostname is the name of the local host.
3. If you are not already logged in to the system where you want to install the software, then log in to that system as the software owner user.
4. If you are not logged in as the user, then switch to the software owner user you are configuring. For example, with the crs user:
 `$ su - crs`
5. To determine the default shell for the user, enter the following command:
 `$ echo $SHELL`
6. Open the user’s shell startup file in any text editor:
 - Bourne shell (sh) or Korn shell (ksh):
 `% vi .profile`
 - C shell (csh or tcsh):
 `% vi .login`
7. Enter or edit the following line, specifying a value of 022 for the default file mode creation mask:
   ```
   umask 022
   ```
8. If the ORACLE_SID, ORACLE_HOME, or ORACLE_BASE environment variable is set in the file, then remove the appropriate lines from the file.
9. Save the file, and exit from the text editor.
10. To run the shell startup script, enter one of the following commands:
- Bourne, Bash, or Korn shell:


  ```
  $ . ~/.profile
  ```

- C shell:

  ```
  % source ~/.login
  ```

11. If you are not installing the software on the local system, then enter a command similar to the following to direct X applications to display on the local system:

- Bourne, Bash, or Korn shell:

  ```
  $ DISPLAY=local_host:0.0 ; export DISPLAY
  ```

- C shell:

  ```
  % setenv DISPLAY local_host:0.0
  ```

In this example, `local_host` is the host name or IP address of the system that you want to use to display OUI (your workstation or PC).

12. If you determined that the `/tmp` directory has less than 400 MB of free disk space, then identify a file system with at least 400 MB of free space and set the `TEMP` and `TMPDIR` environment variables to specify a temporary directory on this file system:

 a. Use the `df -h` command to identify a suitable file system with sufficient free space.

 b. If necessary, enter commands similar to the following to create a temporary directory on the file system that you identified, and set the appropriate permissions on the directory:

      ```
      $ su - root
      # mkdir /mount_point/tmp
      # chmod 775 /mount_point/tmp
      # exit
      ```

 c. Enter commands similar to the following to set the `TEMP` and `TMPDIR` environment variables:

 * Bourne, Bash, or Korn shell:

        ```
        $ TEMP=/mount_point/tmp
        $ TMPDIR=/mount_point/tmp
        $ export TEMP TMPDIR
        ```

 * C shell:

        ```
        % setenv TEMP /mount_point/tmp
        % setenv TMPDIR /mount_point/tmp
        ```

Note: You cannot use a shared file system as the location of the temporary file directory (typically `/tmp`) for Oracle RAC installation. If you place `/tmp` on a shared file system, then the installation fails.
Setting Shell Limits for Oracle Installation Owner Users

To improve the performance of the software, you must increase the following shell limits for installation owner users (crs, oracle, asm):

<table>
<thead>
<tr>
<th>Shell Limit</th>
<th>Item in limits.conf</th>
<th>Hard Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of open file descriptors</td>
<td>rlim_fd_max</td>
<td>65536</td>
</tr>
<tr>
<td>Maximum number of processes available to a user</td>
<td>maxuprc</td>
<td>16384</td>
</tr>
</tbody>
</table>

To increase the shell limits:

1. Add the following lines to the /etc/system file:

   ```
   set rlim_fd_max = 65536
   set maxuprc = 16384
   ```

2. Repeat this procedure on all other nodes in the cluster.

 Note: For these system changes to take effect, each node must be restarted.

Requirements for Creating an Oracle Clusterware Home Directory

During installation, you are prompted to provide a path to a home directory to store Oracle Clusterware binaries. Ensure that the directory path you provide meets the following requirements:

- It should be created in a path separate from existing Oracle homes.
- It should not be located in a user home directory.
- It should be created either as a subdirectory in a path where all files can be owned by root, or in a unique path.
- Before installation, it should be owned by the installation owner of Oracle Clusterware (typically oracle for a single installation owner for all Oracle software, or crs for role-based Oracle installation owners), and set to 750 permissions.

For installations with Oracle Clusterware only, Oracle recommends that you create a path compliant with Oracle Optimal Flexible Architecture (OFA) guidelines, so that Oracle Universal Installer (OUI) can select that directory during installation. For OUI to recognize the path as an Oracle software path, it must be in the form u0[1-9]/app.

When OUI finds an OFA-compliant path, it creates the Oracle Clusterware and Oracle Central Inventory (oraInventory) directories for you.

Create an Oracle Clusterware path. For example:

```
# mkdir -p /u01/app
# chown -R crs:oinstall /u01
```

Alternatively, if you later intend to install Oracle Database software, then create an Oracle base path. OUI automatically creates an OFA-compliant path for Oracle Clusterware derived from the Oracle base path. The Optimal Flexible Architecture path for the Oracle Base is */u01/app/user, where user is the name of the user account that you want to own the Oracle Database software. For example:
Understanding and Using Cluster Verification Utility

Cluster Verification Utility (CVU) is a tool that performs system checks. This guide provides Cluster Verification Utility commands to assist you with confirming that your system is properly configured for Oracle Clusterware and Oracle Real Application Clusters installation.

This section describes the following topics:

- **Entering Cluster Verification Utility Commands**
- **Using CVU to Determine if Installation Prerequisites are Complete**
- **Using CVU to Determine if Installation Prerequisites are Complete**
- **Using the Cluster Verification Utility Help**
- **Using Cluster Verification Utility with Oracle Database 10g Release 1 or 2**
- **Verbose Mode and "Unknown" Output**

Entering Cluster Verification Utility Commands

Before Oracle software is installed, to enter a Cluster Verification Utility command, change directories and start `runcluvfy.sh` using the following syntax:

```
$ cd /mountpoint/clusterware/cluvfy/
$ ./runcluvfy.sh options
```

In the preceding example, the variable `mountpoint` represents the mountpoint path for the installation media and the variable `options` represents the Cluster Verification Utility command options that you select. For example:

```
$ cd /dev/dvdrom/clusterware/cluvfy/
$ ./runcluvfy.sh comp nodereach -n node1,node2 -verbose
```

By default, when you enter a Cluster Verification Utility command, Cluster Verification Utility provides a summary of the test. During preinstallation, Oracle recommends that you obtain detailed output by using the `-verbose` argument with the Cluster Verification Utility command. The `-verbose` argument produces detailed output of individual checks. Where applicable, it shows results for each node in a tabular layout.

Note

If you choose to create an Oracle Clusterware home manually, then do not create the Oracle Clusterware home under Oracle base. Creating an Oracle Clusterware installation in an Oracle base directory will cause succeeding Oracle installations to fail.

See Also

- Creating Standard Configuration Operating System Groups and Users on page 3-1, and Creating Custom Configuration Groups and Users for Job Roles on page 3-4 for information about creating groups, users, and software homes for additional Oracle software installations.

```bash
# mkdir -p /u01/app/oracle
# chown -R oracle:oinstall /u01/app/oracle
# chmod -R 775 /u01/app/oracle
```
Using CVU to Determine if Installation Prerequisites are Complete

You can use Cluster Verification Utility (CVU) to determine which system prerequisites for installation are already completed. Use this option if you are installing Oracle 11g Release 1 (11.1) on a system with a pre-existing Oracle software installation. In using this option, note the following:

- You must complete the prerequisites for using Cluster Verification Utility
- Cluster Verification Utility can assist you by finding preinstallation steps that need to be completed, but it cannot perform preinstallation tasks

Use the following syntax to determine what preinstallation steps are completed, and what preinstallation steps must be performed

$./runcluvfy.sh stage -pre crsinst -n node_list

In the preceding syntax example, replace the variable *node_list* with the names of the nodes in your cluster, separated by commas.

For example, for a cluster with mountpoint /dev/dvdroom/, and with nodes *node1*, *node2*, and *node3*, enter the following command:

$ cd /dev/dvdroom/clusterware/cluvfy/
$./runcluvfy.sh stage -pre crsinst -n node1,node2,node3

Review the Cluster Verification Utility report, and proceed to the sections of the preinstallation chapter to complete additional steps as needed.

Using the Cluster Verification Utility Help

The `cluvfy` commands have context-sensitive help that shows correct syntax usage based on the command line arguments that you enter.

If you enter an invalid Cluster Verification Utility command, then it shows the correct usage for that command. For example, if you type `runcluvfy.sh stage -pre dbinst`, then Cluster Verification Utility shows the correct syntax for the database preinstallation checks that it performs with the `dbinst` stage option. The following is a list of context help commands.

- `cluvfy comp -list`—Cluster Verification Utility displays a list of components that can be checked, and brief descriptions of how each component is checked.
- `cluvfy comp -help`—Cluster Verification Utility displays detailed syntax for each of the valid component checks.
- `cluvfy stage -list`—Cluster Verification Utility displays a list of valid stages.
- `cluvfy stage -help`—Cluster Verification Utility displays detailed syntax for each of the valid stage checks.
Using Cluster Verification Utility with Oracle Database 10g Release 1 or 2

You can use Cluster Verification Utility on the Oracle Database 11g Release 1 (11.1) media to check system requirements for Oracle Database 10g Release 1 (10.1) and later installations. To use Cluster Verification Utility to check 10.1 installations, append the command flag -r 10gR1 to the standard Cluster Verification Utility system check commands.

For example, to perform a verification check for a Cluster Ready Services 10.1 installation, on a system where the media mountpoint is /dev/dvrom/, and the cluster nodes are node1, node2, and node3, enter the following command:

```
$ ./runcluvfy.sh stage -pre crsinst -n node1,node2,node3 -r 10gR1
```

Verbose Mode and "Unknown" Output

If you run Cluster Verification Utility using the -verbose argument, and a Cluster Verification Utility command responds with UNKNOWN for a particular node, then this is because Cluster Verification Utility cannot determine if a check passed or failed. The following is a list of possible causes for an "Unknown" response:

- The node is down
- Executables required by Cluster Verification Utility are missing in the /bin directory in the CRS home or Oracle home directory
- The user account starting Cluster Verification Utility does not have privileges to run common operating system executables on the node
- The node is missing an operating system patch, or a required package
- The node has exceeded the maximum number of processes or maximum number of open files, or there is a problem with IPC segments, such as shared memory or semaphores

Checking Oracle Clusterware Installation Readiness with CVU

Use Cluster Verification Utility (CVU) to check your servers for their readiness to install Oracle Clusterware:

- Checking the Network Setup with CVU
- Checking the Hardware and Operating System Setup with CVU
- Checking the Operating System Kernel Requirements Setup with CVU

Checking the Network Setup with CVU

As the oracle user, enter a command using the following syntax to verify node connectivity among all of the nodes for which your cluster is configured:

```
/mountpoint/clusterware/cluvfy/runcluvfy.sh comp nodecon -n node_list [-verbose]
```

In the preceding syntax example, the variable node_list is a comma-delimited list of nodes in your cluster. This command detects all the network interfaces available on the cluster nodes, and verifies the connectivity among all the nodes through the network interfaces it finds.

Select the option -verbose to receive progress updates as Cluster Verification Utility performs its system checks, and detailed reporting of the test results.
For example, to verify node connectivity on a two-node cluster with nodes node1 and node2, with the mountpoint /dev/dvdrom, and with updates and a summary of the verification checks Cluster Verification Utility performs, enter the following command:

```
/dev/dvdrom/clusterware/cluvfy/runcluvfy.sh comp nodecon -n node1,node2 -verbose
```

Note: You can use this command to obtain a list of all the interfaces available on the nodes that are suitable for use as VIPs, as well as a list of private interconnects that are connecting successfully on all nodes.

Checking the Hardware and Operating System Setup with CVU

As the `oracle` user, use the following command syntax to start Cluster Verification Utility (CVU) stage verification to check hardware and operating system setup:

```
/mountpoint/clusterware/cluvfy/runcluvfy.sh stage -post hwos -n node_list [-verbose]
```

In the preceding syntax example, replace the variable `node_list` with the names of the nodes in your cluster, separated by commas. For example, to check the hardware and operating system of a two-node cluster with nodes node1 and node2, with the mountpoint /dev/dvdrom/ and with the option to limit the output to the test results, enter the following command:

```
/dev/dvdrom/clusterware/cluvfy/runcluvfy.sh stage -post hwos -n node1,node2
```

Select the option `-verbose` to receive detailed reports of the test results, and progress updates about the system checks performed by Cluster Verification Utility.

Checking the Operating System Kernel Requirements Setup with CVU

As the `oracle` user, use the following command syntax to check if your system meets the operating system requirement preinstallation tasks:

```
/mountpoint/clusterware/cluvfy/runcluvfy.sh comp sys -n node_list -p (crs|database) -osdba osdba_group -orainv orainv_group -verbose
```

In the preceding syntax example:

- The variable `mountpoint` is the mountpoint of the Oracle 11g Release 1 (11.1) installation media
- The variable `node_list` is the list of nodes in your cluster, separated by commas
- The `-p` flag identifies either `crs` or `database`, and indicates that checks are performed for Oracle Clusterware or Oracle Database system requirements
- The variable `osdba_group` is the name of your OSDBA group, typically `dba`
- The variable `orainv_group` is the name of your Oracle Inventory group, typically `oinstall`

You can select the option `-verbose` to receive progress updates as Cluster Verification Utility performs its system checks, and detailed reporting of the test results.

For example, to perform a system check for an Oracle Clusterware installation on a two-node cluster with nodes node1 and node2, with the OSDBA `dba` and Oracle inventory group `oinstall`, and with the media mountpoint `/dev/dvdrom/`, then enter the following command:

```
```
/dev/dvdrom/clusterware/clusvfy/runclusvfy.sh comp sys -n node1,node2 -p crs -osdba crs -orainv oinstall
This chapter describes the system configuration tasks that are generally completed by the system administrator if you plan to install Oracle Database or Oracle Database with Oracle Real Application Clusters (Oracle RAC). These tasks include creating additional groups and users for the database and for Automatic Storage Management (ASM).

You must complete these tasks before you or a database administrator start Oracle Universal Installer to install Oracle RAC. If you do not plan on installing Oracle Database on this cluster, then you can continue to the next chapter.

This chapter contains the following topics:

- Creating Standard Configuration Operating System Groups and Users
- Creating Custom Configuration Groups and Users for Job Roles
- Understanding the Oracle Base Directory Path
- Creating the Oracle Base Directory Path
- Environment Requirements for Oracle Database and Oracle ASM Owners

Note: Any task required for Oracle Database is also required for Oracle RAC, unless otherwise stated.

Creating Standard Configuration Operating System Groups and Users

A standard configuration is a configuration with the default groups and users that Oracle Universal Installer (OUI) displays by default during Oracle database installation, which are not created already for Oracle Clusterware installation.

The following sections describe how to create the required operating system user and groups for Oracle Database or Oracle Database with Oracle RAC and ASM installations:

To allocate separate operating system user privileges to different administrative users, refer to "Creating Custom Configuration Groups and Users for Job Roles" on page 3-4.

- Overview of Groups and Users for Oracle Database Installations
- Creating Standard Operating System Groups and Users
Overview of Groups and Users for Oracle Database Installations

The following operating system groups and user are required if you plan to install Oracle Database:

- **The OSDBA group (typically, dba)**

 You must create this group the first time you install Oracle Database software on the system. In a standard installation, you are prompted to one group to grant the following privileges to its members:

 - Database Administrator (OSDBA)
 - Database Operator (OSOPER)
 - ASM Administrator (OSASM)

 In addition, members of this group are granted database write access to ASM (OSDBA for ASM).

 The default name for this group is dba.

- **An unprivileged user**

 Verify that the unprivileged user nobody exists on the system. The nobody user must own the external jobs (extjob) executable after the installation.

Creating Standard Operating System Groups and Users

The following sections describe how to create required and optional operating system user and groups:

- **Verifying That the User nobody Exists**

- **Creating the OSDBA Group**

- **Creating Identical Users and Groups on Other Cluster Nodes**

Verifying That the User nobody Exists

If you intend to install Oracle Database or Oracle RAC, then complete the following procedure to verify that the user nobody exists on the system:

1. To determine if the user exists, enter the following command:

 # id nobody

 If this command displays information about the nobody user, then you do not have to create that user.

2. If the nobody user does not exist, then enter a command similar to the following to create it:

 # /usr/sbin/useradd -u 65001 nobody

3. Repeat this procedure on all the other nodes in the cluster. Note that the ID number for uid and gid should be the same on all nodes of the cluster.

Creating the OSDBA Group

To create the OSDBA group, complete the following procedure:

1. Enter a command similar to the following:

 # /usr/sbin/groupadd -g 502 dba
Creating Standard Configuration Operating System Groups and Users

The preceding command creates the group dba, with the group ID number 502.

Creating Identical Users and Groups on Other Cluster Nodes

Note: You must complete the following procedures only if you are using local users and groups. If you are using users and groups defined in a directory service such as NIS, then they are already identical on each cluster node.

Oracle software owner users and groups must exist and be identical on all cluster nodes.

Identifying Existing User and Group IDs

To determine the user ID (UID) of the oracle user, and the group IDs (GID) of the Oracle Inventory, OSDBA, and OSOPER groups, follow these steps:

1. Enter a command similar to the following (in this case, to determine a user ID):

   ```
   # id oracle
   ```

 The output from this command is similar to the following:

   ```
   uid=501(oracle) gid=501(oinstall) groups=502(dba),503(oper),506(asmdba)
   ```

2. From the output, identify the user ID (UID) for the user and the group identities (GIDs) for the groups to which it belongs. Ensure that these are identical on each node.

Creating Users and Groups on the Other Cluster Nodes

To create users and groups on the other cluster nodes, repeat the following procedure on each node:

1. Log in to the next cluster node as root.

2. Enter commands similar to the following to create groups. Use the -g option to specify the correct GID for each group.

   ```
   # /usr/sbin/groupadd -g 501 oinstall
   # /usr/sbin/groupadd -g 502 dba
   ```

 Note: If a group already exists, but has a different group ID, then use the groupmod command to modify it if necessary. If you cannot use the same group ID for a particular group on this node, then view the /etc/group file on all nodes to identify a group ID that is available on every node. You must then specify that ID for the group on all of the nodes.

3. To create the oracle user or another required user, enter a command similar to the following (in this example, to create the oracle user):

   ```
   # /usr/sbin/useradd -u 501 -g oinstall oracle
   ```

 In the preceding command:
- The \texttt{-u} option specifies the user ID, which must be the user ID that you identified in the previous subsection
- The \texttt{-g} option specifies the primary group, which must be the Oracle Inventory group; for example, \texttt{oinstall}

\begin{verbatim}
Note: If the user already exists, then use the usermod command to modify it if necessary. If you cannot use the same user ID for the user on this node, then view the \texttt{/etc/passwd} file on all nodes to identify a user ID that is available on every node. You must then specify that ID for the user on all of the nodes.
\end{verbatim}

4. Set the password of the user. For example:

\begin{verbatim}
passwd oracle
\end{verbatim}

\section*{Creating Custom Configuration Groups and Users for Job Roles}

A Custom configuration is a configuration with groups and users that divide access privileges granted by membership in separate operating system groups and users.

\begin{verbatim}
Note: This configuration is optional, to restrict user access to Oracle software by responsibility areas for different administrator users.
\end{verbatim}

To allocate operating system user privileges to a minimum number of groups and users, refer to \textit{Creating Standard Configuration Operating System Groups and Users} on page 3-1.

- Overview of Creating Operating System Group and User Options Based on Job Roles
- Creating Database Operating System Groups and Users with Job Role Separation

\begin{verbatim}
Note: If you want to use a directory service, such as Network Information Services (NIS), refer to your operating system documentation for further information.
\end{verbatim}

\section*{Overview of Creating Operating System Group and User Options Based on Job Roles}

This section provides an overview of how to create users and groups to divide access privileges by job roles. Log in as \texttt{root} to create these groups and users.

- Users for Oracle Installations with Job Role Separation
- Database Groups for Job Role Installations
- ASM Groups for Job Role Installations

\section*{Users for Oracle Installations with Job Role Separation}

Oracle recommends that you create the following operating system group and users for all installations where you create separate software installation owners:
One software owner to own each Oracle software product (typically, oracle, for the database software owner user, crs for Oracle Clusterware, and asm for Oracle ASM.

You must create at least one software owner the first time you install Oracle software on the system. This user owns the Oracle binaries of the Oracle Clusterware software, and you can also make this user the owner of the binaries of Automatic Storage Management and Oracle Database or Oracle RAC.

Oracle software owners must have the Oracle Inventory group as their primary group, so that each Oracle software installation owner can write to the Central Inventory, and so that OCR and Oracle Clusterware resource permissions are set correctly. The Database software owner must also have the OSDBA group and (if you create it) the OSOPER group as secondary groups. In Oracle documentation, when Oracle software owner users are referred to, they are called oracle users.

Oracle recommends that you create separate software owner users to own each Oracle software installation. Oracle particularly recommends that you do this if you intend to install more than one database on the system.

In Oracle documentation, a user created to own the Oracle Clusterware binaries is called the crs user.

If you intend to use Automatic Storage Management (ASM), then Oracle recommends that you create a separate user to own ASM files. In Oracle documentation, that user is referred to as asm.

See Also: Oracle Database Administrator's Reference for UNIX Systems and Oracle Database Administrator's Guide for more information about the OSDBA, OSASM and OSOPER groups and the SYSDBA, SYSASM and SYSOPER privileges

An unprivileged user

Verify that the unprivileged user nobody exists on the system. The nobody user must own the external jobs (extjob) executable after the installation.

Database Groups for Job Role Installations

The following operating system groups and user are required if you are installing Oracle Database:

- The OSDBA group (typically, dba)

You must create this group the first time you install Oracle Database software on the system. This group identifies operating system user accounts that have database administrative privileges (the SYSDBA privilege). If you do not create separate OSDBA, OSOPER and OSASM groups for the ASM instance, then operating system user accounts that have the SYSOPER and SYSASM privileges must be members of this group. The name used for this group in Oracle code examples is dba. If you do not designate a separate group as the OSASM group, then the OSDBA group you define is also by default the OSASM group.

If you want to specify a group name other than the default dba group, then you must choose the Custom installation type to install the software or start Oracle Universal Installer (OUI) as a user that is not a member of this group. In this case, OUI prompts you to specify the name of this group.

On Automatic Storage Manager (ASM) instances, members of the OSDBA group are given privileges to perform all administrative privileges granted to the
SYSASM privileges, including mounting and dismounting disk groups. This privileges grant is deprecated, and will be removed in a future release.

- The OSOPER group for Oracle Database (typically, oper)

This is an optional group. Create this group if you want a separate group of operating system users to have a limited set of database administrative privileges (the SYSOPER privilege). By default, members of the OSDBA group also have all privileges granted by the SYSOPER privilege.

If you want to use the OSOPER group to create a database administrator group with fewer privileges than the default dba group, then you must choose the Custom installation type to install the software or start OUI as a user that is not a member of the dba group. In this case, OUI prompts you to specify the name of this group. The usual name chosen for this group is oper.

ASM Groups for Job Role Installations

SYSASM is a new system privilege that enables the separation of the ASM storage administration privilege from SYSDBA. Members of the database OSDBA group are granted SYSASM privileges, but this privilege is deprecated, and may be removed in a future release.

Use the Custom Installation option to designate separate operating system groups as the operating system authentication groups for privileges on ASM. Before you start OUI, create the following groups and users for ASM.

- The Oracle Automatic Storage Management Group (typically asm)

SYSASM privileges for ASM files provide administrator privileges for storage file equivalent to SYSDBA privileges for the database. In Oracle documentation, the operating system group whose members are granted SYSASM privileges is called the OSASM group, and in command lines, is referred to as asm.

If you have more than one database on your system, then you must create a separate OSASM group, and a separate ASM user. ASM can support multiple databases.

Members of the OSASM group can use SQL to connect to an ASM instance as SYSASM using operating system authentication. The SYSASM privileges permit mounting and dismounting disk groups, and other storage administration tasks. SYSASM privileges provide no access privileges on an RDBMS instance. In this release of Oracle Clusterware and Oracle Database, SYSASM privileges and SYSDBA privileges are equivalent, but using SYSDBA privileges to perform ASM management tasks on ASM instances is deprecated. SYSDBA privileges may be limited on ASM instances in a future release.

- The OSDBA group for ASM (typically asmdba)

Members of the OSDBA group for ASM are granted read and write access to files managed by ASM. The Oracle database software owner (typically oracle) must be a member of this group, and all users with OSDBA membership on databases that you want to have access to the files managed by ASM should be members of the OSDBA group for ASM.

Creating Database Operating System Groups and Users with Job Role Separation

The following sections describe how to create the required operating system user and groups:

- Creating the OSDBA Group for Custom Installations
Creating Custom Configuration Groups and Users for Job Roles

- Creating an OSOPER Group
- Creating the OSASM Group
- Creating the OSDBA Group for ASM
- Creating the Oracle Software Owner User
- Creating a Separate ASM Owner
- Verifying That the User nobody Exists
- Creating Identical Database Users and Groups on Other Cluster Nodes

Creating the OSDBA Group for Custom Installations
You must create an OSDBA group in the following circumstances:

- An OSDBA group does not exist, for example, if this is the first installation of Oracle Database software on the system
- An OSDBA group exists, but you want to give a different group of operating system users database administrative privileges for a new Oracle Database installation

If the OSDBA group does not exist or if you require a new OSDBA group, then create it as follows. In the following procedure, use the group name `dba` unless a group with that name already exists:

```
# /usr/sbin/groupadd -g 502 dba
```

Creating an OSOPER Group
Create an OSOPER group only if you want to identify a group of operating system users with a limited set of database administrative privileges (SYSOPER operator privileges). For most installations, it is sufficient to create only the OSDBA group. If you want to use an OSOPER group, then you must create it in the following circumstances:

- If an OSOPER group does not exist; for example, if this is the first installation of Oracle Database software on the system
- If an OSOPER group exists, but you want to give a different group of operating system users database operator privileges in a new Oracle installation

If you require a new OSOPER group, then create it as follows. In the following, use the group name `oper` unless a group with that name already exists.

```
# /usr/sbin/groupadd -g 505 oper
```

Creating the OSASM Group
If the OSASM group does not exist or if you require a new OSASM group, then create it as follows. In the following procedure, use the group name `asm` unless a group with that name already exists:

```
# /usr/sbin/groupadd -g 504 asm
```

Creating the OSDBA Group for ASM
You must create an OSDBA group for ASM to provide access to the ASM instance. This is necessary if OSASM and OSDBA are different groups.
Creating Custom Configuration Groups and Users for Job Roles

If the OSDBA group for ASM does not exist or if you require a new OSDBA group for ASM, then create it as follows. In the following procedure, use the group name asmdba unless a group with that name already exists:

```
# /usr/sbin/groupadd -g 506 asmdba
```

Creating the Oracle Software Owner User

You must create an Oracle software owner user in the following circumstances:

- If an Oracle software owner user exists, but you want to use a different operating system user, with different group membership, to give database administrative privileges to those groups in a new Oracle Database installation
- If you have created an Oracle software owner for Oracle Clusterware, such as crs, and you want to create a separate Oracle software owner for Oracle Database software, such as dba.

Determining if an Oracle Software Owner User Exists To determine whether an Oracle software owner user named oracle or crs exists, enter a command similar to the following (in this case, to determine if oracle exists):

```
# id oracle
```

If the user exists, then the output from this command is similar to the following:

```
uid=501(oracle) gid=501(oinstall) groups=502(dba),503(oper)
```

Determine whether you want to use the existing user, or create another user. If you want to use the existing user, then ensure that the user's primary group is the Oracle Inventory group and that it is a member of the appropriate OSDBA and OSOPER groups. Refer to one of the following sections for more information:

- To modify an existing user, refer to the "Modifying an Existing Oracle Software Owner User" section on page 3-9.
- To create a user, refer to the following section.

Creating an Oracle Software Owner User If the Oracle software owner user does not exist, or if you require a new Oracle software owner user, then create it as follows. In the following procedure, use the user name oracle unless a user with that name already exists.

1. To create an oracle user, enter a command similar to the following:

```
# /usr/sbin/useradd -u 502 -g oinstall -G dba oracle
```

In the preceding command:

- The -u option specifies the user ID. Using this command flag is optional, as you can allow the system to provide you with an automatically generated user ID number. However, you must make note of the oracle user ID number, as you require it later during preinstallation.
- The -g option specifies the primary group, which must be the Oracle Inventory group--for example, oinstall

Note: If necessary, contact your system administrator before using or modifying an existing user.

- To modify an existing user, refer to the "Modifying an Existing Oracle Software Owner User" section on page 3-9.
- To create a user, refer to the following section.
■ The -G option specifies the secondary groups, which must include the OSDBA group, and, if required, the OSOPER group. For example: dba, or dba, oper

2. Set the password of the oracle user:

```
# passwd oracle
```

Modifying an Existing Oracle Software Owner User If the oracle user exists, but its primary group is not oinstall, or it is not a member of the appropriate OSDBA or OSOPER groups, then enter a command similar to the following to modify it. Specify the primary group using the -g option and any required secondary group using the -G option:

```
# /usr/sbin/usermod -g oinstall -G dba[,oper] oracle
```

Repeat this procedure on all of the other nodes in the cluster.

Creating a Separate ASM Owner

1. To create asm, enter a command similar to the following:

```
# /usr/sbin/useradd -u 504 -g oinstall -G asm asm
```

In the preceding command:

■ The -u option specifies the user ID. Using this command flag is optional, as you can allow the system to provide you with an automatically generated user ID number. However, you must make note of the asm ID number, as you require it later during preinstallation.

■ The -g option specifies the primary group, which must be the Oracle Inventory group—for example, oinstall

■ The -G option specifies the secondary groups, which must include the OSASM group. For example: asm.

2. Set the password for asm:

```
# passwd asm
```

Verifying That the User nobody Exists

Before installing the software, complete the following procedure to verify that the user nobody exists on the system:

1. To determine if the user exists, enter the following command:

```
# id nobody
```

If this command displays information about the nobody user, then you do not have to create that user.

2. If the nobody user does not exist, then enter the following command syntax to create it:

```
# /usr/sbin/useradd -u number nobody
```

for example:

```
# /usr/sbin/useradd -u 65555 nobody
```

3. Repeat this procedure on all the other nodes in the cluster.
Creating Custom Configuration Groups and Users for Job Roles

Creating Identical Database Users and Groups on Other Cluster Nodes

Note: You must complete the following procedures only if you are using local users and groups. If you are using users and groups defined in a directory service such as NIS, then they are already identical on each cluster node.

Oracle software owner users and the Oracle Inventory, OSDBA, and OSOPER groups must exist and be identical on all cluster nodes. To create these identical users and groups, you must identify the user ID and group IDs assigned them on the node where you created them, and then create the user and groups with the same name and ID on the other cluster nodes.

Identifying Existing User and Group IDs
To determine the user ID (UID) of the crs, oracle, or asm users, and the group IDs (GID) of the Oracle Inventory, OSDBA, and OSOPER groups, follow these steps:

1. Enter a command similar to the following (in this case, to determine a user ID for the oracle user):
   ```bash
   # id oracle
   ``
   The output from this command is similar to the following:
   ```bash
 uid=502(oracle) gid=501(oinstall) groups=502(dba),503(oper)
   ```

2. From the output, identify the user ID (UID) for the user and the group identities (GIDs) for the groups to which it belongs. Ensure that these ID numbers are identical on each node of the cluster.

Creating Users and Groups on the Other Cluster Nodes
To create users and groups on the other cluster nodes, repeat the following procedure on each node:

1. Log in to the next cluster node as root.

2. Enter commands similar to the following to create the oinstall and dba groups, and if required, the oper and asm groups. Use the `-g` option to specify the correct GID for each group.
   ```bash
 # /usr/sbin/groupadd -g 501 oinstall
 # /usr/sbin/groupadd -g 502 crs
 # /usr/sbin/groupadd -g 503 dba
 # /usr/sbin/groupadd -g 505 oper
 # /usr/sbin/groupadd -g 504 asm
 # /usr/sbin/groupadd -g 506 asmdba
   ```

**Note:** If the group already exists, then use the `groupmod` command to modify it if necessary. If you cannot use the same group ID for a particular group on this node, then view the `/etc/group` file on all nodes to identify a group ID that is available on every node. You must then change the group ID on all nodes to the same group ID.
3. To create the `oracle` or `asm` user, enter a command similar to the following (in this example, to create the `oracle` user):

```sh
/usr/sbin/useradd -u 502 -g oinstall -G dba[,oper] oracle
```

In the preceding command:

- The `-u` option specifies the user ID, which must be the user ID that you identified in the previous subsection.
- The `-g` option specifies the primary group, which must be the Oracle Inventory group, for example `oinstall`.
- The `-G` option specifies the secondary groups, which must include the `OSDBA` group and if required, the `OSOPER` group. For example: `dba` or `dba,oper`.

**Note:** If the user already exists, then use the `usermod` command to modify it if necessary. If you cannot use the same user ID for the user on every node, then view the `/etc/passwd` file on all nodes to identify a user ID that is available on every node. You must then specify that ID for the user on all of the nodes.

4. Set the password of the user. For example:

```sh
passwd oracle
```

5. Complete SSH configuration for each user as described in the section "Configuring SSH on All Cluster Nodes" on page 2-20.

6. Complete user environment configuration tasks for each user as described in the section "Configuring Software Owner User Environments" on page 2-26.

### Understanding the Oracle Base Directory Path

This section contains information about preparing an Oracle base directory.

#### Overview of the Oracle Base directory

During installation, you are prompted to specify an Oracle base location, which is owned by the user performing the installation. You can choose a location with an existing Oracle home, or choose another directory location that does not have the structure for an Oracle base directory. However, setting an Oracle base directory may become mandatory in a future release.

Using the Oracle base directory path helps to facilitate the organization of Oracle installations, and helps to ensure that installations of multiple databases maintain an Optimal Flexible Architecture (OFA) configuration.

#### Understanding Oracle Base and Oracle Clusterware Directories

Even if you do not use the same software owner to install Oracle Clusterware and Oracle Database, be aware that the `root.sh` script in the clusterware installation changes ownership of the Oracle Clusterware home directory to `root`. For this reason, the Oracle Clusterware home cannot be in the same location as other Oracle software.
Creating the Oracle Base Directory Path

If you have created a path for the Oracle Clusterware home that is compliant with Oracle Optimal Flexible Architecture (OFA) guidelines for Oracle software paths, then you do not need to create an Oracle base directory. When OUI finds an OFA-compliant path, it creates the Oracle base directory in that path.

For OUI to recognize the path as an Oracle software path, it must be in the form /u0[1-9]/app, and it must be writable by any member of the oinstall group.

Oracle recommends that you create an Oracle base path manually. The Optimal Flexible Architecture path for the Oracle Base is /u01/app/user, where user is the name of the user account that you want to own the Oracle Database software. For example:

```bash
mkdir -p /u01/app/oracle
chown -R oracle:oinstall /u01/app/oracle
chmod -R 775 /u01/app/oracle
```

Environment Requirements for Oracle Database and Oracle ASM Owners

If you create separate Oracle installation owner accounts for the database or ASM, then complete the following tasks for the Oracle Database software owner (oracle) and Oracle ASM software owner (asm).

- If you create an Oracle base path, as described in the preceding section, then set the path to the Oracle base directory as an environment variable for the Oracle database owner. For example:
  ```bash
 # ORACLE_BASE=/u01/app/oracle; export ORACLE_BASE
  ```

- Set the installation software owner user (asm, oracle) default file mode creation mask (umask) to 022 in the shell startup file. Setting the mask to 022 ensures that the user performing the software installation creates files with 644 permissions.

- Set the software owners’ environment variable DISPLAY environment variables in preparation for the ASM or Oracle Database installation.
Configuring Oracle Clusterware Storage

This chapter describes the storage configuration tasks that you must complete before you start Oracle Universal Installer. It includes information about the following tasks:

- Reviewing Storage Options for Oracle Clusterware
- Configuring Storage for Oracle Clusterware Files on a Supported Shared File System
- Configuring Storage for Oracle Clusterware Files on Raw Devices

**Reviewing Storage Options for Oracle Clusterware**

This section describes supported options for storing Oracle Clusterware files, Oracle Database files, and data files. It includes the following sections:

- Overview of Storage Options
- Checking for Available Shared Storage with CVU

**Overview of Storage Options**

Use the information in this overview to help you select your storage option.

**Overview of Oracle Clusterware Storage Options**

There are two ways of storing Oracle Clusterware files:

- **A supported shared file system:** Supported file systems include the following:
  - **Cluster File System:** A supported cluster file system.
  - **Network File System (NFS):** A file-level protocol that enables access and sharing of files

  **See Also:** The Certify page on OracleMetalink for supported Network Attached Storage (NAS) devices, and your storage vendor

- **Raw Devices:** Oracle Clusterware files can be placed on RAW devices based on shared disk partitions.

**General Storage Considerations**

For all installations, you must choose the storage option that you want to use for Oracle Clusterware files.

Oracle Clusterware files include voting disks, used to monitor cluster node status, and Oracle Cluster Registry (OCR) which contains configuration information about the
cluster. The voting disks and OCR are shared files on a cluster or network file system environment. If you do not use a cluster file system, then you must place these files on shared raw devices. Oracle Universal Installer (OUI) automatically initializes the OCR during the Oracle Clusterware installation.

For voting disk file placement, ensure that each voting disk is configured so that it does not share any hardware device or disk, or other single point of failure. An absolute majority of voting disks configured (more than half) must be available and responsive at all times for Oracle Clusterware to operate.

For single-instance Oracle Database installations using Oracle Clusterware for failover, you must use ASM, or shared raw disks if you do not want the failover processing to include dismounting and remounting disks.

The following table shows the storage options supported for storing Oracle Clusterware files. Oracle Clusterware files include the Oracle Cluster Registry (OCR), a mirrored OCR file (optional), the Oracle Clusterware voting disk, and additional voting disk files (optional).

<table>
<thead>
<tr>
<th>Storage Option</th>
<th>File Types Supported</th>
<th>OCR and Voting Disk</th>
<th>Oracle Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Storage Management</td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Local storage</td>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>NFS file system</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>Note</strong>: Requires a certified NAS device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared raw device partitions</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Use the following guidelines when choosing the storage options that you want to use for each file type:

- You can choose any combination of the supported storage options for each file type, provided that you satisfy all requirements listed for the chosen storage options.
- You cannot use ASM to store Oracle Clusterware files, because these files must be accessible before any ASM instance starts.
- If you do not have a storage option that provides external file redundancy, then you must configure at least three voting disk areas to provide voting disk redundancy.

**Quorum Disk Location Restriction with Existing 9.2 Clusterware Installations**

When upgrading your Oracle9i release 9.2 Oracle RAC environment to Oracle Database 11g Release 1 (11.1), you are prompted to specify one or more voting disks during the Oracle Clusterware installation. You must specify a new location for the voting disk in Oracle Database 11g Release 1 (11.1). You cannot reuse the old Oracle9i release 9.2 quorum disk for this purpose.

Note: For the most up-to-date information about supported storage options, refer to the Certify pages on the OracleMetaLink Web site:

https://metalink.oracle.com
After You Have Selected Disk Storage Options
When you have determined your disk storage options, you must perform the following tasks in the order listed:

1: Check for available shared storage with CVU
Refer to Checking for Available Shared Storage with CVU on page 4-3.

2: Configure shared storage for Oracle Clusterware files
- To use a file system (NFS) for Oracle Clusterware files, refer to "Configuring Storage for Oracle Clusterware Files on a Supported Shared File System" on page 4-3.
- To use raw devices (partitions) for Oracle Clusterware files, refer to "Configuring Storage for Oracle Clusterware Files on Raw Devices" on page 4-8.

Checking for Available Shared Storage with CVU
To check for all shared file systems available across all nodes on the cluster on a supported shared file system, use the following command:

```
/mountpoint/clusterware/cluvfy/runcluvfy.sh comp ssa -n node_list
```

If you want to check the shared accessibility of a specific shared storage type to specific nodes in your cluster, then use the following command syntax:

```
/mountpoint/clusterware/cluvfy/runcluvfy.sh comp ssa -n node_list -s storageID_list
```

In the preceding syntax examples, the variable mountpoint is the mountpoint path of the installation media, the variable node_list is the list of nodes you want to check, separated by commas, and the variable storageID_list is the list of storage device IDs for the storage devices managed by the file system type that you want to check.

For example, if you want to check the shared accessibility from node1 and node2 of storage devices /dev/c0t0d0s2 and /dev/c0t0d0s3, and your mountpoint is /dev/dvdrom/, then enter the following command:

```
/dev/dvdrom/clusterware/cluvfy/runcluvfy.sh comp ssa -n node1,node2 -s /dev/c0t0d0s2,/dev/c0t0d0s3
```

If you do not specify specific storage device IDs in the command, then the command searches for all available storage devices connected to the nodes on the list.

Configuring Storage for Oracle Clusterware Files on a Supported Shared File System
Oracle Universal Installer (OUI) does not suggest a default location for the Oracle Cluster Registry (OCR) or the Oracle Clusterware voting disk. If you choose to create these files on a file system, then review the following sections to complete storage requirements for Oracle Clusterware files:

- Requirements for Using a File System for Oracle Clusterware Files
- Checking UDP Parameter Settings
- Checking NFS Mount and Buffer Size Parameters for Clusterware
- Creating Required Directories for Oracle Clusterware Files on Shared File Systems
Requirements for Using a File System for Oracle Clusterware Files

To use a file system for Oracle Clusterware files, the file system must comply with the following requirements:

- To use an NFS file system, it must be on a certified NAS device.

**Note:** If you are using a shared file system on a NAS device to store a shared Oracle home directory for Oracle Clusterware or RAC, then you must use the same NAS device for Oracle Clusterware file storage.

- If you choose to place your Oracle Cluster Registry (OCR) files on a shared file system, then one of the following must be true:
  - The disks used for the file system are on a highly available storage device, (for example, a RAID device that implements file redundancy)
  - At least two file systems are mounted, and use the features of Oracle Database 11g Release 1 (11.1) to provide redundancy for the OCR.

In addition, if you put the OCR and voting disk files on a shared file system, then that shared file system must be a shared QFS file system, and not a globally mounted UFS or VxFS file system.

- If you intend to use a shared file system to store database files, then use at least two independent file systems, with the database files on one file system, and the recovery files on a different file system.

- The oracle user must have write permissions to create the files in the path that you specify.

**Note:** If you are upgrading Oracle9i release 2, then you can continue to use the raw device or shared file that you used for the SRVM configuration repository instead of creating a new file for the OCR.

If you are upgrading Oracle Clusterware, and your existing cluster uses 100 MB OCR and 20 MB voting disk partitions, then you can continue to use those partition sizes.

Use Table 4-1 to determine the partition size for shared file systems.
In Table 4–1, the total required volume size is cumulative. For example, to store all files on the shared file system with normal redundancy, you should have at least 1.3 GB of storage available over a minimum of three volumes (two separate volume locations for the OCR and OCR mirror, and one voting disk on each volume).

<table>
<thead>
<tr>
<th>File Types Stored</th>
<th>Number of Volumes</th>
<th>Volume Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Clusterware files (OCR and voting disks) with external redundancy</td>
<td>1</td>
<td>At least 280 MB for each volume</td>
</tr>
<tr>
<td>Oracle Clusterware files (OCR and voting disks) with redundancy provided by Oracle software</td>
<td>1</td>
<td>At least 280 MB for each volume</td>
</tr>
<tr>
<td>Redundant Oracle Clusterware files with redundancy provided by Oracle software (mirrored OCR and two additional voting disks)</td>
<td>1</td>
<td>At least 280 MB of free space for each OCR location, if the OCR is configured on a file system or At least 280 MB available for each OCR location if the OCR is configured on raw devices. and At least 280 MB for each voting disk location, with a minimum of three disks.</td>
</tr>
</tbody>
</table>

Note: When you create partitions with fdisk by specifying a device size, such as +256M, the actual device created may be smaller than the size requested, based on the cylinder geometry of the disk. This is due to current fdisk restrictions.

Oracle configuration software checks to ensure that devices contain a minimum of 256MB of available disk space. Therefore, Oracle recommends using at least 280MB for the device size. You can check partition sizes by using the command syntax fdisk -s partition. For example:

```
[root@node1]$ fdisk -s /dev/sdb1
281106
```

Checking UDP Parameter Settings

The User Data Protocol (UDP) parameter settings define the amount of send and receive buffer space for sending and receiving datagrams over an IP network. These settings affect cluster interconnect transmissions. If the buffers set by these parameters are too small, then incoming UDP datagrams can be dropped due to insufficient space, which requires send-side retransmission. This can result in poor cluster performance.

On Solaris, the UDP parameters are `udp_recv_hiwat` and `udp_xmit_hiwat`. On Solaris 10 the default values for these parameters are 57344 bytes. Oracle recommends that you set these parameters to at least 65536 bytes.

To check current settings for `udp_recv_hiwat` and `udp_xmit_hiwat`, enter the following commands:
On Solaris 10, to set the values of these parameters to 65536 bytes in current memory, enter the following commands:

```
ndd -set /dev/udp udp_xmit_hiwat 65536
ndd -set /dev/udp udp_recv_hiwat 65536
```

On Solaris 9, to set the values of these parameters to 65536 bytes on system restarts, open the `/etc/system` file, and enter the following lines:

```
set udp:udp_xmit_hiwat=65536
set udp:udp_recv_hiwat=65536
```

On Solaris 10, to set the UDP values for when the system restarts, the `nnd` commands have to be included in a system startup script. For example, The following script in `/etc/rc2.d/S99nnd` sets the parameters:

```
ndd -set /dev/udp udp_xmit_hiwat 65536
nnd -set /dev/udp udp_recv_hiwat 65536
```

See Also: "Overview of Tuning IP Suite Parameters" in Solaris Tunable Parameters Reference Manual, in the Sun documentation set available at the following URL:

http://docs.sun.com/app/docs

Checking NFS Mount and Buffer Size Parameters for Clusterware

If you are using NFS, then you must set the values for the NFS buffer size parameters `rsize` and `wsize` to at least 32768.

The NFS mount options for clusterware files are:

```
rw,bg,hard,nointr,rsize=32768,wsize=32768,tcp,vers=3,noac,forcedirectio
```

Update the `/etc/vfstab` file on each node with an entry similar to the following:

```
nfs_server:/vol/CWfiles /u01/oracle/cwfiles nfs -yes rw,bg,hard,nointr,rsize=32768,wsize=32768,tcp,vers=3,noac,forcedirectio
```

Note that mount point options are different for Oracle software binaries, Oracle Clusterware files (OCR and voting disks), and data files.

If you want to create a mount point for binaries only, then enter the following line for a binaries mount point:

```
nfs_server:/vol/crshome /u01/oracle/crs nfs -yes rw,bg,hard,nointr,rsize=32768,wsize=32768,tcp,vers=3,noac,suid
```

See Also: OracleMetaLink bulletin 359515.1, "Mount Options for Oracle Files When Used with NAS Devices" for the most current information about mount options, available from the following URL:

https://metalink.oracle.com

Note: Refer to your storage vendor documentation for additional information about mount options.
Creating Required Directories for Oracle Clusterware Files on Shared File Systems

Use the following instructions to create directories for Oracle Clusterware files. You can also configure shared file systems for the Oracle Database and recovery files.

**Note:** For NFS storage, you must complete this procedure only if you want to place the Oracle Clusterware files on a separate file system to the Oracle base directory.

For Storage Area Network (SAN) storage configured without Sun Cluster, Oracle recommends the following:

To ensure that devices are mapped to the same controller in all the nodes, before you install the operating system, you should first install the HBA cards in all the nodes (in the same slots). Doing this ensures that devices will be mapped to the same controllers in all the nodes.

To create directories for the Oracle Clusterware files on separate file systems from the Oracle base directory, follow these steps:

1. If necessary, configure the shared file systems that you want to use and mount them on each node.

   **Note:** The mount point that you use for the file system must be identical on each node. Ensure that the file systems are configured to mount automatically when a node restarts.

2. Use the `df -k` command to determine the free disk space on each mounted file system.

3. From the display, identify the file systems that you want to use:

<table>
<thead>
<tr>
<th>File Type</th>
<th>File System Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Clusterware files</td>
<td>Choose a file system with at least 560 MB of free disk space (one OCR and one voting disk, with external redundancy).</td>
</tr>
</tbody>
</table>

   If you are using the same file system for more than one type of file, then add the disk space requirements for each type to determine the total disk space requirement.

4. Note the names of the mount point directories for the file systems that you identified.

5. If the user performing installation (crs or oracle) has permissions to create directories on the disks where you plan to install Oracle Clusterware and Oracle Database, then OUI creates the Oracle Clusterware file directory.

   If the user performing installation does not have write access, then you must create these directories manually using commands similar to the following to create the recommended subdirectories in each of the mount point directories and set the appropriate owner, group, and permissions on them:

   - Example of creating Oracle Clusterware file directory owned by the installation user oracle:

     ```
 # mkdir /mount_point/oracrs
     ```
By making the crs or oracle user the owner of these directories, this permits them to be read by multiple Oracle homes, including those with different OSDBA groups.

When you have completed creating subdirectories in each of the mount point directories, and set the appropriate owner, group, and permissions, you have completed CFS or NFS configuration.

**Configuring Storage for Oracle Clusterware Files on Raw Devices**

The following subsection describe how to configure Oracle Clusterware files on raw partitions.

**Identifying Required Raw Partitions for Clusterware Files**

Table 4–2 lists the number and size of the raw partitions that you must configure for Oracle Clusterware files.

<table>
<thead>
<tr>
<th>Number</th>
<th>Size for Each Partition (MB)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>280</td>
<td>Oracle Cluster Registry</td>
</tr>
<tr>
<td>(or 1, if you have external redundancy support for this file)</td>
<td></td>
<td>Note: Create these raw partitions only once on the cluster. If you create more than one database on the cluster, they all share the same Oracle Cluster Registry (OCR). You should create two partitions: One for the OCR, and one for a mirrored OCR. If you are upgrading from Oracle9i release 2, then you can continue to use the raw device that you used for the SRVM configuration repository instead of creating this new raw device.</td>
</tr>
<tr>
<td>3</td>
<td>280</td>
<td>Oracle Clusterware voting disks</td>
</tr>
<tr>
<td>(or 1, if you have external redundancy support for this file)</td>
<td></td>
<td>Note: Create these raw partitions only once on the cluster. If you create more than one database on the cluster, they all share the same Oracle Clusterware voting disk. You should create three partitions: One for the voting disk, and two for additional voting disks.</td>
</tr>
</tbody>
</table>

Note: If you put Oracle Clusterware files on a Cluster File System (CFS) then you should ensure that the CFS volumes are at least 500 MB in size.
Configuring Oracle Real Application Clusters Storage

This chapter includes storage administration tasks that you should complete if you intend to use Oracle Clusterware with Oracle Real Application Clusters (Oracle RAC).

This chapter contains the following topics:

- Reviewing Storage Options for Oracle Database and Recovery Files
- Checking for Available Shared Storage with CVU
- Choosing a Storage Option for Oracle Database Files
- Configuring Storage for Oracle Database Files on a Supported Shared File System
- Configuring Disks for Automatic Storage Management
- Configuring Storage for Oracle Database Files on Shared Storage Devices
- Desupport of the Database Configuration Assistant Raw Device Mapping File
- Checking the System Setup with CVU

Reviewing Storage Options for Oracle Database and Recovery Files

This section describes supported options for storing Oracle Database files, and data files.

See Also: The Oracle Certify site for a list of supported vendors for Network Attached Storage options:

https://metalink.oracle.com

Overview of Oracle Database and Recovery File Options

There are three ways of storing Oracle Database and recovery files:

- **Automatic Storage Management**: Automatic Storage Management (ASM) is an integrated, high-performance database file system and disk manager for Oracle Database files. It performs striping and mirroring of database files automatically.

Note: For Standard Edition Oracle Database installations using Oracle RAC, ASM is the only supported storage option.

Only one ASM instance is permitted for each node regardless of the number of database instances on the node.
A supported shared file system: Supported file systems include the following:

- A supported cluster file system, such as Sun StorEdge QFS. Note that if you intend to use a cluster file system for your data files, then you should create partitions large enough for the database files when you create partitions for Oracle Clusterware.

  See Also: The Certify page on OracleMetalink for supported cluster file systems

- NAS Network File System (NFS) listed on Oracle Certify: Note that if you intend to use NFS for your data files, then you should create partitions large enough for the database files when you create partitions for Oracle Clusterware.

  See Also: The Certify page on OracleMetalink for supported Network Attached Storage (NAS) devices, and supported cluster file systems

Block or Raw Devices: A partition is required for each database file. If you do not use ASM, then for new installations on raw devices, you must use a custom installation.

General Storage Considerations for Oracle RAC

For all installations, you must choose the storage option that you want to use for Oracle Database files, or for Oracle Clusterware with Oracle RAC. If you want to enable automated backups during the installation, then you must also choose the storage option that you want to use for recovery files (the flash recovery area). You do not have to use the same storage option for each file type.

For single-instance Oracle Database installations using Oracle Clusterware for failover, you must use ASM or shared raw disks if you do not want the failover processing to include dismounting and remounting of local file systems.

The following table shows the storage options supported for storing Oracle Database files and Oracle Database recovery files. Oracle Database files include data files, control files, redo log files, the server parameter file, and the password file.

<table>
<thead>
<tr>
<th>Storage Option</th>
<th>File Types Supported</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Storage Management</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Supported cluster file system</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Local storage</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Note: For the most up-to-date information about supported storage options for Oracle RAC installations, refer to the Certify pages on the OracleMetaLink Web site:

https://metalink.oracle.com

Table 5–1  Supported Storage Options for Oracle Database and Recovery Files
Use the following guidelines when choosing the storage options that you want to use for each file type:

- You can choose any combination of the supported storage options for each file type provided that you satisfy all requirements listed for the chosen storage options.
- Oracle recommends that you choose Automatic Storage Management (ASM) as the storage option for database and recovery files.
- For Standard Edition Oracle RAC installations, ASM is the only supported storage option for database or recovery files.
- You cannot use ASM to store Oracle Clusterware files, because these files must be accessible before any ASM instance starts.
- If you intend to use ASM with Oracle RAC, and you are configuring a new ASM instance, then your system must meet the following conditions:
  - All nodes on the cluster have the 11g release 1 (11.1) version of Oracle Clusterware installed.
  - Any existing ASM instance on any node in the cluster is shut down.
- If you intend to upgrade an existing Oracle RAC database, or an Oracle RAC database with ASM instances, then you must ensure that your system meets the following conditions:
  - Oracle Universal Installer (OUI) and Database Configuration Assistant (DBCA) are run on the node where the Oracle RAC database or Oracle RAC database with ASM instance is located.
  - The Oracle RAC database or Oracle RAC database with an ASM instance is running on the same nodes that you intend to make members of the new cluster installation. For example, if you have an existing Oracle RAC database running on a three-node cluster, then you must install the upgrade on all three nodes. You cannot upgrade only 2 nodes of the cluster, removing the third instance in the upgrade.

  **See Also:** Oracle Database Upgrade Guide for information about how to prepare for upgrading an existing database

- If you do not have a storage option that provides external file redundancy, then you must configure at least three voting disk areas to provide voting disk redundancy.

### After You Have Selected Disk Storage Options

After you have installed and configured Oracle Clusterware storage, and after you have reviewed your disk storage options for Oracle Database files, you must perform the following tasks in the order listed:

---

**Table 5–1 (Cont.) Supported Storage Options for Oracle Database and Recovery Files**

<table>
<thead>
<tr>
<th>Storage Option</th>
<th>File Types Supported</th>
<th>Database</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFS file system</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Note: Requires a certified NAS device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared raw devices</td>
<td>Yes</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

---

**Note:** Requires a certified NAS device
1: Check for available shared storage with CVU
Refer to Checking for Available Shared Storage with CVU on page 5-4.

2: Configure storage for Oracle Database files and recovery files
- To use a shared file system for database or recovery file storage, refer to Configuring Storage for Oracle Database Files on a Supported Shared File System on page 5-5, and ensure that in addition to the volumes you create for Oracle Clusterware files, you also create additional volumes with sizes sufficient to store database files.
- To use Automatic Storage Management for database or recovery file storage, refer to "Configuring Disks for Automatic Storage Management" on page 5-10
- To use shared devices for database file storage, refer to "Configuring Storage for Oracle Database Files on Shared Storage Devices" on page 5-15.

Note: If you choose to configure database files on raw devices, note that you must complete database software installation first, and then configure storage after installation.

You cannot use OUI to configure a database that uses raw devices for storage. In a future release, the option to use raw devices for database storage will become unavailable.

Checking for Available Shared Storage with CVU
To check for all shared file systems available across all nodes on the cluster on a supported shared file system, log in as the installation owner user (oracle or crs), and use the following syntax:

/mountpoint/runcluvfy.sh comp ssa -n node_list

If you want to check the shared accessibility of a specific shared storage type to specific nodes in your cluster, then use the following command syntax:

/mountpoint/runcluvfy.sh comp ssa -n node_list -s storageID_list

In the preceding syntax examples, the variable mountpoint is the mountpoint path of the installation media, the variable node_list is the list of nodes you want to check, separated by commas, and the variable storageID_list is the list of storage device IDs for the storage devices managed by the file system type that you want to check.

For example, if you want to check the shared accessibility from node1 and node2 of storage devices /dev/sdb and /dev/sdc, and your mountpoint is /dev/dvdrom/, then enter the following command:

$ /mnt/dvdrom/runcluvfy.sh comp ssa -n node1,node2 -s /dev/sdb,/dev/sdc

If you do not specify storage device IDs in the command, then the command searches for all available storage devices connected to the nodes on the list.

Choosing a Storage Option for Oracle Database Files
Database files consist of the files that make up the database, and the recovery area files. There are four options for storing database files:

- Network File System (NFS)
Configuring Storage for Oracle Database Files on a Supported Shared File System

- Automatic Storage Management (ASM)
- Raw devices (Database files only--not for the recovery area)

During configuration of Oracle Clusterware, if you selected NFS, and the volumes that you created are large enough to hold the database files and recovery files, then you have completed required preinstallation steps. You can proceed to Chapter 6, "Installing Oracle Clusterware" on page 6-1.

If you want to place your database files on ASM, then proceed to Configuring Disks for Automatic Storage Management on page 5-10.

If you want to place your database files on raw devices, and manually provide storage management for your database and recovery files, then proceed to "Configuring Storage for Oracle Database Files on Shared Storage Devices" on page 5-15.

---

**Note:** Databases can consist of a mixture of ASM files and non-ASM files. Refer to Oracle Database Administrator's Guide for additional information about ASM.

---

**Configuring Storage for Oracle Database Files on a Supported Shared File System**

Review the following sections to complete storage requirements for Oracle Database files:

- Requirements for Using a File System for Oracle Database Files
- Deciding to Use NFS for Data Files
- Deciding to Use Direct NFS for Datafiles
- Enabling Direct NFS Client Oracle Disk Manager Control of NFS
- Disabling Direct NFS Client Oracle Disk Management Control of NFS
- Checking NFS Mount and Buffer Size Parameters for Oracle RAC
- Creating Required Directories for Oracle Database Files on Shared File Systems

**Requirements for Using a File System for Oracle Database Files**

To use a file system for Oracle Database files, the file system must comply with the following requirements:

- To use a cluster file system, it must be a supported cluster file system. Refer to Oracle Metalink (https://metalink.oracle.com) for a list of supported cluster file systems.
- To use an NFS file system, it must be on a certified NAS device.
- If you choose to place your database files on a shared file system, then one of the following must be true:
  - The disks used for the file system are on a highly available storage device, (for example, a RAID device that implements file redundancy).
  - The file systems consist of at least two independent file systems, with the database files on one file system, and the recovery files on a different file system.
The oracle user must have write permissions to create the files in the path that you specify.

Use Table 5–2 to determine the partition size for shared file systems.

### Table 5–2  Shared File System Volume Size Requirements

<table>
<thead>
<tr>
<th>File Types Stored</th>
<th>Number of Volumes</th>
<th>Volume Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Database files</td>
<td>1</td>
<td>At least 1.5 GB for each volume</td>
</tr>
<tr>
<td>Recovery files</td>
<td>1</td>
<td>At least 2 GB for each volume</td>
</tr>
</tbody>
</table>

**Note:** Recovery files must be on a different volume than database files

In Table 5–2, the total required volume size is cumulative. For example, to store all database files on the shared file system, you should have at least 3.4 GB of storage available over a minimum of two volumes.

### Deciding to Use NFS for Data Files

Network-attached storage (NAS) systems use NFS to access data. You can store data files on a supported NFS system.

NFS file systems must be mounted and available over NFS mounts before you start installation. Refer to your vendor documentation to complete NFS configuration and mounting.

### Deciding to Use Direct NFS for Datafiles

This section contains the following information about Direct NFS:

- **About Direct NFS Storage**
- **Using the Oranfstab File with Direct NFS**
- **Mounting NFS Storage Devices with Direct NFS**

### About Direct NFS Storage

With Oracle Database 11g release 1 (11.1), instead of using the operating system kernel NFS client, you can configure Oracle Database to access NFS V3 servers directly using an Oracle internal Direct NFS client.

To enable Oracle Database to use Direct NFS, the NFS file systems must be mounted and available over regular NFS mounts before you start installation. The mount options used in mounting the file systems are not relevant, as Direct NFS manages settings after installation. Refer to your vendor documentation to complete NFS configuration and mounting.

Some NFS file servers require NFS clients to connect using reserved ports. If your filer is running with reserved port checking, then you must disable it for Direct NFS to operate. To disable reserved port checking, consult your NFS file server documentation.

### Using the Oranfstab File with Direct NFS

If you use Direct NFS, then you can choose to use a new file specific for Oracle datafile management, oranfstab, to specify additional options specific for Oracle Database to Direct NFS. For example, you can use oranfstab to specify additional paths for a
mount point. You can add the oranfstab file either to /etc or to $ORACLE_HOME/dbs. The oranfstab file is not required to use NFS or Direct NFS.

With Oracle RAC installations, if you want to use Direct NFS, then you must replicate the file /etc/oranfstab on all nodes, and keep each /etc/oranfstab file synchronized on all nodes.

When the oranfstab file is placed in $ORACLE_HOME/dbs, the entries in the file are specific to a single database. In this case, all nodes running an Oracle RAC database use the same $ORACLE_HOME/dbs/oranfstab file.

When the oranfstab file is placed in /etc, then it is globally available to all Oracle databases, and can contain mount points used by all Oracle databases running on nodes in the cluster, including single-instance databases. However, on Oracle RAC systems, if the oranfstab file is placed in /etc, then you must replicate the file /etc/oranfstab file on all nodes, and keep each /etc/oranfstab file synchronized on all nodes, just as you must with the /etc/fstab file.

In all cases, mount points must be mounted by the kernel NFS system, even when they are being served using Direct NFS.

**Mounting NFS Storage Devices with Direct NFS**

Direct NFS determines mount point settings to NFS storage devices based on the configurations in /etc/mtab, which are changed with configuring the /etc/fstab file.

Direct NFS searches for mount entries in the following order:

1. $ORACLE_HOME/dbs/oranfstab
2. /etc/oranfstab
3. /etc/mtab

Direct NFS uses the first matching entry found.

---

**Note:** You can have only one active Direct NFS implementation for each instance. Using Direct NFS on an instance will prevent another Direct NFS implementation.

---

If Oracle Database uses Direct NFS mount points configured using oranfstab, then it first verifies kernel NFS mounts by cross-checking entries in oranfstab with operating system NFS mount points. If a mismatch exists, then Direct NFS logs an informational message, and does not serve the NFS server.

If Oracle Database is unable to open an NFS server using Direct NFS, then Oracle Database uses the platform operating system kernel NFS client. In this case, the kernel NFS mount options must be set up as defined in "Checking NFS Mount and Buffer Size Parameters for Oracle RAC" on page 5-9. Additionally, an informational message will be logged into the Oracle alert and trace files indicating that Direct NFS could not be established.

The Oracle files resident on the NFS server that are served by the Direct NFS Client are also accessible through the operating system kernel NFS client. The usual considerations for maintaining integrity of the Oracle files apply in this situation.
Specifying Network Paths with the Oranfstab File

Direct NFS can use up to four network paths defined in the oranfstab file for an NFS server. The Direct NFS client performs load balancing across all specified paths. If a specified path fails, then Direct NFS reissues I/O commands over any remaining paths.

Use the following views for Direct NFS management:

- **v$dnfs_servers**: Shows a table of servers accessed using Direct NFS.
- **v$dnfs_files**: Shows a table of files currently open using Direct NFS.
- **v$dnfs_channels**: Shows a table of open network paths (or channels) to servers for which Direct NFS is providing files.
- **v$dnfs_stats**: Shows a table of performance statistics for Direct NFS.

Enabling Direct NFS Client Oracle Disk Manager Control of NFS

Complete the following procedure to enable Direct NFS:

1. Create an oranfstab file with the following attributes for each NFS server to be accessed using Direct NFS:
   - **Server**: The NFS server name.
   - **Path**: Up to four network paths to the NFS server, specified either by IP address, or by name, as displayed using the ifconfig command.
   - **Export**: The exported path from the NFS server.
   - **Mount**: The local mount point for the NFS server.

   The following is an example of an oranfstab file with two NFS server entries:

   ```
 server: MyDataServer1
 path: 132.34.35.12
 path: 132.34.35.13
 export: /vol/oradata1 mount: /mnt/oradata1

 server: MyDataServer2
 path: NfsPath1
 path: NfsPath2
 path: NfsPath3
 path: NfsPath4
 export: /vol/oradata2 mount: /mnt/oradata2
 export: /vol/oradata3 mount: /mnt/oradata3
 export: /vol/oradata4 mount: /mnt/oradata4
 export: /vol/oradata5 mount: /mnt/oradata5
   ```

2. Oracle Database uses an ODM library, libnfsodm10.so, to enable Direct NFS.
   To replace the standard ODM library, $ORACLE_HOME/lib/libodm10.so, with the ODM NFS library, libnfsodm10.so, complete the following steps:
   - Change directory to $ORACLE_HOME/lib.
   - Enter the following commands:
     ```
 cp libodm10.so libodm10.so_stub
     ```
Disabling Direct NFS Client Oracle Disk Management Control of NFS

Use one of the following methods to disable the Direct NFS client:

- Remove the oranfstab file.
- Restore the stub libodm10.so file by reversing the process you completed in step 2b, "Enabling Direct NFS Client Oracle Disk Manager Control of NFS"
- Remove the specific NFS server or export paths in the oranfstab file.

---

**Note:** If you remove an NFS path that Oracle Database is using, then you must restart the database for the change to be effective.

Checking NFS Mount and Buffer Size Parameters for Oracle RAC

If you are using NFS, then you must set the values for the NFS buffer size parameters rsize and wsize to 32768.

If you are using Direct NFS, note that will not serve an NFS server with write size values (wtmax) less than 32768.

Update the /etc/fstab file on each node with an entry similar to the following:

```
nfs_server:/vol/DATA/oradata /u02/oradata nfs\rw,bg,hard,nointr,rsize=32768,wsize=32768,tcp,noac,forcedirectio, vers=3, suid
```

Be aware that mount point requirements are different for binaries and Oracle Clusterware mount points.

See Also: "Checking NFS Mount and Buffer Size Parameters for Clusterware" on page 4-6.

---

**Note:** Refer to your storage vendor documentation for additional information about mount options.

Creating Required Directories for Oracle Database Files on Shared File Systems

Use the following instructions to create directories for shared file systems for Oracle Database and recovery files (for example, for a RAC database).

1. If necessary, configure the shared file systems that you want to use and mount them on each node.

   **Note:** The mount point that you use for the file system must be identical on each node. Ensure that the file systems are configured to mount automatically when a node restarts.

2. Use the `df -h` command to determine the free disk space on each mounted file system.

3. From the display, identify the file systems that you want to use:
If you are using the same file system for more than one type of file, then add the disk space requirements for each type to determine the total disk space requirement.

4. Note the names of the mount point directories for the file systems that you identified.

5. If the user performing installation (typically, oracle) has permissions to create directories on the disks where you plan to install Oracle Database, then DBCA creates the Oracle Database file directory, and the Recovery file directory.

If the user performing installation does not have write access, then you must create these directories manually using commands similar to the following to create the recommended subdirectories in each of the mount point directories and set the appropriate owner, group, and permissions on them:

- Database file directory:
  
  ```
 # mkdir /mount_point/oradata
 # chown oracle:oinstall /mount_point/oradata
 # chmod 775 /mount_point/oradata
  ```

- Recovery file directory (flash recovery area):
  
  ```
 # mkdir /mount_point/flash_recovery_area
 # chown oracle:oinstall /mount_point/flash_recovery_area
 # chmod 775 /mount_point/flash_recovery_area
  ```

By making the oracle user the owner of these directories, this permits them to be read by multiple Oracle homes, including those with different OSDBA groups.

When you have completed creating subdirectories in each of the mount point directories, and set the appropriate owner, group, and permissions, you have completed NFS configuration for Oracle Database shared storage.

### Configuring Disks for Automatic Storage Management

This section describes how to configure disks for use with Automatic Storage Management. Before you configure the disks, you must determine the number of disks and the amount of free disk space that you require. The following sections describe how to identify the requirements and configure the disks:

- Identifying Storage Requirements for Automatic Storage Management
- Using an Existing Automatic Storage Management Disk Group
Identifying Storage Requirements for Automatic Storage Management

To identify the storage requirements for using Automatic Storage Management, you must determine how many devices and the amount of free disk space that you require. To complete this task, follow these steps:

1. Determine whether you want to use Automatic Storage Management for Oracle Database files, recovery files, or both.

   Note: You do not have to use the same storage mechanism for database files and recovery files. You can use the file system for one file type and Automatic Storage Management for the other.

   If you choose to enable automated backups and you do not have a shared file system available, then you must choose Automatic Storage Management for recovery file storage.

If you enable automated backups during the installation, you can choose Automatic Storage Management as the storage mechanism for recovery files by specifying an Automatic Storage Management disk group for the flash recovery area. Depending on how you choose to create a database during the installation, you have the following options:

   - If you select an installation method that runs Database Configuration Assistant in interactive mode (for example, by choosing the Advanced database configuration option) then you can decide whether you want to use the same Automatic Storage Management disk group for database files and recovery files, or use different disk groups for each file type.

     The same choice is available to you if you use Database Configuration Assistant after the installation to create a database.

   - If you select an installation method that runs Database Configuration Assistant in noninteractive mode, then you must use the same Automatic Storage Management disk group for database files and recovery files.

2. Choose the Automatic Storage Management redundancy level that you want to use for the Automatic Storage Management disk group.

   The redundancy level that you choose for the Automatic Storage Management disk group determines how Automatic Storage Management mirrors files in the disk group and determines the number of disks and amount of free disk space that you require, as follows:

   - External redundancy

     An external redundancy disk group requires a minimum of one disk device. The effective disk space in an external redundancy disk group is the sum of the disk space in all of its devices.
Because Automatic Storage Management does not mirror data in an external redundancy disk group, Oracle recommends that you select external redundancy only use only RAID or similar devices that provide their own data protection mechanisms for disk devices.

- Normal redundancy

In a normal redundancy disk group, to increase performance and reliability, Automatic Storage Management by default uses two-way mirroring. A normal redundancy disk group requires a minimum of two disk devices (or two failure groups). The effective disk space in a normal redundancy disk group is half the sum of the disk space in all of its devices.

For most installations, Oracle recommends that you select normal redundancy disk groups.

- High redundancy

In a high redundancy disk group, Automatic Storage Management uses three-way mirroring to increase performance and provide the highest level of reliability. A high redundancy disk group requires a minimum of three disk devices (or three failure groups). The effective disk space in a high redundancy disk group is one-third the sum of the disk space in all of its devices.

While high redundancy disk groups do provide a high level of data protection, you should consider the greater cost of additional storage devices before deciding to select high redundancy disk groups.

3. Determine the total amount of disk space that you require for the database files and recovery files.

Use the following table to determine the minimum number of disks and the minimum disk space requirements for installing the starter database:

<table>
<thead>
<tr>
<th>Redundancy Level</th>
<th>Minimum Number of Disks</th>
<th>Database Files</th>
<th>Recovery Files</th>
<th>Both File Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>1</td>
<td>1.15 GB</td>
<td>2.3 GB</td>
<td>3.45 GB</td>
</tr>
<tr>
<td>Normal</td>
<td>2</td>
<td>2.3 GB</td>
<td>4.6 GB</td>
<td>6.9 GB</td>
</tr>
<tr>
<td>High</td>
<td>3</td>
<td>3.45 GB</td>
<td>6.9 GB</td>
<td>10.35 GB</td>
</tr>
</tbody>
</table>

For Oracle RAC installations, you must also add additional disk space for the Automatic Storage Management metadata. You can use the following formula to calculate the additional disk space requirements (in MB):

\[15 + (2 \times \text{number_of_disks}) + (126 \times \text{number_of_Automatic_Storage_Management_instances})\]

For example, for a four-node Oracle RAC installation, using three disks in a high redundancy disk group, you require an additional 525 MB of disk space:

\[15 + (2 \times 3) + (126 \times 4) = 525\]

If an Automatic Storage Management instance is already running on the system, then you can use an existing disk group to meet these storage requirements. If necessary, you can add disks to an existing disk group during the installation.

The following section describes how to identify existing disk groups and determine the free disk space that they contain.
4. Optionally, identify failure groups for the Automatic Storage Management disk group devices.

   **Note:** Complete this step only if you intend to use an installation method that runs Database Configuration Assistant in interactive mode, for example, if you intend to choose the Custom installation type or the Advanced database configuration option. Other installation types do not enable you to specify failure groups.

   If you intend to use a normal or high redundancy disk group, then you can further protect your database against hardware failure by associating a set of disk devices in a custom failure group. By default, each device comprises its own failure group. However, if two disk devices in a normal redundancy disk group are attached to the same SCSI controller, then the disk group becomes unavailable if the controller fails. The controller in this example is a single point of failure.

   To protect against failures of this type, you could use two SCSI controllers, each with two disks, and define a failure group for the disks attached to each controller. This configuration would enable the disk group to tolerate the failure of one SCSI controller.

   **Note:** If you define custom failure groups, then you must specify a minimum of two failure groups for normal redundancy disk groups and three failure groups for high redundancy disk groups.

5. If you are sure that a suitable disk group does not exist on the system, then install or identify appropriate disk devices to add to a new disk group. Use the following guidelines when identifying appropriate disk devices:

   - All of the devices in an Automatic Storage Management disk group should be the same size and have the same performance characteristics.
   - Do not specify more than one partition on a single physical disk as a disk group device. Automatic Storage Management expects each disk group device to be on a separate physical disk.
   - Although you can specify a logical volume as a device in an Automatic Storage Management disk group, Oracle does not recommend their use. Logical volume managers can hide the physical disk architecture, preventing Automatic Storage Management from optimizing I/O across the physical devices. They are not supported with Oracle RAC.

**Using an Existing Automatic Storage Management Disk Group**

If you want to store either database or recovery files in an existing Automatic Storage Management disk group, then you have the following choices, depending on the installation method that you select:

- If you select an installation method that runs Database Configuration Assistant in interactive mode (for example, by choosing the Advanced database configuration option), then you can decide whether you want to create a disk group, or to use an existing one.

  The same choice is available to you if you use Database Configuration Assistant after the installation to create a database.
If you select an installation method that runs Database Configuration Assistant in noninteractive mode, then you must choose an existing disk group for the new database; you cannot create a disk group. However, you can add disk devices to an existing disk group if it has insufficient free space for your requirements.

**Note:** The Automatic Storage Management instance that manages the existing disk group can be running in a different Oracle home directory.

To determine if an existing Automatic Storage Management disk group exists, or to determine if there is sufficient disk space in a disk group, you can use Oracle Enterprise Manager Grid Control or Database Control. Alternatively, you can use the following procedure:

1. View the contents of the `oratab` file to determine if an Automatic Storage Management instance is configured on the system:

   ```bash
 $ more /etc/oratab
   ```

   If an Automatic Storage Management instance is configured on the system, then the `oratab` file should contain a line similar to the following:

   ```
 +ASM2:oracle_home_path
   ```

   In this example, `+ASM2` is the system identifier (SID) of the Automatic Storage Management instance, with the node number appended, and `oracle_home_path` is the Oracle home directory where it is installed. By convention, the SID for an Automatic Storage Management instance begins with a plus sign.

2. Set the `ORACLE_SID` and `ORACLE_HOME` environment variables to specify the appropriate values for the Automatic Storage Management instance that you want to use.

3. Connect to the Automatic Storage Management instance as the `SYS` user with `SYSDBA` privilege and start the instance if necessary:

   ```bash
 $ $ORACLE_HOME/bin/sqlplus "SYS/SYS_password as SYSDBA"
 SQL> STARTUP
   ```

4. Enter the following command to view the existing disk groups, their redundancy level, and the amount of free disk space in each one:

   ```sql
 SQL> SELECT NAME,TYPE,TOTAL_MB,FREE_MB FROM V$ASM_DISKGROUP;
   ```

5. From the output, identify a disk group with the appropriate redundancy level and note the free space that it contains.

6. If necessary, install or identify the additional disk devices required to meet the storage requirements listed in the previous section.

**Note:** If you are adding devices to an existing disk group, then Oracle recommends that you use devices that have the same size and performance characteristics as the existing devices in that disk group.
Configuring Storage for Oracle Database Files on Shared Storage Devices

The following subsections describe how to configure Oracle Clusterware files on raw devices.

- Planning Your Shared Storage Device Creation Strategy
- Identifying Required Shared Partitions for Database Files

Planning Your Shared Storage Device Creation Strategy

Before installing the Oracle Database 11g release 1 (11.1) software with Oracle RAC, create enough partitions of specific sizes to support your database, and also leave a few spare partitions of the same size for future expansion. For example, if you have space on your shared disk array, then select a limited set of standard partition sizes for your entire database. Partition sizes of 50 MB, 100 MB, 500 MB, and 1 GB are suitable for most databases. Also, create a few very small and a few very large spare partitions that are (for example) 1 MB and perhaps 5 GB or greater in size. Based on your plans for using each partition, determine the placement of these spare partitions by combining different sizes on one disk, or by segmenting each disk into same-sized partitions.

**Note:** Be aware that each instance has its own redo log files, but all instances in a cluster share the control files and data files. In addition, each instance’s online redo log files must be readable by all other instances to enable recovery.

In addition to the minimum required number of partitions, you should configure spare partitions. Doing this enables you to perform emergency file relocations or additions if a tablespace data file becomes full.

Identifying Required Shared Partitions for Database Files

**Note:** For new installations, Oracle recommends that you do not use raw devices for database files.

Table 5–3 lists the number and size of the shared partitions that you must configure for database files.

<table>
<thead>
<tr>
<th>Number</th>
<th>Partition Size (MB)</th>
<th>Purpose</th>
<th>Number of instances</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>680</td>
<td>SYSTEM</td>
<td>500</td>
<td>UNDOTBSn tablespace (One tablespace for each instance)</td>
</tr>
<tr>
<td>1</td>
<td>300 + (Number of instances * 250)</td>
<td>SYSAUX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>TEMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>160</td>
<td>EXAMPLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>120</td>
<td>USERS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Creating Raw Devices on IDE or SCSI Devices

If you intend to use IDE or SCSI devices for the raw devices, then follow these steps:

1. If necessary, install or configure the shared disk devices that you intend to use for the raw devices and restart the system.

   **Note:** Because the number of partitions that you can create on a single device is limited, you might need to create the required partitions on more than one device.

2. To identify the device name for the disks that you want to use, enter the following command:

   ```shell
 # /sbin/fdisk -l
   ```

   Depending on the type of disk, the device name can vary:

<table>
<thead>
<tr>
<th>Disk Type</th>
<th>Device Name Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDE disk</td>
<td><code>/dev/hd</code>&lt;sub&gt;x&lt;/sub&gt;&lt;sub&gt;n&lt;/sub&gt;</td>
<td>In this example, <code>x</code> is a letter that identifies the IDE disk and <code>n</code> is the partition number. For example, <code>/dev/hda</code> is the first disk on the first IDE bus.</td>
</tr>
<tr>
<td>SCSI disk</td>
<td><code>/dev/sd</code>&lt;sub&gt;x&lt;/sub&gt;&lt;sub&gt;n&lt;/sub&gt;</td>
<td>In this example, <code>x</code> is a letter that identifies the SCSI disk and <code>n</code> is the partition number. For example, <code>/dev/sda</code> is the first disk on the first SCSI bus.</td>
</tr>
</tbody>
</table>

You can create the required partitions either on new devices that you added or on previously partitioned devices that have unpartitioned free space. To identify devices that have unpartitioned free space, examine the start and end cylinder numbers of the existing partitions and determine whether the device contains unused cylinders.

3. To create partitions on a shared storage device, enter a command similar to the following:

   ```shell
 # /sbin/fdisk devicename
   ```

---

**Note:** If you prefer to use manual undo management, instead of automatic undo management, then, instead of the `UNDOTBSn` shared storage devices, you must create a single rollback segment tablespace (RBS) on a shared storage device partition that is at least 500 MB in size.
When creating partitions:
- Use the `p` command to list the partition table of the device.
- Use the `n` command to create a partition.
- After you have created the required partitions on this device, use the `w` command to write the modified partition table to the device.
- Refer to the `fdisk` man page for more information about creating partitions.

**Desupport of the Database Configuration Assistant Raw Device Mapping File**

With the release of Oracle Database 11g and Oracle RAC release 11g, configuring raw devices using Database Configuration Assistant is not supported.

**Checking the System Setup with CVU**

As the `oracle` user, use the following command syntax to start Cluster Verification Utility (CVU) stage verification to check hardware, operating system, and storage setup:

```
/mountpoint/runcluvfy.sh stage -post hwos -n node_list [-verbose]
```

In the preceding syntax example, replace the variable `node_list` with the names of the nodes in your cluster, separated by commas. For example, to check the hardware and operating system of a two-node cluster with nodes `node1` and `node2`, with the mountpoint `/mnt/dvdrom/` and with the option to limit the output to the test results, enter the following command:

```
$ /mnt/dvdrom/runcluvfy.sh stage -post hwos -n node1,node2
```

Select the option `-verbose` to receive detailed reports of the test results, and progress updates about the system checks performed by Cluster Verification Utility.
This chapter describes the procedures for installing Oracle Clusterware for Solaris Operating System. If you are installing Oracle Database with Oracle Real Application Clusters (Oracle RAC), then this is phase one of a two-phase installation.

This chapter contains the following topics:

- Verifying Oracle Clusterware Requirements with CVU
- Preparing to Install Oracle Clusterware with OUI
- Installing Oracle Clusterware with OUI
- Confirming Oracle Clusterware Function

### Verifying Oracle Clusterware Requirements with CVU

Using the following command syntax, log in as the installation owner user (oracle or crs), and start Cluster Verification Utility (CVU) to check system requirements for installing Oracle Clusterware:

```
/mountpoint/runcluvfy.sh stage -pre crsinst -n node_list
```

In the preceding syntax example, replace the variable `mountpoint` with the installation media mountpoint, and replace the variable `node_list` with the names of the nodes in your cluster, separated by commas.

For example, for a cluster with mountpoint `/mnt/dvdrom/`, and with nodes `node1`, `node2`, and `node3`, enter the following command:

```
$ /mnt/dvdrom/runcluvfy.sh stage -pre crsinst -n node1,node2,node3
```

The Oracle Clusterware preinstallation stage check verifies the following:

- **Node Reachability**: All of the specified nodes are reachable from the local node.
- **User Equivalence**: Required user equivalence exists on all of the specified nodes.
- **Node Connectivity**: Connectivity exists between all the specified nodes through the public and private network interconnections, and at least one subnet exists that connects each node and contains public network interfaces that are suitable for use as virtual IPs (VIPs).
- **Administrative Privileges**: The oracle user has proper administrative privileges to install Oracle Clusterware on the specified nodes.
- **Shared Storage Accessibility**: If specified, the OCR device and voting disk are shared across all the specified nodes.
- **System Requirements**: All system requirements are met for installing Oracle Clusterware software, including kernel version, kernel parameters, memory, swap directory space, temporary directory space, and required users and groups.

- **Kernel Packages**: All required operating system software packages are installed.

- **Node Applications**: The virtual IP (VIP), Oracle Notification Service (ONS) and Global Service Daemon (GSD) node applications are functioning on each node.

---

**Note**: Avoid changing host names after you complete the Oracle Clusterware installation, including adding or deleting domain qualifications. Nodes with changed host names must be deleted from the cluster and added back with the new name.

---

### Interpreting CVU Messages About Oracle Clusterware Setup

If the Cluster Verification Utility report indicates that your system fails to meet the requirements for Oracle Clusterware installation, then use the topics in this section to correct the problem or problems indicated in the report, and run the Cluster Verification Utility command again.

**User Equivalence Check Failed**

**Cause**: Failure to establish user equivalency across all nodes. This can be due to not creating the required users, or failing to complete secure shell (SSH) configuration properly.

**Action**: Cluster Verification Utility provides a list of nodes on which user equivalence failed. For each node listed as a failure node, review the oracle user configuration to ensure that the user configuration is properly completed, and that SSH configuration is properly completed.

**See Also**: "Creating Identical Users and Groups on Other Cluster Nodes" in Chapter 3 on page 3-3, and "Configuring SSH on All Cluster Nodes" in Chapter 2 on page 2-20 for user equivalency configuration instructions.

Use the command `su - oracle` and check user equivalence manually by running the `ssh` command on the local node with the `date` command argument using the following syntax:

```bash
$ ssh node_name date
```

The output from this command should be the timestamp of the remote node identified by the value that you use for `node_name`. If `ssh` is in the default location, the `/usr/bin` directory, then use `ssh` to configure user equivalence. You can also use `rsh` to confirm user equivalence.

If you have not attempted to use SSH to connect to the host node before running, then Cluster Verification Utility indicates a user equivalence error. If you see a message similar to the following when entering the `date` command with SSH, then this is the probable cause of the user equivalence error:

```
The authenticity of host 'node1 (140.87.152.153)' can't be established.
Are you sure you want to continue connecting (yes/no)?
```

Enter yes, and then run Cluster Verification Utility again to determine if the user equivalence error is resolved.
If ssh is in a location other than the default, /usr/bin, then Cluster Verification Utility reports a user equivalence check failure. To avoid this error, navigate to the directory $CV_HOME/cv/admin, open the file cvu_config with a text editor, and add or update the key ORACLE_SRVM_REMOTESHELL to indicate the ssh path location on your system. For example:

```
Locations for ssh and scp commands
ORACLE_SRVM_REMOTESHELL=/usr/local/bin/ssh
ORACLE_SRVM_REMOTECOPY=/usr/local/bin/scp
```

Note the following rules for modifying the cvu_config file:

- Key entries have the syntax `name=value`
- Each key entry and the value assigned to the key defines one property only
- Lines beginning with the number sign (#) are comment lines, and are ignored
- Lines that do not follow the syntax `name=value` are ignored

When you have changed the path configuration, run Cluster Verification Utility again. If ssh is in another location than the default, you also need to start OUI with additional arguments to specify a different location for the remote shell and remote copy commands. Enter `runInstaller -help` to obtain information about how to use these arguments.

---

**Note:** When you or OUI run ssh or rsh commands, including any login or other shell scripts they start, you may see errors about invalid arguments or standard input if the scripts generate any output. You should correct the cause of these errors.

To stop the errors, remove all commands from the oracle user's login scripts that generate output when you run ssh or rsh commands.

If you see messages about X11 forwarding, then complete the task "Setting Display and X11 Forwarding Configuration" on page 2-25 to resolve this issue.

If you see errors similar to the following:

```
stty: standard input: Invalid argument
stty: standard input: Invalid argument
```

These errors are produced if hidden files on the system (for example, .bashrc or .cshrc) contain stty commands. If you see these errors, then refer to Chapter 2, "Preventing Oracle Clusterware Installation Errors Caused by stty Commands" on page 2-25 to correct the cause of these errors.

---

**Node Reachability Check or Node Connectivity Check Failed**

**Cause:** One or more nodes in the cluster cannot be reached using TCP/IP protocol, through either the public or private interconnects.

**Action:** Use the command `/usr/sbin/ping address` to check each node address. When you find an address that cannot be reached, check your list of public and private addresses to make sure that you have them correctly configured. If you use vendor clusterware, then refer to the vendor documentation for assistance. Ensure that the public and private network interfaces have the same interface names on each node of your cluster.
User Existence Check or User-Group Relationship Check Failed

**Cause:** The administrative privileges for users and groups required for installation are missing or incorrect.

**Action:** Use the `id` command on each node to confirm that the `oracle` user is created with the correct group membership. Ensure that you have created the required groups, and create or modify the user account on affected nodes to establish required group membership.

**See Also:** "Creating Standard Configuration Operating System Groups and Users" in Chapter 3 for instructions about how to create required groups, and how to configure the `oracle` user.

---

**Preparing to Install Oracle Clusterware with OUI**

Before you install Oracle Clusterware with Oracle Universal Installer (OUI), use the following checklist to ensure that you have all the information you will need during installation, and to ensure that you have completed all tasks that must be done before starting to install Oracle Clusterware. Mark the box for each task as you complete it, and write down the information needed, so that you can provide it during installation.

- **Shut Down Running Oracle Processes**
  
  If you are installing Oracle Clusterware on a node that already has a single-instance Oracle Database 11g release 1 (11.1) installation, then stop the existing ASM instances. After Oracle Clusterware is installed, start up the ASM instances again. When you restart the single-instance Oracle database, the ASM instances use the Cluster Synchronization Services (CSSD) Daemon from Oracle Clusterware instead of the CSSD daemon for the single-instance Oracle database.

  You can upgrade some or all nodes of an existing Cluster Ready Services installation. For example, if you have a six-node cluster, then you can upgrade two nodes each in three upgrading sessions. Base the number of nodes that you upgrade in each session on the load the remaining nodes can handle. This is called a "rolling upgrade."

  If a Global Services Daemon (GSD) from Oracle9i Release 9.2 or earlier is running, then stop it before installing Oracle Database 11g release 1 (11.1) Oracle Clusterware by running the following command:

  ```
 $ Oracle_home/bin/gsdctl stop
  ```

  where `Oracle_home` is the Oracle Database home that is running the GSD.

  **Caution:** If you have an existing Oracle9i release 2 (9.2) Oracle Cluster Manager (Oracle CM) installation, then **do not** shut down the Oracle CM service. Shutting down the Oracle CM service prevents the Oracle Clusterware 11g release 1 (11.1) software from detecting the Oracle9i release 2 nodelist, and causes failure of the Oracle Clusterware installation.

  **Note:** If you receive a warning to stop all Oracle services after starting OUI, then run the command

  ```
 Oracle_home/bin/localconfig delete
  ```

  where `Oracle_home` is the home that is running CSS.
Preparing to Install Oracle Clusterware with OUI

Prepare for Clusterware Upgrade If You Have Existing Oracle Cluster Ready Services Software

During an Oracle Clusterware installation, if OUI detects an existing Oracle Database 10g release 1 (10.1) Cluster Ready Services (CRS), then you are given the option to perform a rolling upgrade by installing Oracle Database 11g release 1 (11.1) Oracle Clusterware on a subset of cluster member nodes.

If you intend to perform a rolling upgrade, then you should shut down the CRS stack on the nodes you intend to upgrade, and unlock the Oracle Clusterware home using the script `mountpoint/clusterware/upgrade/preupdate.sh`, which is available on the 11g release 1 (11.1) installation media.

If you intend to perform a standard upgrade, then shut down the CRS stack on all nodes, and unlock the Oracle Clusterware home using the script `mountpoint/clusterware/upgrade/preupdate.sh`.

When you run OUI and select the option to install Oracle Clusterware on a subset of nodes, OUI installs Oracle Database 11g release 1 (11.1) Oracle Clusterware software into the existing Oracle Clusterware home on the local and remote node subset. When you run the root script, it starts the Oracle Clusterware 11g release 1 (11.1) stack on the subset cluster nodes, but lists it as an inactive version.

When all member nodes of the cluster are running Oracle Clusterware 11g release 1 (11.1), then the new clusterware becomes the active version.

If you intend to install Oracle RAC, then you must first complete the upgrade to Oracle Clusterware 11g release 1 (11.1) on all cluster member nodes before you install the Oracle Database 11g release 1 (11.1) version of Oracle RAC.

Determine the Oracle Inventory location

If you have already installed Oracle software on your system, then OUI detects the existing Oracle Inventory directory from the `/etc/oraInst.loc` file, and uses this location.

If you are installing Oracle software for the first time on your system, and your system does not have an Oracle inventory, then you are asked to provide a path for the Oracle inventory, and you are also asked the name of the Oracle Inventory group (typically, `oinstall`).

See Also: The preinstallation chapter, Chapter 2 for information about creating the Oracle Inventory, and completing required system configuration

Obtain root account access

During installation, you are asked to run configuration scripts as the root user. You must run these scripts as root, or be prepared to have your system administrator run them for you. Note that these scripts must be run in sequence. If you attempt to run scripts simultaneously, then the installation will fail.

Decide if you want to install other languages

During installation, you are asked if you want translation of user interface text into languages other than the default, which is English.

Note: If the language set for the operating system is not supported by Oracle Universal Installer, then Oracle Universal Installer, by default, runs in the English language.
See Also: *Oracle Database Globalization Support Guide* for detailed information on character sets and language configuration

- **Determine your cluster name, public node names, private node names, and virtual node names for each node in the cluster**

  If you install the clusterware during installation, and are not using third-party vendor clusterware, then you are asked to provide a public node name and a private node name for each node. If you use third-party clusterware, then use your vendor documentation to complete setup of your public and private domain addresses.

  When you enter the public node name, use the primary host name of each node. In other words, use the name displayed by the `hostname` command. This node name can be either the permanent or the virtual host name.

  In addition, ensure that the following are true:

  - Determine a cluster name with the following characteristics:
    * It must be globally unique throughout your host domain.
    * It must be at least one character long and less than 15 characters long.
    * It must consist of the same character set used for host names: underscores (_), hyphens (-), and single-byte alphanumeric characters (a to z, A to Z, and 0 to 9). If you use vendor clusterware, then Oracle recommends that you use the vendor cluster name.
  
  - Determine a private node name or private IP address for each node. The private IP address is an address that is accessible only by the other nodes in this cluster. Oracle Database uses private IP addresses for internode, or instance-to-instance Cache Fusion traffic. Oracle recommends that you provide a name in the format `public_hostname-priv`. For example: `myclstr2-priv`.

  - Determine a virtual host name for each node. A virtual host name is a public node name that is used to reroute client requests sent to the node if the node is down. Oracle Database uses VIPs for client-to-database connections, so the VIP address must be publicly accessible. Oracle recommends that you provide a name in the format `public_hostname-vip`. For example: `myclstr2-vip`.

---

**Note:** The following is a list of additional information about node IP addresses:

- For the local node only, OUI automatically fills in public, private, and VIP fields. If your system uses vendor clusterware, then OUI may fill additional fields.

- Host names, private names, and virtual host names are not domain-qualified. If you provide a domain in the address field during installation, then OUI removes the domain from the address.

- Private IP addresses should not be accessible as public interfaces. Using public interfaces for Cache Fusion can cause performance problems.

---

- **Identify shared storage for Oracle Clusterware files and prepare disk partitions if necessary**
During installation, you are asked to provide paths for two files that must be shared across all nodes of the cluster, either on a shared raw device, or a shared file system file:

- The voting disk is a partition that Oracle Clusterware uses to verify cluster node membership and status.

  The voting disk must be owned by the user performing the installation (oracle or crs), and must have permissions set to 640.

- The Oracle Cluster Registry (OCR) contains cluster and database configuration information for the Oracle RAC database and for Oracle Clusterware, including the node list, and other information about cluster configuration and profiles.

  The OCR disk must be owned by the user performing the installation (crs or oracle). That installation user must have oinstall as its primary group. The OCR disk partitions must have permissions set to 640, though permissions files used with system restarts should have ownership set to root:oinstall. During installation, OUI changes ownership of the OCR disk partitions to root. Provide at least 280 MB disk space for the OCR partitions.

  If your disks do not have external storage redundancy, then Oracle recommends that you provide one additional location for the OCR disk, and two additional locations for the voting disk, for a total of five partitions (two for OCR, and three for voting disks). Creating redundant storage locations protects the OCR and voting disk in the event of a disk failure on the partitions you choose for the OCR and the voting disk.

See Also: Chapter 4

Installing Oracle Clusterware with OUI

This section provides you with information about how to use Oracle Universal Installer (OUI) to install Oracle Clusterware. It contains the following sections:

- Running OUI to Install Oracle Clusterware
- Installing Oracle Clusterware Using a Cluster Configuration File
- Troubleshooting OUI Error Messages for Oracle Clusterware

Running OUI to Install Oracle Clusterware

Complete the following steps to install Oracle Clusterware on your cluster. At any time during installation, if you have a question about what you are being asked to do, click the Help button on the OUI page.

1. Unless you have the same terminal window open that you used to set up SSH, enter the following commands:

   $ exec /usr/bin/ssh-agent $SHELL
   $ /usr/bin/ssh-add

2. Start the runInstaller command from the /Disk1 directory on the Oracle Database 11g release 1 (11.1) installation media.

3. Provide information or run scripts as root when prompted by OUI. If you need assistance during installation, click Help.
4. After you run `root.sh` on all the nodes, OUI runs the Oracle Notification Server Configuration Assistant, Oracle Private Interconnect Configuration Assistant, and Cluster Verification Utility. These programs run without user intervention.

When you have verified that your Oracle Clusterware installation is completed successfully, you can either use it to maintain high availability for other applications, or you can install an Oracle database.

If you intend to install Oracle Database 11g release 1 (11.1) with Oracle RAC, then refer to Oracle Real Application Clusters Installation Guide for Solaris Operating System. If you intend to use Oracle Clusterware by itself, then refer to the single-instance Oracle Database installation guide.

See Also: Oracle Database Oracle Clusterware and Oracle Real Application Clusters Administration and Deployment Guide for information about using cloning and node addition procedures, and Oracle Clusterware Administration and Deployment Guide for cloning Oracle Clusterware.

## Installing Oracle Clusterware Using a Cluster Configuration File

During installation of Oracle Clusterware, on the Specify Cluster Configuration page, you are given the option either of providing cluster configuration information manually, or of using a cluster configuration file. A cluster configuration file is a text file that you can create before starting OUI, which provides OUI with information about the cluster name and node names that it requires to configure the cluster.

Oracle suggests that you consider using a cluster configuration file if you intend to perform repeated installations on a test cluster, or if you intend to perform an installation on many nodes.

To create a cluster configuration file:

1. On the installation media, navigate to the directory `Disk1/response`.
2. Using a text editor, open the response file `crs.rsp`, and find the section `CLUSTER_CONFIGURATION_FILE`.
3. Follow the directions in that section for creating a cluster configuration file.

## Troubleshooting OUI Error Messages for Oracle Clusterware

The following is a list of some common Oracle Clusterware installation issues, and how to resolve them.

**PRKC-1044 Failed to check remote command execution**

**Cause:** SSH keys need to be loaded into memory, or there is a user equivalence error.

**Action:** Run the following commands to load SSH keys into memory:

```
$ exec /usr/bin/ssh-agent $SHELL
$ /usr/bin/ssh-add
```

Note that you must have the passphrase used to set up SSH. If you are not the person who set up SSH, then obtain the passphrase. Note also that the `.ssh` folder
in the user home that is performing the installation must be set with 600 permissions.

In addition, confirm group membership by entering the id command, and entering ID username. For example:

```bash
$ id
$ id oracle
```

**Incorrect permissions on partitions used for OCR or Voting Disks**

**Cause:** The user account performing the installation (oracle or crs) does not have permission to write to these partitions.

**Action:** Make the partitions writable by the user performing installation. For example, use the command `chown user` to make the selected partitions writable by the user (oracle or crs) performing the installation. During installation, these permissions are changed to root ownership.

---

**Confirming Oracle Clusterware Function**

After installation, log in as root, and use the following command syntax to confirm that your Oracle Clusterware installation is installed and running correctly:

```
crs_home/bin/crs_stat -t -v
```

For example:

```
[root@node1 ~]:/u01/app/crs/bin/crs_stat -t -v
Name a Type R/RA F/FT Target State Host
 crs....ac3.gsd application 0/5 0/0 Online Online node1
 crs....ac3.ons application 0/5 0/0 Online Online node1
 crs....ac3.vip application 0/5 0/0 Online Online node1
 crs....ac3.gsd application 0/5 0/0 Online Online node2
 crs....ac3.ons application 0/5 0/0 Online Online node2
 crs....ac3.vip application 0/5 0/0 Online Online node2
```

You can also use the command `crsctl check crs` for a less detailed system check. For example:

```
[root@node1 bin] $./crsctl check crs
Cluster Synchronization Services appears healthy
Cluster Ready Services appears healthy
Event Manager appears healthy
```
This chapter describes how to complete the postinstallation tasks after you have installed the Oracle Clusterware software. It contains the following sections:

- Required Postinstallation Tasks
- Recommended Postinstallation Tasks

**Required Postinstallation Tasks**

You must perform the following tasks after completing your installation:

- Back Up the Voting Disk After Installation
- Download and Install Patch Updates

**Back Up the Voting Disk After Installation**

After your Oracle Clusterware installation is complete and after you are sure that your system is functioning properly, make a backup of the contents of the voting disk. Use the `dd` utility. For example:

```
dd if=/dev/sda1 of=/dev/myvdisk1.bak
```

Also, make a backup copy of the voting disk contents after you complete any node additions or node deletions, and after running any deinstallation procedures.

**Download and Install Patch Updates**

Refer to the OracleMetaLink Web site for required patch updates for your installation. To download required patch updates:

1. Use a Web browser to view the OracleMetaLink Web site:
   
   https://metalink.oracle.com

2. Log in to OracleMetaLink.

   **Note:** If you are not an OracleMetaLink registered user, then click Register for MetaLink and register.

3. On the main OracleMetaLink page, click **Patches**.
4. On the Select a Patch Search Area page, click **New MetaLink Patch Search**.
5. On the Simple Search page, click Advanced.
6. On the Advanced Search page, click the search icon next to the Product or Product Family field.
7. In the Search and Select: Product Family field, enter RDBMS Server in the For field, and click Go.
8. Select RDBMS Server under the Results heading, and click Select.
   RDBMS Server appears in the Product or Product Family field. The current release appears in the Release field.
9. Select your platform from the list in the Platform field, and click Go.
10. Any available patch updates appear under the Results heading.
11. Click the number of the patch that you want to download.
12. On the Patch Set page, click View README and read the page that appears. The README page contains information about the patch set and how to apply the patches to your installation.
13. Return to the Patch Set page, click Download, and save the file on your system.
14. Use the unzip utility provided with Oracle Database 10g to uncompress the Oracle patch updates that you downloaded from OracleMetaLink. The unzip utility is located in the $ORACLE_HOME/bin directory.
15. Refer to Appendix B on page B-1 for information about how to stop database processes in preparation for installing patches.

**Recommended Postinstallation Tasks**

Oracle recommends that you complete the following tasks after installing Oracle Clusterware.

**Back Up the root.sh Script**

Oracle recommends that you back up the root.sh script after you complete an installation. If you install other products in the same Oracle home directory, then the Oracle Universal Installer (OUI) updates the contents of the existing root.sh script during the installation. If you require information contained in the original root.sh script, then you can recover it from the root.sh file copy.

**Run CVU Postinstallation Check**

After installing Oracle Clusterware, check the status of your Oracle Clusterware installation with the command cluvfy stage -post crsinst, using the following syntax:

```bash
cluvfy stage -post crsinst -n node_list [-verbose]
```
Deinstallation of Oracle Clusterware

This chapter describes how to remove Oracle Clusterware.

This chapter contains the following topics:

- Deciding When to Deinstall Oracle Clusterware
- Relocating Single-instance ASM to a Single-Instance Database Home
- Removing Oracle Clusterware

See Also: Product-specific documentation for requirements and restrictions, if you want to remove an individual product

Deciding When to Deinstall Oracle Clusterware

Remove installed components in the following situations:

- You have encountered errors during or after installing or upgrading Oracle Clusterware, and you want to re-attempt an installation.
- Your installation or upgrade stopped because of a hardware or operating system failure.
- You are advised by Oracle Support to reinstall Oracle Clusterware.
- You have successfully installed Oracle Clusterware, and you want to remove the Clusterware installation, either in an educational environment, or a test environment.
- You have successfully installed Oracle Clusterware, but you want to downgrade to a previous release.

Relocating Single-instance ASM to a Single-Instance Database Home

If you have a single-instance Oracle Database on Oracle Clusterware, and you want to remove Oracle Clusterware, then use the following syntax to add the local CSS configuration to the ASM home:

```
ASM_home/bin/localconfig add
```

For example:

```
$ cd /u01/app/asm/bin/
$./localconfig add
```
Removing Oracle Clusterware

The scripts `rootdelete.sh` and `rootdeinstall.sh` remove Oracle Clusterware from your system. After running these scripts, run Oracle Universal Installer to remove the Oracle Clusterware home. The following sections describe the scripts, and later, provide exact procedure to the removal of the Oracle Clusterware software.

About the rootdelete.sh Script

The `rootdelete.sh` script should be run from the Oracle Clusterware home on each node. It stops the Oracle Clusterware stack, removes `inittab` entries, and deletes some of the Oracle Clusterware files. It can also be used to downgrade the Oracle Cluster Registry from the existing release to a previous release. The script uses the following syntax:

```
rootdelete.sh options
```

Options:

- **paramfile**: Use a parameter file containing configuration information for the `rootdelete.sh` command. Provide the path and name of the parameter file. For example: `-paramfile /usr/oracle/cwdeletepar`.
- **local | remote**: Use `local` if you are running `rootdelete.sh` on the local node, and use `remote` if you are running the script on one of the other nodes. The local node is the one from which you run OUI (in other words, the last surviving node), and on which you run `rootdeinstall.sh`.
- **nosharedvar | sharedvar**: Use `nosharedvar` if the directory path for `ocr.loc` (in `/etc/oracle` or `/var/opt/oracle`) is not on a shared file system. Use `sharedvar` if the directory path for `ocr.loc` is in a shared location. The default is `nosharedvar`.
- **sharedhome | nosharedhome**: Use `sharedhome` if the Oracle Clusterware home is shared across the nodes. Otherwise, use `nosharedhome`. The default is `sharedhome`.
- **downgrade**: Use this option if the Oracle Clusterware is downgraded to a previous Oracle Clusterware version. The `-downgrade` option takes the following flags:
  - **-version**: Use this option to specify the version to which you want to downgrade. The default is 10.2.
  - **-force**: Use this option to force cleanup of root configuration

For example, to run the `rootdelete.sh` script from an Oracle Clusterware home in the path `/u01/app/crs`, where you are running the script on a remote node, and the `ocr.loc` file is in `/etc/oracle` on each node, enter the following command:

```
cd /u01/app/crs/install/
/rootdelete.sh remote nosharedvar
```

Example of the rootdelete.sh Parameter File

You can create a parameter file for `rootdelete.sh` to repeat deinstallation steps. You may want to do this if you intend to perform repeated reinstallations, as in a test environment. The following is an example of a parameter file for `rootdelete.sh`; terms that change relative to system configuration are indicated with italics:

```
CLUSTER_NODES=mynode1,mynode2
INVENTORY_LOCATION=u01/app/oracle/oraInventory
```
About the rootdeinstall.sh Script

The rootdeinstall.sh script should be run on the local node only, after rootdelete.sh has been run on all nodes of the cluster. Use this command either to remove the Oracle Clusterware OCR file, or to downgrade your existing installation. The rootdeinstall.sh script has the following command options:

- **paramfile**: A parameter file containing configuration information for the rootdelete.sh command
- **downgrade**: Use this option if the database is downgraded to a previous Oracle Clusterware version. Use the `-version` flag to specify the version to which you want to downgrade. The default is 10.2.

Removing Oracle Clusterware

Complete the following procedure to remove Oracle Clusterware:

1. Log in as the `oracle` user, and shut down any existing Oracle Database instances on each node, with normal or immediate priority. For example:
   
   ```
 $ Oracle_home/bin/srvctl stop database -d db_name
 $ Oracle_home/bin/srvctl stop asm -n node
 $ Oracle_home/bin/srvctl stop nodeapps -n node
   ```

2. Use Database Configuration Assistant and NETCA to remove listeners, Automatic Storage Management instances, and databases from the system. This removes the Oracle Clusterware resources associated with the listeners, Automatic Storage Management instances, and databases on the cluster.

3. On each remote node, log in as the root user, change directory to the Oracle Clusterware home, and run the rootdelete script with the options `remote nosharedvar nosharedhome`. For example:
   
   ```
 [root@node2 /] # cd /u01/app/crs/install
 [root@node2 /install] # ./rootdelete.sh remote nosharedvar nosharedhome
   ```

4. On the local node, log in as the root user, change directory to the Oracle Clusterware home, and run the rootdelete script with the options `local nosharedvar nosharedhome`. For example:
   
   ```
 [root@node1 /] # cd /u01/app/crs/install
 [root@node1 /install] # ./rootdelete.sh local nosharedvar nosharedhome
   ```

5. On the local node, run the script rootdeinstall. For example:
   
   ```
 [root@node1 install]# ./rootdeinstall.sh
   ```

6. Log in as the `oracle` user, and run Oracle Universal Installer to remove the Oracle Clusterware home. For example:
   
   ```
 $ cd /u01/app/crs/oui/bin
 $./runInstaller -deinstall -removeallfiles
   ```
Troubleshooting the Oracle Clusterware Installation Process

This appendix provides troubleshooting information for installing Oracle Clusterware.

See Also: The Oracle Database 11g Oracle RAC documentation set included with the installation media in the Documentation directory:
- Oracle Clusterware Administration and Deployment Guide
- Oracle Database Oracle Clusterware and Oracle Real Application Clusters Administration and Deployment Guide

This appendix contains the following topics:
- Install OS Watcher and RACDDT
- General Installation Issues
- Missing Operating System Packages On Solaris
- Performing Cluster Diagnostics During Oracle Clusterware Installations
- Interconnect Errors

Install OS Watcher and RACDDT

To address troubleshooting issues, Oracle recommends that you install OS Watcher, and if you intend to install an Oracle RAC database, RACDDT. You must have access to Oracle MetaLink to download OS Watcher and RACDDT.

OS Watcher (OSW) is a collection of UNIX/Linux shell scripts that collect and archive operating system and network metrics to aid Oracle Support in diagnosing various issues related to system and performance. OSW operates as a set of background processes on the server and gathers operating system data on a regular basis. The scripts use common utilities such as vmstat, netstat and iostat.

RACDDT is a data collection tool designed and configured specifically for gathering diagnostic data related to Oracle RAC technology. RACDDT is a set of scripts and configuration files that is run on one or more nodes of an Oracle RAC cluster. The main script is written in Perl, while a number of proxy scripts are written using Korn shell. RACDDT will run on all supported UNIX and Linux platforms, but is not supported on any Windows platforms.

OSW is also included in the RACDDT script file, but is not installed by RACDDT. OSW must be installed on each node where data is to be collected.

To download binaries for OS Watcher and RACDDT, go to the following URL:
Download OSW by searching for OS Watcher, and downloading the binaries from the User Guide bulletin. Installation instructions for OSW are provided in the user guide. Download RACDDT by searching for RACDDT, and downloading the binaries from the RACDDT User Guide bulletin.

### General Installation Issues

The following is a list of examples of types of errors that can occur during installation. It contains the following issues:

- An error occurred while trying to get the disks
- Failed to connect to server, Connection refused by server, or Can't open display
- Nodes unavailable for selection from the OUI Node Selection screen
- Node nodename is unreachable
- PROT-8: Failed to import data from specified file to the cluster registry
- Time stamp is in the future
- ypbindproc_domain: Domain not bound

**An error occurred while trying to get the disks**

**Cause:** There is an entry in `/etc/oratab` pointing to a non-existent Oracle home. The OUI error file should show the following error: "java.io.IOException: /home/oracle/OraHome/bin/kfod: not found" (OracleMetalink bulletin 276454.1)

**Action:** Remove the entry in `/etc/oratab` pointing to a non-existing Oracle home.

**Failed to connect to server, Connection refused by server, or Can't open display**

**Cause:** These are typical of X Window display errors on Windows or UNIX systems, where xhost is not properly configured.

**Action:** In a local terminal window, log in as the user that started the X Window session, and enter the following command:

```bash
$ xhost fully_qualified_remote_host_name
```

For example:

```bash
$ xhost somehost.example.com
```

Then, enter the following commands, where `workstation_name` is the host name or IP address of your workstation.

Bourne, Bash, or Korn shell:

```bash
$ DISPLAY=workstation_name:0.0
$ export DISPLAY
```

To determine whether X Window applications display correctly on the local system, enter the following command:

```bash
$ xclock
```

The X clock should appear on your monitor.
If the X clock appears, then close the X clock and start Oracle Universal Installer again.

Nodes unavailable for selection from the OUI Node Selection screen
Cause: Oracle Clusterware is either not installed, or the Oracle Clusterware services are not up and running.
Action: Install Oracle Clusterware, or review the status of your Oracle Clusterware. Consider restarting the nodes, as doing so may resolve the problem.

Node nodename is unreachable
Cause: Unavailable IP host
Action: Attempt the following:
1. Run the shell command `ifconfig -a`. Compare the output of this command with the contents of the `/etc/hosts` file to ensure that the node IP is listed.
2. Run the shell command `nslookup` to see if the host is reachable.
3. As the `oracle` user, attempt to connect to the node with `ssh` or `rsh`. If you are prompted for a password, then user equivalence is not set up properly. Review the section "Configuring SSH on All Cluster Nodes" on page 2-20.

PROT-8: Failed to import data from specified file to the cluster registry
Cause: Insufficient space in an existing Oracle Cluster Registry device partition, which causes a migration failure while running `rootupgrade.sh`. To confirm, look for the error "utopen:12:Not enough space in the backing store" in the log file `$ORA_CRS_HOME/log/hostname/client/ocrconfig_pid.log`.
Action: Identify a storage device that has 280 MB or more available space. Locate the existing raw device name from `/var/opt/oracle/srvConfig.loc`, and copy the contents of this raw device to the new device using the command `dd`.

Time stamp is in the future
Cause: One or more nodes has a different clock time than the local node. If this is the case, then you may see output similar to the following:
```
time stamp 2005-04-04 14:49:49 is 106 s in the future
```
Action: Ensure that all member nodes of the cluster have the same clock time.

YPBINDPROC_DOMAIN: Domain not bound
Cause: This error can occur during postinstallation testing when a node public network interconnect is pulled out, and the VIP does not fail over. Instead, the node hangs, and users are unable to log in to the system. This error occurs when the Oracle home, listener.ora, Oracle log files, or any action scripts are located on an NAS device or NFS mount, and the name service cache daemon `nscd` has not been activated.
Action: Enter the following command on all nodes in the cluster to start the nscd service:
```
/usr/sbin/svcdm enable system/name-service-cache
```

Missing Operating System Packages On Solaris
You have missing operating packages on your system if you receive error messages such as the following during Oracle Clusterware, Oracle RAC, or Oracle Database installation:
Performing Cluster Diagnostics During Oracle Clusterware Installations

Typically, errors such as these occur if you have not fully checked required operating system packages during preinstallation, and failed to confirm that all required packages were installed. Run Cluster Verification Utility (CVU), either from the shiphhome mount point (runcluvfy.sh), or from an installation directory (CRS_home/bin). CVU reports which required packages are missing.

Performing Cluster Diagnostics During Oracle Clusterware Installations

If Oracle Universal Installer (OUI) does not display the Node Selection page, then perform clusterware diagnostics by running the olsnodes -v command from the binary directory in your Oracle Clusterware home (CRS_home/bin on Linux and UNIX-based systems, and CRS_home\BIN on Windows-based systems) and analyzing its output. Refer to your clusterware documentation if the detailed output indicates that your clusterware is not running.

In addition, use the following command syntax to check the integrity of the Cluster Manager:

```
cluvfy comp clumgr -n node_list -verbose
```

In the preceding syntax example, the variable node_list is the list of nodes in your cluster, separated by commas.

Interconnect Errors

If you use more than one NIC for the interconnect, then you must use NIC bonding, or the interconnect will fail.

If you install Oracle Clusterware and Oracle RAC, then they must use the same NIC or bonded NIC cards for the interconnect.

If you use bonded NIC cards, then they must be on the same subnet.
This appendix describes how to perform Oracle Clusterware rolling upgrades. Because you must stop database processes on the nodes you intend to upgrade when you perform an Oracle Clusterware upgrade, it includes information about how to stop processes in Oracle Real Application Clusters (Oracle RAC) databases.

The instructions in this section specify a single node, and assume that you are upgrading one node at a time. To upgrade a subset of nodes together, you can specify a list of nodes (the subset), where the example commands specify a single node. For example, instead of `-n node`, specify `-n node1, node2, node3`.

This appendix contains the following topics:

- **Back Up the Oracle Software Before Upgrades**
- **Restrictions for Clusterware Upgrades to Oracle Clusterware 11g**
- **Verify System Readiness for Patchset and Release Upgrades**
- **Installing a Patch Set On a Subset of Nodes**
- **Installing an Upgrade On a Subset of Nodes**

### Back Up the Oracle Software Before Upgrades

Before you make any changes to the Oracle software, whether you intend to upgrade or patch part of the database or clusterware, or all of your cluster installation, Oracle recommends that you create a backup of the Oracle software.

### Restrictions for Clusterware Upgrades to Oracle Clusterware 11g

To upgrade existing Oracle Clusterware and Cluster Ready Services installations to Oracle Clusterware 11g, you must first upgrade the existing installations to a minimum patch level. The minimum patch level is listed in the following table:
To upgrade your Oracle Clusterware installation to the minimum patch level using a rolling upgrade, follow the directions in the Patch Readme file.

### Table B–1  Minimum Oracle Clusterware Patch Levels Required for Rolling Upgrades to 11g

<table>
<thead>
<tr>
<th>Oracle Clusterware Release</th>
<th>Minimum Patch Level Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>10g Release 2</td>
<td>10.2.0.3, or 10.2.0.2 with CRS bundle # 2 (Patch 526865)</td>
</tr>
<tr>
<td>10g Release 1</td>
<td>10.1.0.3</td>
</tr>
</tbody>
</table>

To upgrade your Oracle Clusterware installation to the minimum patch level using a rolling upgrade, follow the directions in the Patch Readme file.

**Note:** You can use the procedures in this chapter to prepare to perform rolling upgrades of Oracle Clusterware from any Oracle Clusterware 10g release 10.2 or Oracle Clusterware 11g installation to the latest patchset update. For example, you can use these procedures to prepare to upgrade from Oracle Clusterware 10.2.0.1 to 10.2.0.3.

**See Also:** Oracle Database Upgrade Guide for additional information about upgrades, and check the following site on the Oracle Technology Network for relevant information about rolling upgrades:

http://www.oracle.com/technology/deploy/availability

My Oracle Support also has an Upgrade Companion for each release that provide additional upgrade information. It is available at the following URL:

https://metalink.oracle.com/

**Verify System Readiness for Patchset and Release Upgrades**

If you are completing a patchset update of your database or clusterware, then after you download the patch software, and before you start to patch or upgrade your database, review the Patch Set Release Notes that accompany the patch to determine if your system meets the system requirements for the operating system and the hardware platform.

Use the following Cluster Verification Utility (CVU) command to assist you with system checks in preparation for starting a database patch or upgrade, where node is the node, or comma-delimited subset of nodes, that you want to check, and inventory_group is the name of the Oracle Inventory group:

`cluvfy stage -pre crsinst -n node -orainv inventory_group`

For example, to perform a system check on nodes node1, node2 and node3, and where the Oracle Inventory group is oinstall, enter the following command:

```
$ cluvfy stage -pre crsinst -n node1,node2,node3 -orainv oinstall
```

**Note:** Before you start an upgrade, Oracle recommends that you download the latest Cluster Verification Utility version from Oracle Technology Network at the following URL:

http://otn.oracle.com
Installing a Patch Set On a Subset of Nodes

To patch Oracle Clusterware, review the instructions in the Patch Set README document for additional instructions specific to the patchset.

Before you shut down any processes that are monitored by Enterprise Manager Grid Control, set a blackout in Grid Control for the processes that you intend to shut down. This is necessary so that the availability records for these processes indicate that the shutdown was planned downtime, rather than an unplanned system outage.

To patch a subset of nodes, complete the following steps:

**Note:** You must perform these steps in the order listed.

1. Change directory to the Oracle Clusterware home. As root, run the `preupdate.sh` script on the local node, and on all other nodes in the subset that you intend to upgrade. Use the following command syntax, where `clusterware_home` is the path to the existing Oracle Clusterware home, and `installation_owner` is the Oracle Clusterware installation owner:

   ```
 ./preupdate.sh -crshome clusterware_home -crsuser installation_owner
   ```

   For example:

   ```
 # cd $ORACLE_HOME/install
 # ./preupdate.sh -crshome /opt/crs -crsuser oracle
   ```

   The script output should be similar to the following:

   Shutting down Oracle Cluster Ready Services (CRS):
   Stopping resources. This could take several minutes.
   Successfully stopped CRS resources.
   Stopping CSSD.
   Shutting down CSS daemon.
   Shutdown request successfully issued.
   Shutdown has begun. The daemons should exit soon.
   Checking to see if Oracle CRS stack is down...
   Oracle CRS stack is down now.

2. Confirm that you are logged in as the Oracle Clusterware installation owner, and start Oracle Universal Installer to install the software.

   For example:

   ```
 $ whoami
 crs
 $ cd /cdrom/clusterware/
 ./runInstaller
   ```

   Provide information as prompted by the Installer.

   **Note:** You cannot change the owner of the Oracle Clusterware home.

3. During an Oracle Clusterware installation, if Oracle Universal Installer detects an existing Oracle Clusterware 10g release 1 or release 2 installation, then you are given the option to perform a rolling upgrade by installing the patch on a subset of cluster member nodes.
You can patch the entire cluster, and then run the `root.sh` patch script in a rolling fashion to make the patch update active.

4. After you select the nodes you want to upgrade, the Installer installs the patch software in the existing Oracle Clusterware home on the local and the remote subset of nodes you have selected.

OUI prompts you to run the appropriate root script for the patchset. The script starts the Oracle Clusterware stack on the upgraded subset of nodes. However, it lists it as an inactive version.

5. After you upgrade the initial node or subset of nodes, repeat steps 1 through 4 for each remaining node or subset of nodes until all nodes in the cluster have been patched, and the new version is the active version.

When all member nodes of the cluster are running the new Oracle Clusterware release, then the new clusterware becomes the active version. Otherwise, the older Oracle Clusterware release is still used.

To list the version of Oracle Clusterware that is installed on a node, enter the following command, where `CRShome` is the Oracle Clusterware home, and `nodename` is the name of the node:

```
CRShome/bin/crsctl query crs softwareversion [nodename]
```

To list the Oracle Clusterware software version that is running on a node, enter the following command, where `CRShome` is the Oracle Clusterware home:

```
CRShome/bin/crsctl query crs activeversion
```

If you intend to install or upgrade Oracle RAC, then you must first complete the upgrade to Oracle Clusterware 11g release 1 (11.1) on all cluster member nodes before you install the Oracle Database 11g release 1 (11.1) version of Oracle RAC.

6. Check with Oracle Support to confirm you have installed any recommended patchsets, bundle patches or critical patches.

To check for the latest recommended patches for Oracle Clusterware and Oracle Real Application Clusters, log on to the following site:

https://metalink2.oracle.com

Click Patches & Updates, and click Oracle Database from the Recommended Patches list. Provide information as prompted.

### Installing an Upgrade On a Subset of Nodes

To upgrade an Oracle Clusterware release, you must shut down all Oracle Database instances on the subset of nodes you want to upgrade before modifying the Oracle software. Review the instructions in the release upgrade README document for additional instructions specific to the upgrade.

Before you shut down any processes that are monitored by Enterprise Manager Grid Control, set a blackout in Grid Control for the processes that you intend to shut down. This is necessary so that the availability records for these processes indicate that the shutdown was planned downtime, rather than an unplanned system outage.

To shut down Oracle processes and upgrade a subset of nodes, complete the following steps:
1. Shut down any processes that may be accessing a database on each node you intend to upgrade. For example, shut down Oracle Enterprise Manager Database Control.

2. Shut down all Oracle RAC instances on the nodes you intend to upgrade. To shut down an Oracle RAC instance for a database, enter the following command:

   ```bash
 $ ORACLE_HOME/bin/srvctl stop instance -d db_name -i inst_name
   ```

3. Shut down all ASM instances on all nodes you intend to upgrade. To shut down an ASM instance, enter the following command, where `ASM_home` is the ASM home location, and `node` is the name of the node where the ASM instance is running:

   ```bash
 $ ASM_home/bin/srvctl stop asm -n node
   ```

   **Note:** If you shut down ASM instances, then you must first shut down all database instances on the nodes you intend to upgrade that use ASM, even if these databases run from different Oracle homes.

4. Stop all listeners on the node. To shut down listeners on the node, enter the following command, where `nodename` is the name of the node, and the listener is running from the ASM home:

   ```bash
 $ ASM_home/bin/srvctl stop listener -n nodename
   ```

5. Stop all node applications on all nodes. To stop node applications running on a node, enter the following command, where `node` is the name of the node where the applications are running:

   ```bash
 $ ORACLE_HOME/bin/srvctl stop nodeapps -n node
   ```

6. Change directory to the Oracle Clusterware home. As root, run the `preupdate.sh` script on the local node, and on all other nodes in the subset that you intend to upgrade. Use the following command syntax, where `clusterware_home` is the path to the existing Oracle Clusterware or Cluster Ready Services home, and `installation_owner` is the Oracle Clusterware installation owner:

   ```bash
 ./preupdate.sh -crshome clusterware_home -crsuser installation_owner
   ```

   For example:

   ```bash
 # cd $ORACLE_HOME/install
 # ./preupdate.sh -crshome /opt/crs -crsuser oracle
   ```

   **The script output should be similar to the following:**

   Shutting down Oracle Cluster Ready Services (CRS):
   Stopping resources. This could take several minutes.
   Successfully stopped CRS resources.
   Stopping CSSD.
   Shutting down CSS daemon.
   Shutdown request successfully issued.
   Shutdown has begun. The daemons should exit soon.
Checking to see if Oracle CRS stack is down...
Oracle CRS stack is down now.

7. Confirm that you are logged in as the Oracle Clusterware installation owner, and start Oracle Universal Installer to install the software.

For example:

$ whoami
crs
$ cd /cdrom/clusterware/
./runInstaller

Provide information as prompted by the Installer.

Note: You cannot change the owner of the Oracle Clusterware home.

8. During an Oracle Clusterware installation, if Oracle Universal Installer detects an existing Oracle Clusterware 10g release 1 or release 2 installation, then you are given the option to perform a rolling upgrade by installing Oracle Clusterware 11g release 1 on a subset of cluster member nodes.

By default, all the cluster member nodes are checked for upgrade. To perform a rolling upgrade of a subset of nodes, uncheck the cluster member nodes you do not want to upgrade on the Specify Hardware Cluster Installation Mode installation screen.

9. After you select the nodes you want to upgrade, the Installer installs the Oracle Clusterware 11g release 1 software in the existing Oracle Clusterware home on the local and the remote subset of nodes you have selected.

OUI prompts you to run the appropriate root script for the release or patchset. The script starts the Oracle Clusterware 11g release 1 stack on the upgraded subset of nodes. However, it lists it as an inactive version.

10. After you upgrade the initial node or subset of nodes, repeat steps 1 through 10 for each remaining node or subset of nodes until all nodes in the cluster have been upgraded and the new version is the active version.

When all member nodes of the cluster are running the new Oracle Clusterware release, then the new clusterware becomes the active version. Otherwise, the older Oracle Clusterware release is still used.

To list the version of Oracle Clusterware that is installed on a node, enter the following command, where \texttt{CRShome} is the Oracle Clusterware home, and \texttt{nodename} is the name of the node:

\[
\texttt{CRShome/bin/crsctl query crs softwareversion [nodename]}
\]

To list the Oracle Clusterware software version that is running on a node, enter the following command, where \texttt{CRShome} is the Oracle Clusterware home:

\[
\texttt{CRShome/bin/crsctl query crs activeversion}
\]

If you intend to install or upgrade Oracle RAC, then you must first complete the upgrade to Oracle Clusterware 11g release 1 (11.1) on all cluster member nodes before you install the Oracle Database 11g release 1 (11.1) version of Oracle RAC.

11. Check with Oracle Support, and apply any recommended patchsets, bundle patches or critical patches.
To check for the latest recommended patches for Oracle Clusterware and Oracle Real Application Clusters, log on to the following site:

https://metalink2.oracle.com

Click **Patches & Updates**, and click Oracle Database from the Recommended Patches list. Provide information as prompted.
## Numerics

64-bit checking system architecture, 2-8

### A

architecture
- checking system architecture, 2-8
ASM
- and multiple databases, 3-6
- characteristics of failure groups, 5-13
- checking disk availability, 5-16
- creating the asmdba group, 3-7
disk groups, 5-11
displaying attached disks, 5-16
failure groups, 5-11
- examples, 5-13
- identifying, 5-13
identifying available disks, 5-16
identifying disks, 5-16
number of instances on each node, 1-5, 5-1
OSDBA group for ASM, 3-6
- recommendations for disk groups, 5-11
- space required for preconfigured database, 5-12
storage option for data files, 5-2
asm group
- creating, 3-7
asmdba group
- creating, 3-7
authorized problem analysis report
See APAR
Automatic Storage Management storage option for data files, 4-1

### B

Bash shell
- default user startup file, 2-27
- setting shell limits, 2-29
Bourne shell
- default user startup file, 2-27
- setting shell limits, 2-29

### C

C shell
- default user startup file, 2-27
- setting shell limits, 2-29

## Index

default user startup file, 2-27
setting shell limits, 2-29
Central Inventory, 3-5
- about, 2-4
See also oraInventory
changing host names, 6-2
checking existence of the nobody user, 3-2, 3-9
chmod command, 4-7, 5-10
chown command, 4-7, 5-10
ccluster configuration file, 6-8
ccluster file system
- single-instance storage option for data files, 4-2
- storage option for data files, 4-1, 5-2
ccluster name
- requirements for, 6-6
ccluster nodes
- private node names, 6-6
- public node names, 6-6
- specifying uids and gids, 3-3, 3-10
- virtual node names, 6-6
Cluster Ready Services
- upgrading, 6-4
Cluster Synchronization Services, 6-4
Cluster Verification Utility
- hardware and operating system setup stage verification, 2-33, 5-17
- Oracle Clusterware configuration check, 6-1
- shared storage area check, 4-3, 5-4
- user equivalency troubleshooting, 6-2
cclusterware diagnostics, A-4
COBOL, 2-15
ccommands
- chmod, 5-10
- chown, 5-10
- fdisk, 5-16
groupadd, 3-10
- id, 3-2, 3-3, 3-9, 3-10
- lsdev, 5-16
- mkdir, 5-10
- passwd, 3-4, 3-11
- umask, 2-26, 2-27, 3-12
- useradd, 2-6, 3-3, 3-8, 3-9, 3-11
- usermod, 3-9
cconfiguring kernel parameters, 2-17
ccontrol files
- raw devices for, 5-16
creating partitions, 5-16
CRS
raw device for OCR, 4-8
CSS, 6-4
OCCSD, 6-4
custom database
failure groups for ASM, 5-13
requirements when using ASM, 5-12
Custom installation type
reasons for choosing, 3-5

D
data files
creating separate directories for, 4-7, 5-9
setting permissions on data file directories, 4-7, 5-10
single-instance database storage options, 4-2
storage options, 4-1, 5-2
data loss
minimizing with ASM, 5-13
database files
supported storage options, 5-2
databases
ASM requirements, 5-12
dba group
and SYSDBA privilege, 3-2, 3-5
creating, 3-7, 3-8
creating on other nodes, 3-3, 3-10
description, 3-2, 3-5
default file mode creation mask
setting, 2-26, 2-27, 3-12
device names
IDE disks, 5-16
SCSI disks, 5-16
df command, 2-28
diagnostics, A-4
Direct NFS
disabling, 5-9
enabling, 5-8
for datafiles, 5-6
directory
creating separate data file directories, 4-7, 5-9
permission for data file directories, 4-7, 5-10
disk group
ASM, 5-11
recommendations for ASM disk groups, 5-11
disk space
checking, 2-8
requirements for preconfigured database in
ASM, 5-12
disks
checking availability for ASM, 5-16
displaying attached disks, 5-16
raw voting disk, 4-8
DISPLAY environment variable
setting, 2-28
displaying attached disks, 5-16

E
emulator
installing from X emulator, 2-2
environment
configuring for oracle user, 2-26
environment variables
DISPLAY, 2-28
removing from shell startup file, 2-27
SHELL, 2-27
TEMP and TMPDIR, 2-8, 2-28
error
X11 forwarding, 2-25
errors
X11 forwarding, 2-24
/etc/security/limits.so file, 2-29
/etc/system file, 2-18
EXAMPLE tablespace
raw devices for, 5-15
examples
ASM failure groups, 5-13
external jobs
UNIX user required for, 3-2, 3-5
extjob executable
UNIX user required for, 3-2, 3-5

F
failover
of single-instance databases using Oracle
Clusterware, 4-2
failure group
ASM, 5-11
characteristics of ASM failure group, 5-13
examples of ASM failure groups, 5-13
fdisk command, 5-16
file mode creation mask
setting, 2-26, 2-27, 3-12
file system
storage option for data files, 4-1, 5-2
storage option for single instance data files, 4-2
files
$ORACLE_HOME/lib/libnfsodm.so, 5-8
$ORACLE_HOME/lib/libodm.so, 5-8
.bash_profile, 2-27
ctrl files
raw devices for, 5-16
editing shell startup file, 2-27
/etc/security/limits.so, 2-29
/etc/system, 2-18
.login, 2-27
password file
raw devices for, 5-16
.profile, 2-27
redo log files
raw devices for, 5-16
SPFILE
raw devices for, 5-16
SPFILE file
raw devices for, 5-16
filesets, 2-13
FORTRAN, 2-15

GCC

gcc
  required for ODBC, 2-15
getconf command, 2-8
gid
  identifying existing, 3-3, 3-10
  specifying, 3-3, 3-10
  specifying on other nodes, 3-3, 3-10
globalization
  support for, 6-5
group IDs
  identifying existing, 3-3, 3-10
  specifying, 3-3, 3-10
  specifying on other nodes, 3-3, 3-10
groups
  checking for existing oinstall group, 2-4
  creating identical groups on other nodes, 3-3, 3-10
  creating the asm group, 3-7
  creating the asmdba group, 3-7
  creating the dba group, 3-7
  creating the oinstall group, 2-4
  creating the oper group, 3-7
  specifying when creating users, 3-3, 3-10
UNIX OSDBA group (dba), 3-2, 3-5
UNIX OSOPER group (oper), 3-6
using NIS, 3-1, 3-3, 3-4, 3-10

H

hardware requirements, 2-7
host names
  changing, 6-2

I

id command, 3-2, 3-3, 3-9, 3-10
IDE disk device names, 5-16
IDE disks
  device names, 5-16
  identifying disks for ASM, 5-16
installation
  and globalization, 6-5
  using cluster configuration file, 6-8
installation types
  and ASM, 5-12
instfix command, 2-17
interconnect
  and UDP, 4-5
lsdev command, 5-16

K

kernel parameters, 2-17
  checking on Solaris, 2-17, 2-18
  making changes persist on Solaris, 2-18
Korn shell
  default user startup file, 2-27
  setting shell limits, 2-29
ksh
  See Korn shell

L

libnfsodm10.so, 5-8
libodm10.so, 5-8
limits.so file, 2-29
.login file, 2-27
lsdev command, 5-16
LVM
  recommendations for ASM, 5-11

M

mask
  setting default file mode creation mask, 2-26, 2-27, 3-12
maxuprc
  shell limit on Solaris, 2-29
memory requirements, 2-7
mkdir command, 4-7, 5-10
mode
  setting default file mode creation mask, 2-26, 2-27, 3-12
multiple databases
  and ASM, 3-6
multiple oracle homes, 2-6, 4-8, 5-10

N

Network Information Services
  See NIS
NFS, 4-6, 5-9
  and data files, 5-6
  and Oracle Clusterware files, 5-5
  buffer size parameters, 4-6
  buffer size parameters for, 5-9
  Direct NFS, 5-6
  for datafiles, 5-6
  rsize, 4-6, 5-9
NIS
  alternative to local users and groups, 3-1, 3-2, 3-4, 3-6
  nobody user
    checking existence of, 3-2, 3-9
    description, 3-2, 3-5
  noexec_user_stack, 2-17

O

OCCSD, 6-4
OCR
mirroring, 4-4
raw device for, 4-8
OCR. See Oracle Cluster Registry
ODBC
driver for, 2-15
oinstall
and oraInst.loc, 2-4
oinstall group
checking for existing, 2-4
creating, 2-4
creating on other nodes, 3-3, 3-10
description, 2-3
olsnodes command, A-4
oper group
and SYSOPER privilege, 3-6
creating, 3-7
creating on other nodes, 3-3, 3-10
description, 3-6
operating system
checking version of Solaris, 2-15
operating system requirements, 2-13
Oracle base directory
minimum disk space for, 2-7
Oracle Cluster Registry
configuration of, 6-7
mirroring, 5-5
partition sizes, 4-4
See OCR
Oracle Clusterware
and single-instance databases, 4-2
and upgrading ASM instances, 1-5, 5-1
installing, 6-1
installing with Oracle Universal Installer, 6-7
raw device for voting disk, 4-8
rolling upgrade of, 6-5
upgrading, 4-4
Oracle Database
creating data file directories, 4-7, 5-9
data file storage options, 4-1, 5-2
privileged groups, 3-2, 3-5
requirements with ASM, 5-12
single instance data file storage options, 4-2
supported storage options for, 5-1
Oracle Disk Manager
and Direct NFS, 5-8
Oracle Inventory Group
and Central Inventory (oraInventory), 2-4
Oracle Inventory group
checking for existing, 2-4
creating, 2-4, 2-5
creating on other nodes, 3-3, 3-10
description, 2-3
Oracle Notification Server Configuration Assistant, 6-8
Oracle patch updates, 7-1
Oracle Private Interconnect Configuration Assistant, 6-8
Oracle RAC
configuring disks for raw devices, 5-15
Oracle Real Application Clusters
shared storage device setup, 5-15
Oracle Software Owner user
configuring environment for, 2-26
creating, 2-5, 2-6, 3-8
creating on other nodes, 3-3, 3-10
description, 2-3, 3-5
determining default shell, 2-27
required group membership, 2-3, 3-5
setting shell limits for, 2-29
Oracle Universal Installer
and Oracle Clusterware, 6-7
Oracle Upgrade Companion, 2-1
oracle user
configuring environment for, 2-26
creating, 2-5, 2-6, 3-8
creating on other nodes, 3-3, 3-10
description, 2-3, 3-5
determining default shell, 2-27
required group membership, 2-3, 3-5
setting shell limits for, 2-29
ORACLE_BASE environment variable
removing from shell startup file, 2-27
ORACLE_HOME environment variable
removing from shell startup file, 2-27
ORACLE_SID environment variable
removing from shell startup file, 2-27
OracleMetaLink, 7-1
oraInst.loc
and Central Inventory, 2-4
contents of, 2-4
oraInventory, 3-5
creating, 2-5
permissions for, 2-7
oraInventory directory
and Oracle Inventory Group, 2-4
permissions for, 2-5
OSASM
and multiple databases, 3-6
and SYSAWM, 3-6
OSASM group
creating, 3-7
OSDBA group
and SYSDBA privilege, 3-2, 3-5
creating, 3-7
creating on other nodes, 3-3, 3-10
description, 3-2, 3-5
for ASM, 3-6
OSDBA group for ASM
creating, 3-7
OSOPER group
and SYSOOPER privilege, 3-6
creating, 3-7
creating on other nodes, 3-3, 3-10
description, 3-6
OUI
see Oracle Universal Installer
packages
checking on Solaris, 2-15
parameters
   UDP and interconnect, 4-5
partition
   using with ASM, 5-11
partitions
   creating, 5-15, 5-16
   creating raw partitions, 4-8
   required sizes for raw devices, 4-8
passwd command, 3-4, 3-11
password file
   raw devices for, 5-16
patch updates
   download, 7-1
   install, 7-1
   OracleMetaLink, 7-1
patchadd command, 2-17
patches
   download location for Solaris, 2-17
   PC X server
      installing from, 2-2
permissions
   for data file directories, 4-7, 5-10
   oraInventory, 2-7
   oraInventory directory, 2-5
physical RAM requirements, 2-7
pkginfo command, 2-15
postinstallation
   patch download and install, 7-1
   root.sh back up, 7-2
preconfigured database
   ASM disk space requirements, 5-12
   requirements when using ASM, 5-12
preinstallation
   shared storage device creation, 5-15
privileged groups
   for Oracle Database, 3-2, 3-5
Pro*C/C++
   patches required on Solaris, 2-16
Pro*COBOL, 2-15
Pro*FORTRAN, 2-15
process.max-sem-nsems
   recommended value for Solaris, 2-19
processor
   checking system architecture, 2-8
.profile file, 2-27
program technical fix
   See PTF
programming language
   for Oracle RAC databases, 2-15
project.max-sem-ids
   recommended value for Solaris, 2-18
project.max-shm-ids
   recommended value for Solaris, 2-19
project.max-shm-memory
   recommended value for Solaris, 2-19

RAID

and mirroring OCR and voting disk, 4-4
and mirroring Oracle Cluster Registry and voting disk, 5-5
kernel packages for, 2-14
recommended ASM redundancy level, 5-12
RAM requirements, 2-7
raw device
   for OCR, 4-8
   for SPFILE, 5-16
   for SPFILE file, 5-16
   for voting disk, 4-8
raw device sizes, 4-8
raw devices
   creating partitions, 5-16
   creating partitions on, 5-15
   creating raw partitions, 4-8
   for control files, 5-16
   for EXAMPLE tablespace, 5-15
   for password file, 5-16
   for redo log files, 5-16
   for SYSAUX tablespace, 5-15
   for SYSTEM tablespace, 5-15
   for TEMP tablespace, 5-15
   for UNDOTBS tablespace, 5-15
   for USER tablespace, 5-15
   required sizes, 4-8
   storage option for data files, 4-1, 5-2
Real Application Clusters
   See Oracle Real Application Clusters
reboot command, 2-18
recovery files
   supported storage options, 5-2
   redo log files
      raw devices for, 5-16
   redundancy level
      and space requirements for preconfigured database, 5-12
requirements, 5-12
   hardware, 2-7
resource control
   process.max-sem-nsems, 2-19
   project.max-sem-ids, 2-18
   project.max-shm-ids, 2-19
   project.max-shm-memory, 2-19
rlim_fd_max
   shell limit on Solaris, 2-29
rolling upgrade
   Oracle Clusterware, 6-5
root user
   logging in as, 2-2
   root.sh, 6-8
   back up, 7-2
   running, 6-5
rsize parameter, 4-6, 5-9

S

scripts
   root.sh, 6-5
SCSI disks
device names, 5-16
security
  dividing ownership of Oracle software, 3-4
seminfo_semmni parameter
  recommended value on Solaris, 2-17
seminfo_semmnms parameter
  recommended value on Solaris, 2-17
seminfo_semmsl parameter
  recommended value on Solaris, 2-17
seminfo_semvmx parameter
  recommended value on Solaris, 2-17
semni parameter
  recommended value on Solaris, 2-17
semmns parameter
  recommended value on Solaris, 2-17
semmsl parameter
  recommended value on Solaris, 2-17
semvmx parameter
  recommended value on Solaris, 2-17
setting shell limits, 2-29
shared storage devices
  configuring for datafiles, 5-15
shell
  determining default shell for oracle user, 2-27
  SHELL environment variable
    checking value of, 2-27
  shell limits, 2-29
    setting on Solaris, 2-29
  shell startup file
    editing, 2-27
    removing environment variables, 2-27
shminfo_shmmax parameter
  recommended value on Solaris, 2-17
shminfo_shmmni parameter
  recommended value on Solaris, 2-17
shmax parameter
  recommended value on Solaris, 2-17
shmmni parameter
  recommended value on Solaris, 2-17
software requirements, 2-13
  checking software requirements, 2-15
Solaris
  checking kernel parameters, 2-17, 2-18
  checking version, 2-15
  font packages for Java, 2-14
  making kernel parameter changes persist, 2-18
  patch download location, 2-17
  setting shell limits, 2-29
  Sun Cluster requirement, 2-15
SPFILE
  raw devices for, 5-16
SSH
  home directory permissions and, 2-22
  ssh
    and X11 Forwarding, 2-25
Standard Edition Oracle Database
  supported storage options for, 5-1
  startup file
    for shell, 2-27
storage
  NFS, 4-6, 4-7
SAN, 4-7
storage options
  for Enterprise Edition installations, 5-1
  for Standard Edition installations, 5-1
Sun Cluster
  patches required on Solaris, 2-16
  requirement on Solaris, 2-15
  supported storage options, 5-2
swap space
  requirements, 2-7
SYSASM
  and OSASM, 3-6
SYSAUX tablespace
  raw devices for, 5-15
SYSDBA
  using database SYSDBA on ASM deprecated, 3-6
SYSDBA privilege
  associated UNIX group, 3-2, 3-5
sysdef command, 2-17, 2-18
SYSOPER privilege
  associated UNIX group, 3-6
system architecture
  checking, 2-8
  system file, 2-18
SYSTEM tablespace
  raw devices for, 5-15
T
tcsh shell
  setting shell limits, 2-29
TEMP environment variable
  setting, 2-28
TEMP tablespace
  raw devices for, 5-15
temporary directory, 2-8
  temporary disk space
    checking, 2-8
    freeing, 2-8
    requirements, 2-7
/tmp directory
  checking space in, 2-8
  freeing space in, 2-8
TMPDIR environment variable, 2-8
  setting, 2-28
troubleshooting
  user equivalency, 6-2
U
UDP, 4-5
UDP parameter
  udp_recv_hiwat, 4-5
  udp_xmit_hiwat, 4-5
udp_recv_hiwat
  recommended setting for, 4-5
udp_xmit_hiwat
  recommended setting for, 4-5
uid
identifying existing, 3-3, 3-10
specifying, 3-3, 3-10
specifying on other nodes, 3-3, 3-10
umask command, 2-26, 2-27, 3-12
uname command, 2-15
UNDOTBS tablespace
raw devices for, 5-15
UNIX commands
chmod, 4-7
chown, 4-7
getconf, 2-8
instfix, 2-17
isainfo, 2-8
mkdir, 4-7
patchadd, 2-17
pkginfo, 2-15
reboot, 2-18
swap, 2-8
swapon, 2-8
sysdef, 2-17, 2-18
uname, 2-15
xhost, 2-2
xterm, 2-2
UNIX groups
oinstall, 2-3
OSDBA (dba), 3-2, 3-5
OSOPER (oper), 3-6
required for oracle user, 2-3, 3-5
using NIS, 3-2, 3-6
UNIX users
nobody, 3-2, 3-5
oracle, 2-3, 3-5
required for external jobs, 3-2, 3-5
unprivileged user, 3-2, 3-5
using NIS, 3-2, 3-6
UNIX workstation
installing from, 2-2
unprivileged user
nobody user, 3-2, 3-5
upgrade
of Cluster Ready Services, 6-4
of Oracle Clusterware, 6-5
upgrades, 2-1
upgrading
and existing ASM instances, 1-5, 5-1
and OCR partition sizes, 4-4
and voting disk partition sizes, 4-4
user equivalence
testing, 6-2
user IDs
identifying existing, 3-3, 3-10
specifying, 3-3, 3-10
specifying on other nodes, 3-3, 3-10
USER tablespace
raw devices for, 5-15
useradd command, 2-6, 3-3, 3-8, 3-9, 3-11
users
checking existence of the nobody user, 3-2, 3-9
creating identical users on other nodes, 3-3, 3-10
creating the oracle user, 2-5, 2-6, 3-8
Oracle Software Owner user (oracle), 2-3, 3-5
setting shell limits for, 2-29
setting shell limits for users, 2-29
specifying groups when creating, 3-3, 3-10
UNIX nobody user, 3-2, 3-5
using NIS, 3-1, 3-3, 3-4, 3-10

V
voting disk
configuration of, 6-7
mirroring, 4-4, 5-5
raw device for, 4-8
voting disks, 4-2
partition sizes, 4-4
requirement of absolute majority of, 4-2

W
wsize, 4-6, 5-9
wsize parameter, 4-6, 5-9

X
X emulator
installing from, 2-2
X window system
enabling remote hosts, 2-2
X11 forwarding
error, 2-25
X11 forwarding errors, 2-24
xhost command, 2-2
xterm command, 2-2