Oracle® Clusterware
Installation Guide
11g Release 1 (11.1) for HP-UX
B28259-09

December 2008
Preface.. ix
 Intended Audience.. ix
 Documentation Accessibility... ix
 Related Documents ... x
 Conventions ... xi

What's New in Oracle Clusterware Installation and Configuration? .. xiii
 Changes in Installation Documentation.. xiii
 Enhancements and New Features for Installation.. xiv
 Verify System Requirements ... 1-1
 Check Network Requirements .. 1-2
 Check Operating System Packages.. 1-2
 Set Kernel Parameters .. 1-2
 Configure Groups and Users ... 1-3
 Create Directories ... 1-3
 Configure Oracle Installation Owner Shell Limits ... 1-3
 Configure SSH ... 1-4
 Check Existing SSH Configuration on the System ... 1-4
 Configure SSH on Cluster Member Nodes .. 1-4
 Enable SSH User Equivalency on Cluster Member Nodes .. 1-4
 Create Storage ... 1-4
 Create Disk Partitions for ASM Files OCR Disks, and Voting Disks .. 1-4
 Verify Oracle Clusterware Requirements with CVU ... 1-8
 Install Oracle Clusterware Software .. 1-8
 Prepare the System for Oracle RAC and ASM .. 1-9
 Mark ASM Disk Partitions .. 1-9
 Reviewing Upgrade Best Practices ... 2-1
 Logging In to a Remote System as root Using X Terminal .. 2-2
 Overview of Groups and Users for Oracle Clusterware Installations ... 2-3
 Creating Groups and Users for Oracle Clusterware ... 2-3
 Understanding the Oracle Inventory Group ... 2-4
 Understanding the Oracle Inventory Directory ... 2-4
 Determining If the Oracle Inventory and Oracle Inventory Group Exists .. 2-4
 Creating the Oracle Inventory Group If an Oracle Inventory Does Not Exist ... 2-5
 Creating the Oracle Clusterware User ... 2-6
Configuring Disks for Database Files on Raw Devices

- Required Postinstallation Tasks
 - Installing Oracle Clusterware Using a Cluster Configuration File
 - Running OUI to Install Oracle Clusterware
 - Interpreting CVU Messages About Oracle Clusterware Setup
 - Desupport of the Database Configuration Assistant Raw Device Mapping File
 - Create the Database Configuration Assistant Raw Device Mapping File
 - Configuring Shared Raw Logical Volumes With HP Serviceguard Extension

- Identifying Partitions and Configuring Raw Devices for Database Files
 - Identifying Partitions and Configuring Raw Devices for Database Files Without HP Serviceguard Extension

- Checking NFS Mount Buffer Size Parameters for Clusterware

- Creating Required Directories for Oracle Database Files on Shared File Systems
 - Requirements for Using a File System for Oracle Database Files
 - Deciding to Use NFS for Data Files
 - Deciding to Use Direct NFS for Datafiles
 - Enabling Direct NFS Client Oracle Disk Manager Control of NFS
 - Disabling Direct NFS Client Oracle Disk Management Control of NFS
 - Checking NFS Mount Buffer Size Parameters for Oracle RAC
 - Creating Required Directories for Oracle Database Files on Shared File Systems

- Checking for Available Shared Storage with CVU
 - Checking for Available Shared Storage with CVU

- Choosing a Storage Option for Oracle Database Files

- Configuring Storage for Oracle Clusterware Files on Shared Storage Devices
 - Planning Your Shared Storage Device Creation Strategy
 - Identifying Required Shared Partitions for Database Files
 - Desupport of the Database Configuration Assistant Raw Device Mapping File

- Configuring Storage for Oracle Clusterware Files on Raw Devices
 - Identifying Required Raw Partitions for Clusterware Files
 - Disabling Operating System Activation of Shared Volume Groups
 - Configuring Raw Disk Devices Without HP Serviceguard Extension
 - Configuring Shared Raw Logical Volumes With HP Serviceguard Extension
 - Create the Database Configuration Assistant Raw Device Mapping File

- Reviewing Storage Options for Oracle Database and Recovery Files

- Overview of Oracle Database and Recovery File Options
 - After You Have Selected Disk Storage Options

- Checking for Available Shared Storage with CVU

- Choosing a Storage Option for Oracle Database Files

- Configuring Storage for Oracle Database Files on a Supported Shared File System
 - Requirements for Using a File System for Oracle Database Files
 - Deciding to Use NFS for Data Files
 - Deciding to Use Direct NFS for Datafiles
 - Enabling Direct NFS Client Oracle Disk Manager Control of NFS
 - Disabling Direct NFS Client Oracle Disk Management Control of NFS
 - Checking NFS Mount Buffer Size Parameters for Oracle RAC
 - Creating Required Directories for Oracle Database Files on Shared File Systems

- Configuring Disks for Automatic Storage Management
 - Identifying Storage Requirements for Automatic Storage Management
 - Using an Existing Automatic Storage Management Disk Group
 - Configuring Disks for Automatic Storage Management

- Configuring Storage for Oracle Database Files on Shared Storage Devices
 - Planning Your Shared Storage Device Creation Strategy
 - Identifying Required Shared Partitions for Database Files
 - Desupport of the Database Configuration Assistant Raw Device Mapping File

- Configuring Disks for Database Files on Raw Devices
 - Identifying Partitions and Configuring Raw Devices for Database Files
 - Creating the Database Configuration Assistant Raw Device Mapping File
 - Desupport of the Database Configuration Assistant Raw Device Mapping File

- Checking the System Setup with CVU

- Verifying Oracle Clusterware Requirements with CVU
 - Interpreting CVU Messages About Oracle Clusterware Setup

- Preparing to Install Oracle Clusterware with OUI

- Installing Oracle Clusterware with OUI
 - Running OUI to Install Oracle Clusterware
 - Installing Oracle Clusterware Using a Cluster Configuration File
 - Troubleshooting OUI Error Messages for Oracle Clusterware

- Confirming Oracle Clusterware Function

- Required Postinstallation Tasks
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–1</td>
<td>HP-UX PA-RISC (64-Bit) Requirements</td>
<td>2-14</td>
</tr>
<tr>
<td>2–2</td>
<td>HP-UX Itanium Requirements</td>
<td>2-15</td>
</tr>
<tr>
<td>2–3</td>
<td>Recommended HP-UX Kernel Parameter Values</td>
<td>2-18</td>
</tr>
<tr>
<td>4–1</td>
<td>Supported Storage Options for Oracle Clusterware</td>
<td>4-2</td>
</tr>
<tr>
<td>4–2</td>
<td>Shared File System Volume Size Requirements</td>
<td>4-5</td>
</tr>
<tr>
<td>4–3</td>
<td>Raw Partitions Required for Oracle Clusterware Files</td>
<td>4-7</td>
</tr>
<tr>
<td>4–4</td>
<td>Raw Disk Devices Required for Database Files on HP-UX</td>
<td>4-8</td>
</tr>
<tr>
<td>4–5</td>
<td>Raw Logical Volumes Required for Database Files on HP-UX</td>
<td>4-15</td>
</tr>
<tr>
<td>5–1</td>
<td>Supported Storage Options for Oracle Database and Recovery Files</td>
<td>5-3</td>
</tr>
<tr>
<td>5–2</td>
<td>Shared File System Volume Size Requirements</td>
<td>5-6</td>
</tr>
<tr>
<td>5–3</td>
<td>Shared Devices or Logical Volumes Required for Database Files on HP-UX</td>
<td>5-17</td>
</tr>
<tr>
<td>5–4</td>
<td>Raw Disk Devices Required for Database Files on HP-UX</td>
<td>5-18</td>
</tr>
<tr>
<td>B–1</td>
<td>Minimum Oracle Clusterware Patch Levels Required for Rolling Upgrades to 11g</td>
<td>B-2</td>
</tr>
</tbody>
</table>
Oracle Clusterware Installation Guide for HP-UX explains how to install and configure Oracle Clusterware, and how to configure a server and storage in preparation for an Oracle Real Application Clusters installation.

This preface contains the following topics:

- Intended Audience
- Documentation Accessibility
- Related Documents
- Conventions

Intended Audience

Oracle Clusterware Installation Guide for HP-UX provides configuration information for network and system administrators, and database installation information for database administrators (DBAs) who install and configure Oracle Clusterware.

For customers with specialized system roles who intend to install Oracle Real Application Clusters (Oracle RAC), this book is intended to be used by system administrators, network administrators, or storage administrators to complete the process of configuring a system in preparation for an Oracle Clusterware installation, and complete all configuration tasks that require operating system root privileges.

When configuration and installation of Oracle Clusterware is completed successfully, a system administrator should only need to provide configuration information and to grant access to the database administrator to run scripts as root during Oracle RAC installation.

This guide assumes that you are familiar with Oracle database concepts. For additional information, refer to books in the Related Documents list.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
To reach AT&T Customer Assistants, dial 711 or 1.800.855.2880. An AT&T Customer Assistant will relay information between the customer and Oracle Support Services at 1.800.223.1711. Complete instructions for using the AT&T relay services are available at http://www.consumer.att.com/relay/tty/standard2.html. After the AT&T Customer Assistant contacts Oracle Support Services, an Oracle Support Services engineer will handle technical issues and provide customer support according to the Oracle service request process.

Related Documents
For more information, refer to the following Oracle resources:

Oracle Clusterware and Oracle Real Application Clusters Documentation
Most Oracle error message documentation is only available in HTML format. If you only have access to the Oracle Documentation media, then browse the error messages by range. When you find a range, use your browser's "find in page" feature to locate a specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle online documentation. However, error messages for Oracle Clusterware and Oracle RAC tools are included in Oracle Clusterware Administration and Deployment Guide, or Oracle Real Application Clusters Administration and Deployment Guide.

This installation guide reviews steps required to complete an Oracle Clusterware installation, and to perform preinstallation steps for Oracle RAC. If you intend to install Oracle Database or Oracle RAC, then review those installation guides for additional information.

Installation Guides
- Oracle Diagnostics Pack Installation Guide
- Oracle Database Installation Guide for HP-UX
- Oracle Real Application Clusters Installation Guide for Linux and UNIX

Operating System-Specific Administrative Guides
- Oracle Clusterware Administration and Deployment Guide
- Oracle Database Administrator’s Reference, 11g Release 1 (11.1) for UNIX Systems
- Oracle Database Platform Guide for Microsoft Windows

Oracle Real Application Clusters Management
- Oracle Real Application Clusters Administration and Deployment Guide
Printed documentation is available for sale in the Oracle Store at the following Web site:

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at the following Web site:

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at the following Web site:

http://otn.oracle.com/documentation/

Oracle error message documentation is available only in HTML. You can browse the error messages by range in the Documentation directory of the installation media. When you find a range, use your browser’s “find in page” feature to locate a specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle online documentation.

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site:

http://otn.oracle.com/documentation/

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
What's New in Oracle Clusterware Installation and Configuration?

This section describes Oracle Database 11g release 1 (11.1) features as they pertain to the installation and configuration of Oracle Clusterware and Oracle Real Application Clusters (Oracle RAC). The topics in this section are:

- Changes in Installation Documentation
- Enhancements and New Features for Installation

Changes in Installation Documentation

With Oracle Database 11g release 1, Oracle Clusterware can be installed or configured as an independent product, and additional documentation is provided on storage administration. For installation planning, note the following documentation:

Oracle Database 2 Day + Real Application Clusters Guide
This book provides an overview and examples of the procedures to install and configure a two-node Oracle Clusterware and Oracle RAC environment.

Oracle Clusterware Installation Guide
This book (the guide that you are reading) provides procedures either to install Oracle Clusterware as a standalone product, or to install Oracle Clusterware with either Oracle Database, or Oracle RAC. It contains system configuration instructions that require system administrator privileges.

Oracle Real Application Clusters Installation Guide
This platform-specific book provides procedures to install Oracle RAC after you have completed successfully an Oracle Clusterware installation. It contains database configuration instructions for database administrators.

Oracle Database Storage Administrator’s Guide
This book provides information for database and storage administrators who administer and manage storage, or who configure and administer Automatic Storage Management (ASM).

Oracle Clusterware Administration and Deployment Guide
This is the administrator’s reference for Oracle Clusterware. It contains information about administrative tasks, including those that involve changes to operating system configurations and cloning Oracle Clusterware.
Enhancements and New Features for Installation

The following is a list of enhancements and new features for Oracle Database 11g release 1 (11.1):

New SYSASM Privilege and OSASM operating system group for ASM Administration

This feature introduces a new SYSASM privilege that is specifically intended for performing ASM administration tasks. Using the SYSASM privilege instead of the SYSDBA privilege provides a clearer division of responsibility between ASM administration and database administration.

OSASM is a new operating system group that is used exclusively for ASM. Members of the OSASM group can connect as SYSASM using operating system authentication and have full access to ASM.
Summary List: Installing Oracle Clusterware

The following is a summary list of installation configuration requirements and commands. This summary is intended to provide an overview of the installation process.

In addition to providing a summary of the Oracle Clusterware installation process, this list also contains configuration information for preparing a system for Automatic Storage Management (ASM) and Oracle Real Application Clusters (Oracle RAC) installation.

Verify System Requirements

For more information, review the following section in Chapter 2: "Checking the Hardware Requirements"

Enter the following commands to check available memory:

```bash
grep 'Physical:' /var/adm/syslog/syslog.log
/usr/sbin/swapinfo -a
```

On Itanium processor systems, you can use the following command:

```bash
# /usr/contrib/bin/machinfo  | grep -i Memory
```

The minimum required RAM is 1 GB, and the minimum required swap space is 1 GB. Oracle recommends that you set swap space to twice the amount of RAM for systems with 2 GB of RAM or less. For systems with 2 GB to 8 GB RAM, use swap space equal to RAM. For systems with over 8 GB RAM, use .75 times the size of RAM.

```bash
df
```

This command checks the available space on file systems. If you use standard redundancy for Oracle Clusterware files, which is 2 Oracle Cluster Registry (OCR) partitions and 3 voting disk partitions, then you should have at least 1 GB of disk space available on separate physical disks reserved for Oracle Clusterware files. Each partition for the Oracle Clusterware files should be 256 MB in size.

The Oracle Clusterware home requires 650 MB of disk space.

```bash
df /tmp
```

Ensure that you have at least 400 MB of disk space in /tmp. If this space is not available, then increase the partition size, or delete unnecessary files in /tmp.
Check Network Requirements

For more information, review the following section in Chapter 2:
"Checking the Network Requirements"

The following is a list of address requirements that you must configure on a domain name server (DNS), or configure in the /etc/hosts file for each cluster node:

- You must have three network addresses for each node:
 - A public IP address
 - A virtual IP address, which is used by applications for failover in the event of node failure
 - A private IP address, which is used by Oracle Clusterware and Oracle RAC for internode communication

- The virtual IP address has the following requirements:
 - The IP address and host name are currently unused (it can be registered in a DNS, but should not be accessible by a ping command)
 - The virtual IP address is on the same subnet as your public interface

- The private IP address has the following requirements:
 - It should be on a subnet reserved for private networks, such as 10.0.0.0 or 192.168.0.0
 - It should use dedicated switches or a physically separate, private network, reachable only by the cluster member nodes, preferably using high-speed NICs
 - It must use the same private interfaces for both Oracle Clusterware and Oracle RAC private IP addresses
 - It cannot be registered on the same subnet that is registered to a public IP address

After you obtain the IP addresses from a network administrator, you can use the utility system-config-network to assign the public and private IP addresses to NICs, or you can configure them manually using ifconfig. Do not assign the VIP address.

Ping all IP addresses. The public and private IP addresses should respond to ping commands. The VIP addresses should not respond.

Check Operating System Packages

Refer to the tables listed in Chapter 2 "Identifying Software Requirements" for details.

Set Kernel Parameters

For more information, review the following section in Chapter 2:
"Configuring Kernel Parameters"

Start System Administration Parameters (SAM) using the following command:

```
# /usr/sbin/sam
```

Ensure that kernel values are equivalent or greater to the values listed in Table 2–3.
Configure Groups and Users

For more information, review the following sections in Chapter 2:

"Overview of Groups and Users for Oracle Clusterware Installations"

For information about creating Oracle Database homes, review the following sections in Chapter 3:

"Creating Standard Configuration Operating System Groups and Users"

"Creating Custom Configuration Groups and Users for Job Roles"

For purposes of evaluation, we will assume that you have one Oracle installation owner, and that this oracle installation software owner name is oracle. You must create an Oracle installation owner group (oinstall) for Oracle Clusterware. If you intend to install Oracle Database, then you must create an OSDBA group (dba). Use the id oracle command to confirm the correct group and user configuration.

/usr/sbin/groupadd oinstall
/usr/sbin/groupadd dba
/usr/sbin/useradd -m -g oinstall -G dba oracle

id oracle

Set the password on the oracle account:

passwd oracle

Create Directories

For more information, review the following section in Chapter 2:

"Requirements for Creating an Oracle Clusterware Home Directory"

For information about creating Oracle Database homes, review the following sections in Chapter 3:

"Understanding the Oracle Base Directory Path"

"Creating the Oracle Base Directory Path"

For installations with Oracle Clusterware only, Oracle recommends that you let Oracle Universal Installer (OUI) create the Oracle Clusterware and Oracle Central Inventory (oraInventory) directories for you. However, as root, you must create a path compliant with Oracle Optimal Flexible Architecture (OFA) guidelines, so that OUI can select that directory during installation. For OUI to recognize the path as an Oracle software path, it must be in the form u0[1-9]/app.

For example:

mkdir -p /u01/app
chown -R oracle:oinstall /u01/app

Configure Oracle Installation Owner Shell Limits

For information, review the following section in Chapter 2:

"Configuring Software Owner User Environments"
Configure SSH

For information, review the following section in Chapter 2:
"Configuring SSH or RCP on All Cluster Nodes"

To configure SSH, complete the following tasks:

Check Existing SSH Configuration on the System

To determine if SSH is running, enter the following command:

```
$ ps -ef | grep sshd
```

If SSH is running, then the response to this command is one or more process ID numbers. In the home directory of the software owner that you want to use for the installation (crs, oracle), use the command ls -al to ensure that the .ssh directory is owned and writable only by the user.

Configure SSH on Cluster Member Nodes

Complete the following tasks on each node. You must configure SSH separately for each Oracle software installation owner that you intend to use for installation.

- Create .ssh, and create either RSA or DSA keys on each node
- Add all keys to a common authorized_keys file

Enable SSH User Equivalency on Cluster Member Nodes

After you have copied the authorized_keys file that contains all keys to each node in the cluster, start SSH on the node, and load SSH keys into memory. Note that you must either use this terminal session for installation, or reload SSH keys into memory for the terminal session from which you run the installation.

Create Storage

The following outlines the procedure for creating OCR and voting disk partitions on disk devices, and creating ASM disks.

For information, review the following sections in Chapter 4:
"Configuring Storage for Oracle Clusterware Files on a Supported Shared File System"
"Configuring Storage for Oracle Clusterware Files on Raw Devices"

Create Disk Partitions for ASM Files OCR Disks, and Voting Disks

Create partitions as needed. For OCR and voting disks, create 280MB partitions for new installations, or use existing partition sizes for upgrades.
Create Storage

Note: Every server running one or more database instances that use ASM for storage has an ASM instance. In an Oracle RAC environment, there is one ASM instance for each node, and the ASM instances communicate with each other on a peer-to-peer basis.

Only one ASM instance is permitted for each node regardless of the number of database instances on the node.

If you are upgrading an existing installation, then shut down ASM instances before starting installation, unless otherwise instructed in the upgrade procedure for your platform.

The following outlines the procedure for creating ASM, OCR or voting disk partitions without HP Serviceguard:

To configure shared raw disk devices for Oracle Clusterware files, database files, or both:

1. If you intend to use raw disk devices for database file storage, then choose a name for the database that you want to create.

The name that you choose must start with a letter and have no more than four characters, for example, orcl.

2. Identify or configure the required disk devices.

The disk devices must be shared on all of the cluster nodes.

3. To ensure that the disks are available, enter the following command on every node:

 # /usr/sbin/ioscan -fun -C disk

 The output from this command is similar to the following:

<table>
<thead>
<tr>
<th>Class</th>
<th>I</th>
<th>H/W Path</th>
<th>Driver S/W State</th>
<th>H/W Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk</td>
<td>0</td>
<td>0/0/1/0.6.0</td>
<td>sdisk</td>
<td>CLAIMED</td>
<td>DEVICE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HP DVD-ROM 6x/32x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dev/dsk/c0t6d0</td>
<td></td>
<td></td>
<td>/dev/rdsk/c0t6d0</td>
</tr>
<tr>
<td>disk</td>
<td>1</td>
<td>0/0/1/1.2.0</td>
<td>sdisk</td>
<td>CLAIMED</td>
<td>DEVICE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SEAGATE ST39103LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dev/dsk/clt2d0</td>
<td></td>
<td></td>
<td>/dev/rdsk/clt2d0</td>
</tr>
</tbody>
</table>

 This command displays information about each disk attached to the system, including the character raw device name (/dev/rdsk/cxtydz).

4. If the ioscan command does not display device name information for a device that you want to use, then enter the following command to install the special device files for any new devices:

 # /usr/sbin/insf -e

5. For each disk that you want to use, enter the following command on any node to verify that it is not already part of an LVM volume group:

 # /sbin/pvdisplay /dev/dsk/cxtydz

 If this command displays volume group information, then the disk is already part of a volume group. The disks that you choose must not be part of an LVM volume group.
6. If the ioscan command shows different device names for the same device on any node, then:
 a. Change directory to the /dev/rdsk directory.
 b. Enter the following command to list the raw disk device names and their associated major and minor numbers:

   ```
   # ls -la
   ```

 The output from this command is similar to the following for each disk device:

   ```
   crw-r--r--   1 bin        sys        188 0x032000 Nov  4  2003 c3t2d0
   ```

 In this example, 188 is the device major number and 0x32000 is the device minor number.
 c. Enter the following command to create a new device file for the disk that you want to use, specifying the same major and minor number as the existing device file:

   ```
   # mknod ora_ocr_raw_256m c 188 0x032000
   ```

d. Repeat these steps on each node, specifying the correct major and minor numbers for the new device files on each node.

7. Enter commands similar to the following on every node to change the owner, group, and permissions on the character raw device file for each disk device that you want to use:

 Note: Oracle recommends that you use the alternative device file names shown in the previous table.

   ```
   # mknod ora_ocr_raw_256m c 188 0x032000
   ```

d. Repeat these steps on each node, specifying the correct major and minor numbers for the new device files on each node.

8. If you are using raw disk devices for database files, then follow these steps to create the Database Configuration Assistant raw device mapping file:

 Note: If you are using different volume management software, for example VERITAS Volume Manager, then refer to the appropriate documentation for information about verifying that a disk is not in use.

 Note: Oracle recommends that you use the alternative device file names shown in the previous table.

 Note: If you are using a multi-pathing disk driver with Automatic Storage Management, then ensure that you set the permissions only on the correct logical device name for the disk.

 If you created an alternative device file for the device, then set the permissions on that device file.
Summary List: Installing Oracle Clusterware

1-7

Note: You must complete this procedure only if you are using raw devices for database files. The Database Configuration Assistant raw device mapping file enables Database Configuration Assistant to identify the appropriate raw disk device for each database file. You do not specify the raw devices for the Oracle Clusterware files in the Database Configuration Assistant raw device mapping file.

a. Set the ORACLE_BASE environment variable to specify the Oracle base directory that you identified or created previously:

 – Bourne, Bash, or Korn shell:

     ```bash
     $ ORACLE_BASE=/u01/app/oracle ; export ORACLE_BASE
     ```

 – C shell:

     ```bash
     % setenv ORACLE_BASE /u01/app/oracle
     ```

b. Create a database file subdirectory under the Oracle base directory and set the appropriate owner, group, and permissions on it:

   ```bash
   # mkdir -p $ORACLE_BASE/oradata/
   # chown -R oracle:oinstall $ORACLE_BASE/oradata
   # chmod -R 775 $ORACLE_BASE/oradata
   ```

 In this example, `dbname` is the name of the database that you chose previously.

c. Change directory to the `$ORACLE_BASE/oradata/dbname` directory.

d. Using any text editor, create a text file similar to the following that identifies the disk device file name associated with each database file.

 Oracle recommends that you use a file name similar to `dbname_raw.conf` for this file.

   ```plaintext
   system=/dev/rdsk/c2t1d1
   sysaux=/dev/rdsk/c2t1d2
   example=/dev/rdsk/c2t1d3
   users=/dev/rdsk/c2t1d4
   temp=/dev/rdsk/c2t1d5
   undotbs1=/dev/rdsk/c2t1d6
   undotbs2=/dev/rdsk/c2t1d7
   redo1_1=/dev/rdsk/c2t1d8
   redo1_2=/dev/rdsk/c2t1d9
   redo2_1=/dev/rdsk/c2t1d10
   redo2_2=/dev/rdsk/c2t1d11
   control1=/dev/rdsk/c2t1d12
   control2=/dev/rdsk/c2t1d13
   spfile=/dev/rdsk/dbname_spfile_raw_5m
   pwdfile=/dev/rdsk/dbname_pwdfile_raw_5m
   ```

 In this example, `dbname` is the name of the database.
Use the following guidelines when creating or editing this file:

- Each line in the file must have the following format:
 \[\text{database_object_identifier} = \text{device_file_name}\]

 The alternative device file names suggested in the previous table include the database object identifier that you must use in this mapping file. For example, in the following alternative disk device file name, \text{redo1_1} is the database object identifier:
 \[\text{rac_redo1_1_raw_120m}\]

- For a RAC database, the file must specify one automatic undo tablespace datafile (\text{undotbsn}) and two redo log files (\text{redo}_1, \text{redo}_2) for each instance.

- Specify at least two control files (\text{control1}, \text{control2}).

- To use manual instead of automatic undo management, specify a single RBS tablespace datafile (\text{rbs}) instead of the automatic undo management tablespace data files.

 e. Save the file and note the file name that you specified.

 f. When you are configuring the oracle user’s environment later in this chapter, set the DBCA_RAW_CONFIG environment variable to specify the full path to this file.

 9. When you are installing Oracle Clusterware, you must enter the paths to the appropriate device files when prompted for the path of the OCR and Oracle Clusterware voting disk, for example:

 \[/dev/rdsk/cxtydz\]

\section*{Verify Oracle Clusterware Requirements with CVU}

For information, review the following section in Chapter 6:

"Verifying Oracle Clusterware Requirements with CVU"

Using the following command syntax, log in as the installation owner user (oracle or crs), and start Cluster Verification Utility (CVU) to check system requirements for installing Oracle Clusterware. In the following syntax example, replace the variable \text{mountpoint} with the installation media mountpoint, and replace the variable \text{node_list} with the names of the nodes in your cluster, separated by commas:

\[\text{/mountpoint/runcluvfy.sh stage -pre crsinst -n node_list}\]

\section*{Install Oracle Clusterware Software}

For information, review the following sections in Chapter 6:

"Preparing to Install Oracle Clusterware with OUI"

"Installing Oracle Clusterware with OUI"

1. Ensure SSH keys are loaded into memory for the terminal session from which you run the Oracle Universal Installer (OUI).

2. Navigate to the installation media, and start OUI. For example:
$ cd /Disk1
./runInstaller

3. Select **Install Oracle Clusterware**, and enter the configuration information as prompted.

Prepare the System for Oracle RAC and ASM

For information, review the following section in Chapter 5:
"Configuring Disks for Automatic Storage Management"

If you intend to install Oracle RAC, as well as Oracle Clusterware, then Oracle recommends that you use ASM for database file management.

Mark ASM Disk Partitions

For OUI to recognize a disk partition as an ASM disk candidate, you must mark the disk by logging in as root and marking the disk partitions that you created for ASM using the following command syntax, where `ASM_DISK_NAME` is the name of the ASM disk group, and `device_name` is the name of the disk device that you want to assign to that disk group:

```
/etc/init.d/oracleasm create disk ASM_DISK_NAME device_name
```
This chapter describes the system configuration tasks that you must complete before you start Oracle Universal Installer (OUI) to install Oracle Clusterware.

This chapter contains the following topics:

- Reviewing Upgrade Best Practices
- Logging In to a Remote System as root Using X Terminal
- Overview of Groups and Users for Oracle Clusterware Installations
- Creating Groups and Users for Oracle Clusterware
- Checking the Hardware Requirements
- Checking the Network Requirements
- Identifying Software Requirements
- Checking the Software Requirements
- Configuring Kernel Parameters
- Configuring SSH or RCP on All Cluster Nodes
- Configuring Software Owner User Environments
- Creating Required Symbolic Links
- Requirements for Creating an Oracle Clusterware Home Directory
- Understanding and Using Cluster Verification Utility
- Checking Oracle Clusterware Installation Readiness with CVU

Reviewing Upgrade Best Practices

If you have an existing Oracle installation, then document version numbers, patches, and other configuration information, and review upgrade procedures for your existing installation. Review Oracle upgrade documentation before proceeding with installation, to decide how you want to proceed.

For late-breaking updates and best practices about preupgrade, post-upgrade, compatibility, and interoperability discussions, refer to "Oracle Upgrade Companion." "Oracle Upgrade Companion" is available through Note 466181.1 on OracleMetaLink:

https://metalink.oracle.com
Logging In to a Remote System as root Using X Terminal

Before you install the Oracle software, you must complete several tasks as the root user on the system where you install Oracle software. To complete tasks as the root user on a remote server, enable remote display as root.

Note: If you log in as another user (for example, oracle), then repeat this procedure for that user as well.

To enable remote display, complete one of the following procedures:

- If you are installing the software from an X Window System workstation or X terminal, then:
 1. Start a local terminal session, for example, an X terminal (xterm).
 2. If you are not installing the software on the local system, then enter a command using the following syntax to enable remote hosts to display X applications on the local X server:

 $ xhost +

 where remote_host is the fully qualified remote hostname. For example:

 $ xhost + somehost.example.com

 somehost.example.com being added to the access control list

 3. If you are not installing the software on the local system, then use the ssh command to connect to the system where you want to install the software:

 $ ssh remote_host

 where remote_host is the fully qualified remote hostname. For example:

 $ ssh somehost.example.com

 4. If you are not logged in as the root user, then enter the following command to switch the user to root:

 $ su - root
 password:
 #

- If you are installing the software from a PC or other system with X server software installed, then:

Note: If necessary, refer to your X server documentation for more information about completing this procedure. Depending on the X server software that you are using, you may need to complete the tasks in a different order.

 1. Start the X server software.
 2. Configure the security settings of the X server software to permit remote hosts to display X applications on the local system.
 3. Connect to the remote system where you want to install the software and start a terminal session on that system, for example, an X terminal (xterm).
4. If you are not logged in as the root user on the remote system, then enter the following command to switch user to root:

 $ su - root
 password:
 #

Overview of Groups and Users for Oracle Clusterware Installations

You must create the following group and user to install Oracle Clusterware:

- The Oracle Inventory group (typically, `oinstall`)
 You must create this group the first time that you install Oracle software on the system. In Oracle documentation, this group is referred to as `oinstall`.

 Note: If Oracle software is already installed on the system, then the existing Oracle Inventory group must be the primary group of the operating system user (oracle or crs) that you use to install Oracle Clusterware. Refer to "Determining If the Oracle Inventory and Oracle Inventory Group Exists” on page 2-4 to identify an existing Oracle Inventory group.

- Oracle clusterware software owner user (typically, `oracle`, if you intend to create a single software owner user for all Oracle software, or `crs`, if you intend to create separate Oracle software owners.)
 You must create at least one software owner the first time you install Oracle software on the system. This user owns the Oracle binaries of the Oracle Clusterware software, and you can also make this user the owner of the binaries of Automatic Storage Management and Oracle Database or Oracle RAC.

 On HP-UX, the owner of Oracle Clusterware software must have the RTPRIO, MLOCK, and RTSCHED privileges.

 See Also: Oracle Database Administrator’s Reference for UNIX Systems and Oracle Database Administrator’s Guide for more information about the OSDBA and OSOPER groups and the SYSDBA, SYSASM and SYSOPER privileges

Creating Groups and Users for Oracle Clusterware

Log in as root, and use the following instructions to locate or create the Oracle Inventory group and a software owner for Oracle Clusterware:

- Understanding the Oracle Inventory Group
- Understanding the Oracle Inventory Directory
- Determining If the Oracle Inventory and Oracle Inventory Group Exists
- Creating the Oracle Inventory Group If an Oracle Inventory Does Not Exist
- Creating the Oracle Clusterware User
- Example of Creating the Oracle Clusterware User and OraInventory Path
Understanding the Oracle Inventory Group

You must have a group whose members are given access to write to the Oracle Central Inventory (oraInventory). The Central Inventory contains the following:

- A registry of the Oracle home directories (Oracle Clusterware, Oracle Database, and Automatic Storage Management) on the system
- Installation logs and trace files from installations of Oracle software. These files are also copied to the respective Oracle homes for future reference

Other metadata inventory information regarding Oracle installations are stored in the individual Oracle home inventory directories, and are separate from the Central Inventory.

Understanding the Oracle Inventory Directory

The first time you install Oracle software on a system, Oracle Universal Installer checks to see if you have created an Optimal Flexible Architecture (OFA) compliant path in the format u[01-09]/app, such as /u01/app, and that the user running the installation has permissions to write to that path. If this is true, then Oracle Universal Installer creates the Oracle Inventory directory in the path /u[01-09]/app/oraInventory. For example:

/u01/app/oraInventory

If you have set the environment variable $ORACLE_BASE for the user performing the Oracle Clusterware installation, then OUI creates the Oracle Inventory directory in the path $ORACLE_BASE/../oraInventory. For example, if $ORACLE_BASE is set to /opt/oracle/11, then the Oracle Inventory directory is created in the path /opt/oracle/oraInventory.

If you have created neither an OFA-compliant path nor set $ORACLE_BASE, then the Oracle Inventory directory is placed in the home directory of the user that is performing the installation. For example:

/home/oracle/oraInventory

As this placement can cause permission errors during subsequent installations with multiple Oracle software owners, Oracle recommends that you either create an OFA-compliant installation path, or set an $ORACLE_BASE environment path.

For new installations, Oracle recommends that you allow OUI to create the Central Inventory directory. By default, if you create an Oracle path in compliance with OFA structure, such as /u01/app, that is owned by an Oracle software owner, then the Central Inventory is created in the path /u01/app/oraInventory using correct permissions to allow all Oracle installation owners to write to this directory.

Determining If the Oracle Inventory and Oracle Inventory Group Exists

When you install Oracle software on the system for the first time, OUI creates the oraInst.loc file. This file identifies the name of the Oracle Inventory group (typically, oinstall), and the path of the Oracle Central Inventory directory. An oraInst.loc file has contents similar to the following:

inventory_loc=central_inventory_location
inst_group=group
In the preceding example, central_inventory_location is the location of the Oracle Central Inventory, and group is the name of the group that has permissions to write to the central inventory.

If you have an existing Oracle Inventory, then ensure that you use the same Oracle Inventory for all Oracle software installations, and ensure that all Oracle software users you intend to use for installation have permissions to write to this directory.

To determine if you have an Oracle Inventory on your system:

1. Enter the following command:
   ```
   # more /var/opt/oracle/oraInst.loc
   ```
 If the oraInst.loc file exists, then the output from this command is similar to the following:
   ```
   inventory_loc=/u01/app/oracle/oraInventory
   inst_group=oinstall
   ```
 In the previous output example:
 - The inventory_loc group shows the location of the Oracle Inventory
 - The inst_group parameter shows the name of the Oracle Inventory group (in this example, oinstall).

2. Ensure that Oracle Inventory group members are granted the HP-UX privileges RTPRIO, MLOCK, and RTSCHED. For example:
   ```
   # /usr/bin/getprivgrp oinstall
   dba: RTPRIO MLOCK RTSCHED
   ```
 If the group is not granted these privileges, then add these privileges as described in the next section.

Creating the Oracle Inventory Group If an Oracle Inventory Does Not Exist

If the oraInst.loc file does not exist, then complete the following tasks:

1. Create the Oracle Inventory group by entering a command similar to the following:
   ```
   # /usr/sbin/groupadd -g 501 oinstall
   ```
 The preceding command creates the group oinstall, with the group ID number 501.

2. If it does not already exist, create the /etc/privgroup file. Add a line similar to the following to grant Oracle installation owners the RTPRIO, MLOCK, and RTSCHED privileges:
   ```
   # oinstall: RTPRIO MLOCK RTSCHED
   ```
 If /etc/privgroup exists, then add these privileges to the Oracle Inventory group. For example:
   ```
   # /usr/sbin/setprivgrp oinstall RTPRIO MLOCK RTSCHED
   ```
 Confirm the grant of privileges to the group. For example:
   ```
   # /usr/bin/getprivgrp oinstall
   oinstall: RTPRIO MLOCK RTSCHED
   ```
3. Repeat this procedure on all of the other nodes in the cluster.

Creating the Oracle Clusterware User

You must create a software owner for Oracle Clusterware in the following circumstances:

- If an Oracle software owner user does not exist; for example, if this is the first installation of Oracle software on the system
- If an Oracle software owner user exists, but you want to use a different operating system user, such as crs, with different group membership, to give separate clusterware and database administrative privileges to those groups in a new Oracle Clusterware and Oracle Database installation

In Oracle documentation, a user created to own only Oracle Clusterware software installations is called the crs user. A user created to own either all Oracle installations, or only Oracle database installations, is called the oracle user.

Note: If you intend to use multiple Oracle software owners for different Oracle Database homes, then Oracle recommends that you create a separate Oracle software owner for Oracle Clusterware, and install Oracle Clusterware using the Oracle Clusterware software owner.

If you want to create separate Oracle software owners (oracle, crs, asm) to create separate users and separate operating system privileges groups for different Oracle software installations, then note that each of these users must have the oinstall group as their primary group, and each user must share the same Oracle Central Inventory, to prevent corruption of the Central Inventory. Refer to "Creating Custom Configuration Groups and Users for Job Roles" on page 3-4.

Determining if an Oracle Software Owner User Exists

To determine whether an Oracle software owner user named oracle or crs exists, enter a command similar to the following (in this case, to determine if oracle exists):

```
# id oracle
```

If the user exists, then the output from this command is similar to the following:

```
uid=501(oracle) gid=501(oinstall) groups=502(dba),503(oper)
```

Determine whether you want to use the existing user, or create another user.

If you want to use the existing user, then ensure that the user’s primary group is the Oracle Inventory group (oinstall).

Creating or Modifying an Oracle Software Owner User for Oracle Clusterware

If the Oracle software owner (oracle, crs) user does not exist, or if you require a new Oracle software owner user, then create it. The following procedure uses crs as the name of the Oracle software owner.

1. To create a user, enter a command similar to the following:

   ```
   # /usr/sbin/useradd -u 501 -g oinstall crs
   ```

 In the preceding command:
Checking the Hardware Requirements

Each system must meet the following minimum hardware requirements:

- At least 1 GB of physical RAM
Checking the Hardware Requirements

- Swap space equivalent to the multiple of the available RAM, as indicated in the following table:

<table>
<thead>
<tr>
<th>Available RAM</th>
<th>Swap Space Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between 1 GB and 2 GB</td>
<td>1.5 times the size of RAM</td>
</tr>
<tr>
<td>Between 2 GB and 8 GB</td>
<td>Equal to the size of RAM</td>
</tr>
<tr>
<td>More than 8 GB</td>
<td>.75 times the size of RAM</td>
</tr>
</tbody>
</table>

- 400 MB of disk space in the /tmp directory
- 2 GB of disk space for Oracle Clusterware files, in partitions on separate physical disks, assuming standard redundancy (2 Oracle Cluster Registry partitions and 3 voting disks)
- 650 MB of disk space for the Oracle Clusterware home
- If you intend to install Oracle Database, allocate 4 GB of disk space for the Oracle base
- If you intend to install Oracle Database single instance, allocate between 1.5 and 3.5 GB of disk space for a preconfigured database that uses file system storage. Oracle RAC software only requires 3.2 GB, and Oracle RAC software with sample schemas requires 3.3 GB.

Note: The disk space requirement for databases that use Automatic Storage Management or shard disk storage is described in Chapter 5.

Additional disk space, either on a file system or in an Automatic Storage Management disk group, is required for the flash recovery area if you choose to configure automated backups.

To ensure that each system meets these requirements, follow these steps:

1. To determine the physical RAM size, enter the following command:

 On HP PA-RISC systems:
   ```
   # grep "Physical:" /var/adm/syslog/syslog.log
   ```

 On HP Itanium systems:
   ```
   # /usr/contrib/bin/machinfo | grep -i Memory
   ```

 If the size of the physical RAM installed in the system is less than the required size, then you must install more memory before continuing.

2. To determine the size of the configured swap space, enter the following command:

   ```
   # /usr/sbin/swapinfo -a
   ```

 If necessary, refer to your operating system documentation for information about how to configure additional swap space.

3. To determine the amount of disk space available in the /tmp directory, enter the following command:

   ```
   # bdf /tmp
   ```
If there is less than 400 MB of disk space available in the /tmp directory, then complete one of the following steps:

- Delete unnecessary files from the /tmp directory to make available the disk space required.
- Set the TEMP and TMPDIR environment variables when setting the oracle user’s environment (described later). This environment variables can be used to override /tmp.
- Extend the file system that contains the /tmp directory. If necessary, contact your system administrator for information about extending file systems.

4. To determine the amount of free disk space on the system, enter the following command:

 # bdf -k

The following table shows the approximate disk space requirements for software files for each installation type:

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Requirement for Software Files (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Edition</td>
<td>4</td>
</tr>
<tr>
<td>Standard Edition</td>
<td>4</td>
</tr>
<tr>
<td>Custom (maximum)</td>
<td>4</td>
</tr>
</tbody>
</table>

5. To determine whether the system architecture can run the software, enter the following command:

 # /bin/getconf KERNEL_BITS

Note: The expected output of this command is 64. If you do not see the expected output, then you cannot install the software on this system.

Checking the Network Requirements

Review the following sections to check that you have the networking hardware and internet protocol (IP) addresses required for an Oracle Real Application Clusters (Oracle RAC) installation:

- Network Hardware Requirements
- IP Address Requirements
- Node Time Requirements
- Network Configuration Options
- Configuring the Network Requirements
- Configuring the Name Service Switch to Tolerate Public Network Failures
Network Hardware Requirements

The following is a list of requirements for network configuration:

- Each node must have at least two ports: one for the public network interface, and one for the private network interface (the interconnect).

 If you want to use more than one NIC for the public network or for the private network, then Oracle recommends that you use NIC bonding.

- The public interface names associated with the network adapters for each network must be the same on all nodes, and the private interface names associated with the network adaptors should be the same on all nodes.

 For example: With a two-node cluster, you cannot configure network adapters on node1 with eth0 as the public interface, but on node2 have eth1 as the public interface. Public interface names must be the same, so you must configure eth0 as public on both nodes. You should configure the private interfaces on the same network adapters as well. If eth1 is the private interface for node1, then eth1 should be the private interface for node2.

- For the public network, each network adapter must support TCP/IP.

- For the private network, the interconnect must support the user datagram protocol (UDP) using high-speed network adapters and switches that support TCP/IP (Gigabit Ethernet or better required).

Note: UDP is the default interconnect protocol for Oracle RAC, and TCP is the interconnect protocol for Oracle Clusterware. You must use a switch for the interconnect. Oracle recommends that you use a dedicated switch.

Oracle does not support token-rings or crossover cables for the interconnect.

- For the private network, the endpoints of all designated interconnect interfaces must be completely reachable on the network. There should be no node that is not connected to every private network interface. You can test whether an interconnect interface is reachable using a ping command.

IP Address Requirements

Before starting the installation, you must have the following IP addresses available for each node:

- An IP address with an associated host name (or network name) registered in the DNS for the public interface. If you do not have an available DNS, then record the host name and IP address in the system hosts file, /etc/hosts.

- One virtual IP (VIP) address with an associated host name registered in a DNS. If you do not have an available DNS, then record the host name and VIP address in
the system hosts file, /etc/hosts. Select an address for your VIP that meets the following requirements:

- The IP address and host name are currently unused (it can be registered in a DNS, but should not be accessible by a ping command)
- The VIP is on the same subnet as your public interface

A private IP address with a host name for each private interface

Oracle recommends that you use private network IP addresses for these interfaces (for example: 10.*.*.* or 192.168.*.*). You can use DNS servers, or the /etc/hosts file, or both to register the private IP address. Note that if you use DNS servers alone, and the public network becomes unreachable due to NIC or cable failure, then the private IP addresses can fail to resolve.

For the private interconnects, because of Cache Fusion and other traffic between nodes, Oracle strongly recommends using a physically separate, private network. You should ensure that the private IP addresses are reachable only by the cluster member nodes.

During installation, you are asked to identify the planned use for each network interface that OUI detects on your cluster node. You must identify each interface as a public or private interface, and you must use the same private interfaces for both Oracle Clusterware and Oracle RAC.

You can bond separate interfaces to a common interface to provide redundancy, in case of a NIC failure, but Oracle recommends that you do not create separate interfaces for Oracle Clusterware and Oracle RAC. If you use more than one NIC for the private interconnect, then Oracle recommends that you use NIC bonding. Note that multiple private interfaces provide load balancing but not failover, unless bonded.

For example, if you intend to use the interfaces eth2 and eth3 as interconnects, then before installation, you must configure eth2 and eth3 with the private interconnect addresses. If the private interconnect addresses are 10.10.1.1 for eth2 and 10.10.2.1 for eth3, then bond eth2 and eth3 to an interface, such as bond0, using a separate subnet such as 10.10.222.0. During installation, define the Oracle Clusterware private node names on 10.10.222.0, and then define 10.10.222.0 (and only that one) as a private interconnect. This ensures that Oracle Clusterware and Oracle RAC are using the same network.

After installation, if you modify interconnects on Oracle RAC with the CLUSTER_ INTERCONNECTS initialization parameter, then you must change it to a private IP address, on a subnet that is not used with a public IP address, nor marked as a public subnet by oifcfg. Oracle does not support changing the interconnect to an interface using a subnet that you have designated as a public subnet.

See Also: Oracle Clusterware Administration and Deployment Guide for further information about setting up and using bonded multiple interfaces

You should not use a firewall on the network with the private network IP addresses, as this can block interconnect traffic.

Before installation, check that the default gateway can be accessed by a ping command. To find the default gateway, use the route command, as described in your operating system’s help utility. After installation, configure clients to use either the VIP address, or the host name associated with the VIP. If a node fails, then the node’s virtual IP address fails over to another node.
For example, with a two node cluster where each node has one public and one private interface, you might have the configuration shown in the following table for your network interfaces, where the hosts file is /etc/hosts:

<table>
<thead>
<tr>
<th>Node</th>
<th>Host Name</th>
<th>Type</th>
<th>IP Address</th>
<th>Registered In</th>
</tr>
</thead>
<tbody>
<tr>
<td>node1</td>
<td>node1</td>
<td>Public</td>
<td>143.46.43.100</td>
<td>DNS (if available, else the hosts file)</td>
</tr>
<tr>
<td>node1</td>
<td>node1-vip</td>
<td>Virtual</td>
<td>143.46.43.104</td>
<td>DNS (if available, else the hosts file)</td>
</tr>
<tr>
<td>node1</td>
<td>node1-priv</td>
<td>Private</td>
<td>10.0.0.1</td>
<td>Hosts file</td>
</tr>
<tr>
<td>node2</td>
<td>node2</td>
<td>Public</td>
<td>143.46.43.101</td>
<td>DNS (if available, else the hosts file)</td>
</tr>
<tr>
<td>node2</td>
<td>node2-vip</td>
<td>Virtual</td>
<td>143.46.43.105</td>
<td>DNS (if available, else the hosts file)</td>
</tr>
<tr>
<td>node2</td>
<td>node2-priv</td>
<td>Private</td>
<td>10.0.0.2</td>
<td>Hosts file</td>
</tr>
</tbody>
</table>

To enable VIP failover, the configuration shown in the preceding table defines the public and VIP addresses of both nodes on the same subnet, 143.46.43.

Note: All host names must conform to the RFC 952 standard, which permits alphanumeric characters. Host names using underscores ("_") are not allowed.

Node Time Requirements

Before starting the installation, ensure that each member node of the cluster is set as closely as possible to the same date and time. Oracle strongly recommends using the Network Time Protocol feature of most operating systems for this purpose, with all nodes using the same reference Network Time Protocol server.

Network Configuration Options

The precise configuration you choose for your network depends on the size and use of the cluster you want to configure, and the level of availability you require.

If certified Network-attached Storage (NAS) is used for Oracle RAC and this storage is connected through Ethernet-based networks, then you must have a third network interface for I/O. Failing to provide three separate interfaces in this case can cause performance and stability problems under load.

For high capacity clusters with a small number of multiprocessor servers, to ensure high availability, you may want to configure redundant network interfaces to prevent a NIC failure from reducing significantly the overall cluster capacity. If you are using network storage, and want to provide redundant network interfaces, then Oracle recommends that you provide six network interfaces: two for the public network interface, two for the private network interface, and two for the network storage.

Configuring the Network Requirements

To verify that each node meets the requirements, follow these steps:

1. If necessary, install the network adapters for the public and private networks and configure them with either public or private IP addresses.
2. If you are using a domain name server (DNS), then for each node, register the host names and IP addresses for the public network interfaces in the DNS.
3. Even if you are using a DNS, Oracle recommends that you add lines to the /etc/hosts file on each node, specifying the private IP addresses and associated private host names. Oracle also recommends that you add public and virtual IP addresses. Configure the /etc/hosts file so that it is similar to as shown in the following example, with private interface eth1, and private hosts nodeint1 and nodeint2, where xxx represents parts of a valid IP address.

```
#eth0 - PUBLIC
xxx.xxx.100.45   node1.example.com   node1
xxx.xxx.100.46   node2.example.com   node2

#eth1 - PRIVATE
10.0.0.1      nodeint1.example.com   nodeint1
10.0.0.2      nodeint2.example.com   nodeint2

#VIPs
xxx.xxx.100.47   pmvip1.example.com   nodevip1
xxx.xxx.100.48   pmvip2.example.com   nodevip2
```

4. To check network configuration, on each node, enter the following commands:

```
# hostname
# /usr/sbin/ifconfig interface_name
```

You can also check with the following command:

```
# /usr/bin/netstat -in
```

Ensure that each server is properly identified, and that the interface name and IP address for all network adapters that you want to specify as public or private network interfaces are properly configured. In addition, use the ping command to ensure that each node can obtain a response for the public and private IP addresses from each other node in the cluster.

Note: When you install Oracle Clusterware and Oracle RAC, you will require the public, private and virtual IP addresses. Make a note of the addresses you configured in the /etc/hosts file or DNS.

Configuring the Name Service Switch to Tolerate Public Network Failures

On HP-UX, to tolerate a complete public network failure, you should specify network addresses in /etc/nsswitch.conf, to avoid VIP failover or public address network failure response times being dependent on the network timeouts.

In the /etc/nsswitch.conf file, files must precede other entries for host, and preferably precede other entries in nsswitch.conf.

Identifying Software Requirements

Depending on the products that you intend to install, verify that the following software is installed on the system. The procedure following the table describes how to check these requirements.
The following is the list of supported HP-UX platforms and requirements at the time of release:

- **Software Requirements List for HP-UX PA-RISC (64-Bit) Platforms**
- **Software Requirements List for HP-UX Itanium Platforms**

Software Requirements List for HP-UX PA-RISC (64-Bit) Platforms

Table 2–1 HP-UX PA-RISC (64-Bit) Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system</td>
<td>Operating system versions:</td>
</tr>
<tr>
<td></td>
<td>- HP-UX 11i Version 3 (11.31) PA-RISC</td>
</tr>
<tr>
<td></td>
<td>- HP-UX 11i Version 2 (11.23) PA-RISC Sept 2004 base or later, with March 2007 Patch bundle for HP-UX (11iV2- B.11.23.0703)</td>
</tr>
<tr>
<td>HP-UX 11.31 packages and bundles</td>
<td>PHKL_35900 (operating system patch)</td>
</tr>
<tr>
<td></td>
<td>PHKL_35936 (operating system patch)</td>
</tr>
<tr>
<td></td>
<td>PHKL_36248 (operating system patch)</td>
</tr>
<tr>
<td></td>
<td>PHKL_36249 (operating system patch)</td>
</tr>
<tr>
<td>HP-UX 11.23 packages and bundles</td>
<td>PHKL_35478: s700_800 11.23 shmget(2) cumulative patch</td>
</tr>
<tr>
<td></td>
<td>PHKL_36853: s700_800 11.23 pstat patch</td>
</tr>
<tr>
<td></td>
<td>PHCO_36673: s700_800 11.23 libc cumulative patch</td>
</tr>
<tr>
<td>Oracle Clusterware</td>
<td>All HP-UX 11.31 installations</td>
</tr>
<tr>
<td></td>
<td>PHKL_34941 (Improves Oracle Clusterware restart and diagnosis)</td>
</tr>
<tr>
<td></td>
<td>No additional requirements for Oracle Clusterware.</td>
</tr>
<tr>
<td></td>
<td>At the time of this release, Hyper Messaging Protocol (HMP) is not supported.</td>
</tr>
<tr>
<td></td>
<td>Only HP Serviceguard A11.17.01 is supported with Oracle Clusterware 11g.</td>
</tr>
<tr>
<td></td>
<td>Note: HP Serviceguard is optional. It is required only if you want to use shared logical volumes for Oracle Clusterware or database files.</td>
</tr>
<tr>
<td></td>
<td>All HP-UX 11.23 installations</td>
</tr>
<tr>
<td></td>
<td>PHKL_34941 (Improves Oracle Clusterware restart and diagnosis)</td>
</tr>
<tr>
<td></td>
<td>No additional requirements for Oracle Clusterware.</td>
</tr>
<tr>
<td></td>
<td>At the time of this release, Hyper Messaging Protocol (HMP) is not supported.</td>
</tr>
<tr>
<td></td>
<td>HP Serviceguard A11.17.00 with patch PHSS_35371 or later is supported with Oracle Clusterware 11g.</td>
</tr>
<tr>
<td></td>
<td>Note: HP Serviceguard is optional. It is required only if you want to use shared logical volumes for Oracle Clusterware or database files.</td>
</tr>
</tbody>
</table>
Oracle Clusterware Preinstallation Tasks

Software Requirements List for HP-UX Itanium Platforms

Table 2–2 HP-UX Itanium Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system</td>
<td>HP-UX 11i Version 3 (11.31) with March 2007 Patch bundle for HP-UX (11iV2-B.11.23.0703)</td>
</tr>
<tr>
<td></td>
<td>HP-UX 11i Version 2 (11.23) with Sept 04 or newer base</td>
</tr>
</tbody>
</table>
Table 2–2 (Cont.) HP-UX Itanium Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
</table>
| **HP-UX 11.31 packages and bundles** | PHKL_35900 (operating system patch)
PHKL_35936 (operating system patch)
PHKL_36248 (operating system patch)
PHKL_36249 (operating system patch) |
| **HP-UX 11.23 packages and bundles** | PHCO_36673: s700_800 11.23 libc cumulative patch
PHKL_35478 (s700_800 11.23 shmget(2) cumulative patch)
PHKL 36853 (s700_800 11.23 pstat patch) |
| **Oracle JDBC/OCI Drivers** | Java SDK 5.0
Note: HP JDK 1.5.0.06 is installed with this release. |
| **Oracle Spatial** | HP-UX Developer’s Toolkit - X11 and Imake
Note: This software is required only to build the sample programs. |
| **Pro*C/C++ compiler** | Micro Focus Server Express 5.0 |
| **Pro*Fortran compiler** | **HP-UX 11.31:**
HP FORTRAN/90 - Feb 2007 - release
HP-UX 11.23:
HP FORTRAN 90 June 2006 (AR0606) - release B11.23.20 |
| **Pro*C/C++, Oracle Call Interface, Oracle C++ Call Interface, Oracle XML Developer’s Kit (XDK)** | **HP-UX 11.31**
A.06.15 (September 2007 Application Release CD, swlist bundle C.11.31.03)
HP-UX 11.23
HP aC++ Compiler C++ (aCC) Compiler (September 2008 Application Release CD, swlist bundle C.11.23.15
HP ANSI C compiler (C.06.10) - June 2006 (AR0606) - release C.06.10
C++ patches
PHSS_33279 (s700_800 11.23 u2comp/be/plugin library patch)
PHSS_34650
C patches
PHSS_35974 (Updates C Compiler to (A.06.14)
PHSS_33279 (s700_800 11.23 u2comp/be/plugin library patch)
PHSS_35975 (Updates C++ Compiler to (A.06.13)) |
Checking the Software Requirements

To ensure that the system meets these requirements, follow these steps:

1. To determine which version of HP-UX is installed, enter the following command:

 # uname -a
 HP-UX hostname B.11.23 U 9000/800 109444686 unlimited-user license

 In this example, the version of HP-UX 11i is 11.23.

2. To determine whether a bundle, product, or fileset is installed, enter a command similar to the following, where level is bundle, product, or fileset:

 # /usr/sbin/swlist -l level | more

 If a required bundle, product, or fileset is not installed, then you must install it. Refer to your operating system or software documentation for information about installing products.

3. On PA-RISC systems only, enter the following command to determine if the HP-UX 11i Quality Pack is installed:

 # /usr/sbin/swlist -l bundle | grep -i Quality

 If the Quality Pack is not installed or if the date is before June 2003, then download the latest Quality Pack from the following Web site and install it:

4. To determine whether a patch is installed, enter a command similar to the following:

 # /usr/sbin/swlist -l patch | grep PHSS_28880

 Alternatively, to list all installed patches, enter the following command:
/usr/sbin/swlist -l patch | more

If a required patch is not installed, then download it from the following Web site and install it:

http://itresourcecenter.hp.com

If the Web site shows a more recent version of the patch, then download and install that version.

5. If you require a CSD for WebSphere MQ, then refer to the following Web site for download and installation information:

Note: There may be more recent versions of the patches listed installed on the system. If a listed patch is not installed, then determine whether a more recent version is installed before installing the version listed.

Configuring Kernel Parameters

Note: The kernel parameter values shown in this section are recommended values only. For production database systems, Oracle recommends that you tune these values to optimize the performance of the system. See your operating system documentation for more information about tuning kernel parameters.

On HP-UX 11.31 (version 3), the following parameters are not valid:

- msgmap
- ncallout

On all cluster nodes, verify that the kernel parameters shown in Table 2-3 are set either to the formula shown, or to values greater than or equal to the recommended value shown. The procedure following the table describes how to verify and set the values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Recommended Formula or Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ksi_alloc_max</td>
<td>(nproc*8)</td>
</tr>
<tr>
<td>executable_stack</td>
<td>0</td>
</tr>
<tr>
<td>max_thread_proc</td>
<td>1024</td>
</tr>
<tr>
<td>maxdsiz</td>
<td>1073741824 (1 GB)</td>
</tr>
<tr>
<td>maxdsiz_64bit</td>
<td>2147483648 (2 GB)</td>
</tr>
<tr>
<td>maxssiz</td>
<td>134217728 (128 MB)</td>
</tr>
<tr>
<td>maxssiz_64bit</td>
<td>1073741824 (1 GB)</td>
</tr>
<tr>
<td>maxuprc</td>
<td>((nproc*9)/10)</td>
</tr>
<tr>
<td>msgmap</td>
<td>(msgtql+2)</td>
</tr>
<tr>
<td>msgmni</td>
<td>(nproc)</td>
</tr>
</tbody>
</table>
To view the current value or formula specified for these kernel parameters, and to change them if necessary, use System Administration Manager (SAM) or kctune. The following procedure describes how to modify kernel settings using SAM:

1. Follow these steps, depending on your platform:

PA-RISC:

 a. Optionally, set the DISPLAY environment variable to specify the display of the local system:

 - Bourne, Bash, or Korn shell:

        ```bash
        # DISPLAY=local_host:0.0 ; export DISPLAY
        ```

 - C shell:

        ```bash
        # setenv DISPLAY local_host:0.0
        ```

 b. Start SAM:

      ```bash
      # /usr/sbin/sam
      ```

 c. Choose the **Kernel Configuration** area, then choose the **Configurable Parameters** area.

Table 2–3 (Cont.) Recommended HP-UX Kernel Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Recommended Formula or Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>msgseg</td>
<td>32767</td>
</tr>
<tr>
<td>msgtql</td>
<td>(nproc)</td>
</tr>
<tr>
<td>ncsize</td>
<td>(ninode+1024)</td>
</tr>
<tr>
<td>nfile</td>
<td>(15*nproc+2048)</td>
</tr>
<tr>
<td>nflocks</td>
<td>(nproc)</td>
</tr>
<tr>
<td>ninode</td>
<td>(8*nproc+2048)</td>
</tr>
<tr>
<td>nkthread</td>
<td>(((nproc*7)/4)+16)</td>
</tr>
<tr>
<td>nproc</td>
<td>4096</td>
</tr>
<tr>
<td>semmni</td>
<td>(nproc)</td>
</tr>
<tr>
<td>semnns</td>
<td>(semmni*2)</td>
</tr>
<tr>
<td>semmnu</td>
<td>(nproc-4)</td>
</tr>
<tr>
<td>semvmx</td>
<td>32767</td>
</tr>
<tr>
<td>shmmax</td>
<td>The size of physical memory or 1073741824 (0X40000000), whichever is greater.</td>
</tr>
</tbody>
</table>

Note: To avoid performance degradation, the value should be greater than or equal to the size of the SGA.

<table>
<thead>
<tr>
<th>shmmni</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>shmseg</td>
<td>512</td>
</tr>
<tr>
<td>vps_ceiling</td>
<td>64</td>
</tr>
</tbody>
</table>

Note: If the current value for any parameter is higher than the value listed in this table, then do not change the value of that parameter.
d. Check the value or formula specified for each of these parameters and, if necessary, modify that value or formula.
If necessary, refer to the SAM online Help for more information about completing this step.

Note: If you modify the value of a parameter that is not dynamic, then you must restart the system.

Itanium:

a. Enter the following command to start the `kcweb` application:

   ```
   # /usr/sbin/kcweb -F
   ```

b. Check the value or formula specified for each of these parameters and, if necessary, modify that value or formula.

 If necessary, refer to the `kcweb` online Help for more information about completing this step.

Note: If you modify the value of a parameter that is not dynamic, then you must restart the system.

2. If necessary, when the system restarts, log in and switch user to root.
3. Complete this procedure on all other cluster nodes.

Configuring SSH or RCP on All Cluster Nodes

Before you install and use Oracle Real Application clusters, you must enable remote copy of files to cluster nodes during installation, and you must prevent errors that can result from scripts that affect remote file copies and commands.

You can configure secure shell (SSH) for Oracle software installation owners (`crs`, `oracle`, `asm`) on all cluster nodes. OUI then uses the `ssh` and `scp` commands during installation to run remote commands on and copy files to the other cluster nodes. If you want to use SSH, then you must configure SSH so that these commands do not prompt for a password.

If SSH is not available, then Oracle Universal Installer attempts to use remote copy (`rcp`) and `remsh` instead. You must enable RCP for root, and for Oracle software installation owners (`crs`, `oracle`, `asm`).

HP-UX Secure Shell is based on OpenSSH. If you encounter problems establishing user equivalency with your SSH distribution, then either use the HP-UX secure shell, or install OpenSSH, or enable `rsh`.

Refer to the following sections as needed:

- Configuring RCP on Cluster Member Nodes
- Checking Existing SSH Configuration on the System
- Configuring SSH on Cluster Member Nodes
- Enabling SSH User Equivalency on Cluster Member Nodes
- Setting Display and X11 Forwarding Configuration
Configuring RCP on Cluster Member Nodes

To enable remote copy:

1. On each node in the cluster, using a text editor, create or open the .rhosts file in the root account home directory. Add lines similar to the following, where node1 and node2 are member nodes in the cluster, and domain is the domain name for the cluster:

 node1 root
 node1.domain root
 node2 root
 node2.domain root

 If you create the .rhosts file, then ensure that permissions for the .rhost file are set to 400. For example:

 # chmod 400 .rhosts

2. For each Oracle installation owner account, open the .rhosts file in that user account home directory (in this example, crs). Add lines similar to the following, where node1 and node2 are member nodes in the cluster, and domain is the domain name for the cluster:

 node1 crs
 node1.domain crs
 node2 crs
 node2.domain crs

 If you create the .rhosts file, then ensure that permissions for the .rhost file are set to 400. For example:

 # chmod 400 .rhosts

3. Test the RCP configuration for root and for Oracle installation owner accounts. For example:

 [root@node1] # remsh node2 11
 [root@node1] # remsh node1 11
 [root@node2] # remsh node1 11
 [root@node2] # remsh node2 11
 [crs@node1] $ remsh node2 11
 [crs@node1] $ remsh node1 11
 [crs@node2] $ remsh node1 11
 [crs@node2] $ remsh node2 11

Checking Existing SSH Configuration on the System

To determine if SSH is running, enter the following command:

$ ps -ef | grep sshd

If SSH is running, then the response to this command is one or more process ID numbers. In the home directory of the software owner that you want to use for the
installation (crs, oracle), use the command `ls -al` to ensure that the .ssh directory is owned and writable only by the user.

You need either an RSA or a DSA key for the SSH protocol. RSA is used with the SSH 1.5 protocol, while DSA is the default for the SSH 2.0 protocol. With OpenSSH, you can use either RSA or DSA. The instructions that follow are for SSH1. If you have an SSH2 installation, and you cannot use SSH1, then refer to your SSH distribution documentation to configure SSH1 compatibility or to configure SSH2 with DSA.

Configuring SSH on Cluster Member Nodes

To configure SSH, you must first create RSA or DSA keys on each cluster node, and then copy all the keys generated on all cluster node members into an authorized keys file that is identical on each node. Note that the SSH files must be readable only by root and by the software installation user (oracle, crs, asm), as SSH ignores a private key file if it is accessible by others. When this is done, then start the SSH agent to load keys into memory. In the examples that follow, the RSA key is used.

You must configure SSH separately for each Oracle software installation owner that you intend to use for installation.

To configure SSH, complete the following:

Create .SSH, and Create RSA Keys On Each Node

Complete the following steps on each node:

1. Log in as the software owner (in this example, the crs user).

2. To ensure that you are logged in as the Oracle user, and that the user ID matches the expected user ID you have assigned to the Oracle user, enter the commands `id` and `id crs`. Ensure that Oracle user group and user and the terminal window process group and user IDs are identical. For example:

   ```
   $ id
   uid=502(crs) gid=501(oinstall) groups=501(oinstall),502(crs)
   $ id crs
   uid=502(crs) gid=501(oinstall) groups=501(oinstall),502(crs)
   ```

3. If necessary, create the .ssh directory in the crs user's home directory, and set permissions on it to ensure that only the oracle user has read and write permissions:

   ```
   $ mkdir ~/.ssh
   $ chmod 700 ~/.ssh
   ```

4. Enter the following command:

   ```
   $ /usr/bin/ssh-keygen -t rsa
   ```

 At the prompts:
 - Accept the default location for the key file (press Enter).
 - Enter and confirm a pass phrase unique for this installation user.

 This command writes the RSA public key to the ~/.ssh/id_rsa.pub file and the private key to the ~/.ssh/id_rsa file.

 Never distribute the private key to anyone not authorized to perform Oracle software installations.
5. Repeat steps 1 through 4 on each node that you intend to make a member of the cluster, using the RSA key.

Add All Keys to a Common authorized_keys File

Complete the following steps:

1. On the local node, change directories to the .ssh directory in the Oracle Clusterware owner’s home directory (typically, either crs or oracle).

Then, add the RSA key to the authorized_keys file using the following commands:

```
$ cat id_rsa.pub >> authorized_keys
$ ls
```

In the .ssh directory, you should see the id_rsa.pub keys that you have created, and the file authorized_keys.

2. On the local node, use SCP (Secure Copy) or SFTP (Secure FTP) to copy the authorized_keys file to the oracle user .ssh directory on a remote node. The following example is with SCP, on a node called node2, with the Oracle Clusterware owner crs, where the crs user path is /home/crs:

```
[crs@node1 .ssh]$ scp authorized_keys node2:/home/crs/.ssh/
```

You are prompted to accept an RSA key. Enter Yes, and you see that the node you are copying to is added to the known_hosts file.

When prompted, provide the password for the crs user, which should be the same on all nodes in the cluster. The authorized_keys file is copied to the remote node.

Your output should be similar to the following, where xxx represents parts of a valid IP address:

```
[crs@node1 .ssh]$ scp authorized_keys node2:/home/crs/.ssh/
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'node1,xxx.xxx.173.152' (RSA) to the list of known hosts
crs@node2's password:
authorized_keys 100%  828  7.5MB/s   00:00
```

3. Using SSH, log in to the node where you copied the authorized_keys file, using the pass phrase you created. Then change to the .ssh directory, and using the cat command, add the RSA keys for the second node to the authorized_keys file:

```
[crs@node1 .ssh]$ ssh node2
The authenticity of host 'node2 (xxx.xxx.100.102) can't be established. RSA key fingerprint is z3:z3:33:z3:z3:33:zz:76:z3:z3:33.
Are you sure you want to continue connecting? (yes/no)? yes
Enter passphrase for key '/home/oracle/.ssh/id_rsa':
[crs@node2 crs]$ cd .ssh
[crs@node2 ssh]$ cat id_rsa.pub >> authorized_keys
```

Repeat steps 2 and 3 from each node to each other member node in the cluster.

When you have added keys from each cluster node member to the authorized_keys file on the last node you want to have as a cluster node member, then use
scp to copy the authorized_keys file with the keys from all nodes back to each cluster node member, overwriting the existing version on the other nodes.

If you want to confirm that you have all nodes in the authorized_keys file, enter the command `more authorized_keys`, and check to see that there is an RSA key for each member node. The file lists the type of key (ssh-rsa), followed by the key, and then followed by the user and server. For example:

```
ssh-rsa AAAABBBB . . . = crs@node1
```

Note: The crs user's ~/.ssh/authorized_keys file on every node must contain the contents from all of the ~/.ssh/id_rsa.pub files that you generated on all cluster nodes.

Enabling SSH User Equivalency on Cluster Member Nodes

To enable Oracle Universal Installer to use the ssh and scp commands without being prompted for a pass phrase, follow these steps:

1. On the system where you want to run Oracle Universal Installer, log in as the oracle user.

2. Enter the following commands:


   ```
   $ exec /usr/bin/ssh-agent $SHELL
   $ /usr/bin/ssh-add
   ```

3. At the prompts, enter the pass phrase for each key that you generated.

 If you have configured SSH correctly, then you can now use the ssh or scp commands without being prompted for a password or a pass phrase.

4. If you are on a remote terminal, and the local node has only one visual (which is typical), then use the following syntax to set the DISPLAY environment variable:

 - Bourne, Korn, and Bash shells

     ```
     $ export DISPLAY=hostname:0
     ```

 - C shell:

     ```
     $ setenv DISPLAY hostname:0
     ```

 For example, if you are using the Bash shell, and if your hostname is node1, then enter the following command:

   ```
   $ export DISPLAY=node1:0
   ```

5. To test the SSH configuration, enter the following commands from the same terminal session, testing the configuration of each cluster node, where nodename1, nodename2, and so on, are the names of nodes in the cluster:

   ```
   $ ssh nodename1 date
   $ ssh nodename2 date
   .
   .
   ```

 These commands should display the date set on each node.

 If any node prompts for a password or pass phrase, then verify that the ~/.ssh/authorized_keys file on that node contains the correct public keys.
If you are using a remote client to connect to the local node, and you see a message similar to "Warning: No xauth data; using fake authentication data for X11 forwarding," then this means that your authorized keys file is configured correctly, but your ssh configuration has X11 forwarding enabled. To correct this issue, proceed to step 6.

Note: The first time you use SSH to connect to a node from a particular system, you may see a message similar to the following:

```
The authenticity of host 'node1 (140.87.152.153)' can't be established.
RSA key fingerprint is
Are you sure you want to continue connecting (yes/no)?
```

Enter yes at the prompt to continue. You should not see this message again when you connect from this system to that node.

If you see any other messages or text, apart from the date, then the installation can fail. Make any changes required to ensure that only the date is displayed when you enter these commands.

You should ensure that any parts of login scripts that generate any output, or ask any questions, are modified so that they act only when the shell is an interactive shell.

6. To ensure that X11 forwarding will not cause the installation to fail, create a user-level SSH client configuration file for the Oracle software owner user, as follows:

 a. Using any text editor, edit or create the ~oracle/.ssh/config file.

 b. Make sure that the ForwardX11 attribute is set to no. For example:

      ```
      Host *
          ForwardX11 no
      ```

7. You must run Oracle Universal Installer from this session or remember to repeat steps 2 and 3 before you start Oracle Universal Installer from a different terminal session.

Setting Display and X11 Forwarding Configuration

- If you are on a remote terminal, and the local node has only one visual (which is typical), then use the following syntax to set the DISPLAY environment variable:

 Bourne, Korn, and Bash shells

  ```
  $ export DISPLAY=hostname:0
  ```

 C shell:

  ```
  $ setenv DISPLAY hostname:0
  ```

 For example, if you are using the Bash shell, and if your hostname is node1, then enter the following command:

  ```
  $ export DISPLAY=node1:0
  ```
To ensure that X11 forwarding will not cause the installation to fail, create a user-level SSH client configuration file for the Oracle software owner user, as follows:

a. Using any text editor, edit or create the software installation owner’s ~/.ssh/config file.

b. Make sure that the ForwardX11 attribute is set to no. For example:

```bash
Host *
    ForwardX11 no
```

Preventing Oracle Clusterware Installation Errors Caused by stty Commands

During an Oracle Clusterware installation, Oracle Universal Installer uses SSH (if available) to run commands and copy files to the other nodes. During the installation, hidden files on the system (for example, .bashrc or .cshrc) will cause makefile and other installation errors if they contain stty commands.

To avoid this problem, you must modify these files to suppress all output on STDERR, as in the following examples:

- Bourne, Bash, or Korn shell:
  ```bash
  if [ -t 0 ]; then
      stty intr ^C
  fi
  ```

- C shell:
  ```bash
  test -t 0
  if ($status == 0) then
      stty intr ^C
  endif
  ```

Note: When SSH is not available, the Installer uses the rsh and rcp commands instead of ssh and scp.

If there are hidden files that contain stty commands that are loaded by the remote shell, then OUI indicates an error and stops the installation.

Configuring Software Owner User Environments

You run OUI from the user account that you want to own the Oracle Clusterware installation (oracle or crs). However, before you start OUI you must configure the environment of the user performing the Oracle Clusterware installation. In addition, create other required Oracle software owners, if needed.

To set the Oracle software owners’ environments, follow these steps, for each software owner (crs, oracle, asm):

1. Start a new terminal session; for example, start an X terminal (xterm).
2. Enter the following command to ensure that X Window applications can display on this system:
   ```bash
   $ xhost + hostname
   ```
 The hostname is the name of the local host.
3. If you are not already logged in to the system where you want to install the software, then log in to that system as the software owner user.

4. If you are not logged in as the user, then switch to the software owner user you are configuring. For example, with the **crs** user:

   ```
   $ su - crs
   ```

5. To determine the default shell for the user, enter the following command:

   ```
   $ echo $SHELL
   ```

6. Open the user’s shell startup file in any text editor:
 - Bash shell (bash):
     ```
     $ vi .bash_profile
     ```
 - Bourne shell (**sh**) or Korn shell (**ksh**):
     ```
     $ vi .profile
     ```
 - C shell (**csh** or **tcsh**):
     ```
     % vi .login
     ```

7. If the **ORACLE_SID**, **ORACLE_HOME**, or **ORACLE_BASE** environment variable is set in the file, then remove the appropriate lines from the file.

8. Save the file, and exit from the text editor.

9. To run the shell startup script, enter one of the following commands:
 - Bash shell:
     ```
     $ . ./bash_profile
     ```
 - Bourne, Bash, or Korn shell:
     ```
     $ . ./profile
     ```
 - C shell:
     ```
     % source ./login
     ```

10. If you are not installing the software on the local system, then enter a command similar to the following to direct X applications to display on the local system:
 - Bourne, Bash, or Korn shell:
     ```
     $ DISPLAY=local_host:0.0 ; export DISPLAY
     ```
 - C shell:
     ```
     % setenv DISPLAY local_host:0.0
     ```

 In this example, **local_host** is the host name or IP address of the system that you want to use to display OUI (your workstation or PC).

11. If you determined that the **/tmp** directory has less than 400 MB of free disk space, then identify a file system with at least 400 MB of free space and set the **TEMP** and **TMPDIR** environment variables to specify a temporary directory on this file system:
a. Use the `bdf` command to identify a suitable file system with sufficient free space.

b. If necessary, enter commands similar to the following to create a temporary directory on the file system that you identified, and set the appropriate permissions on the directory:

   ```
   $ su - root
   # mkdir /mount_point/tmp
   # chmod a+wr /mount_point/tmp
   # exit
   ```

c. Enter commands similar to the following to set the TEMP and TMPDIR environment variables:

   ```
   * Bourne, Bash, or Korn shell:
     $ TEMP=/mount_point/tmp
     $ TMPDIR=/mount_point/tmp
     $ export TEMP TMPDIR
   *
   * C shell:
     % setenv TEMP /mount_point/tmp
     % setenv TMPDIR /mount_point/tmp
   ```

12. If you plan to use raw devices for database file storage, then set the DBCA_RAW_CONFIG environment variable to specify the full path to the raw device mapping file:

   ```
   * Bourne, Bash, or Korn shell:
     $ DBCA_RAW_CONFIG=$ORACLE_BASE/oradata/dbname/dbname_raw.conf
     $ export DBCA_RAW_CONFIG
   *
   * C shell:
     % setenv DBCA_RAW_CONFIG=$ORACLE_BASE/oradata/dbname/dbname_raw.conf
   ```

13. Enter the following command to ensure that the ORACLE_HOME and TNS_ADMIN environment variables are not set:

   ```
   * Bourne, Bash, or Korn shell:
     $ unset ORACLE_HOME
     $ unset TNS_ADMIN
   *
   * C shell:
     % unsetenv ORACLE_HOME
     % unsetenv TNS_ADMIN
   ```
Creating Required Symbolic Links

To enable you to successfully relink Oracle products after installing this software, enter the following commands to create required X library symbolic links in the `/usr/lib` directory:

```
# cd /usr/lib
# ln -s libX11.3 libX11.sl
# ln -s libX11.E.2 libX11.sl
# ln -s libXext.3 libXext.sl
# ln -s libXhp11.3 libXhp11.sl
# ln -s libXt.3 libXt.sl
# ln -s libXtst.2 libXtst.sl
```

Requirements for Creating an Oracle Clusterware Home Directory

During installation, you are prompted to provide a path to a home directory to store Oracle Clusterware binaries. Ensure that the directory path you provide meets the following requirements:

- It should be created in a path separate from existing Oracle homes.
- It should not be located in a user home directory.
- It should be created either as a subdirectory in a path where all files can be owned by root, or in a unique path.
- Before installation, it should be owned by the installation owner of Oracle Clusterware (typically `oracle` for a single installation owner for all Oracle software, or `crs` for role-based Oracle installation owners), and set to 750 permissions.

For installations with Oracle Clusterware only, Oracle recommends that you create a path compliant with Oracle Optimal Flexible Architecture (OFA) guidelines, so that Oracle Universal Installer (OUI) can select that directory during installation. For OUI to recognize the path as an Oracle software path, it must be in the form `u0[1-9]/app`.

When OUI finds an OFA-compliant path, it creates the Oracle Clusterware and Oracle Central Inventory (oraInventory) directories for you.

Create an Oracle Clusterware path. For example:

```
Note: If the ORACLE_HOME environment variable is set, the Installer uses the value that it specifies as the default path for the Oracle home directory. However, if you set the ORACLE_BASE environment variable, Oracle recommends that you unset the ORACLE_HOME environment variable and choose the default path suggested by the Installer.

Creating Required Symbolic Links

Note: This task is required only if the Motif 2.1 Development Environment package (X11MotifDevKit.MOTIF21-PRG) is not installed.
Alternatively, if you later intend to install Oracle Database software, then create an Oracle base path. OUI automatically creates an OFA-compliant path for Oracle Clusterware derived from the Oracle base path. The Optimal Flexible Architecture path for the Oracle Base is /u01/app/user, where user is the name of the user account that you want to own the Oracle Database software. For example:

# mkdir -p /u01/app/oracle
# chown -R oracle:oinstall /u01/app/oracle
# chmod -R 775 /u01/app/oracle

---

**Note:** If you choose to create an Oracle Clusterware home manually, then do not create the Oracle Clusterware home under Oracle base. Creating an Oracle Clusterware installation in an Oracle base directory will cause succeeding Oracle installations to fail.

---

**See Also:** "Creating Standard Configuration Operating System Groups and Users" on page 3-1, and "Creating Custom Configuration Groups and Users for Job Roles" on page 3-4 for information about creating groups, users, and software homes for additional Oracle software installations.

---

Understanding and Using Cluster Verification Utility

Cluster Verification Utility (CVU) is a tool that performs system checks. This guide provides Cluster Verification Utility commands to assist you with confirming that your system is properly configured for Oracle Clusterware and Oracle RAC installation.

This section describes the following topics:

- Entering Cluster Verification Utility Commands
- Using CVU to Determine if Installation Prerequisites are Complete
- Using the Cluster Verification Utility Help
- Using Cluster Verification Utility with Oracle Database 10g Release 1 or 2
- Verbose Mode and "Unknown" Output

**Entering Cluster Verification Utility Commands**

Cluster Verification Utility is provided with two scripts: runcluvfy.sh, which is designed to be used before installation, and cluvfy, which is in the path CRS_home/bin. The script runcluvfy.sh contains temporary variable definitions which enable it to be run before installing Oracle Clusterware or Oracle Database. After you install Oracle Clusterware, use the command cluvfy to check prerequisites and perform other system readiness checks.

Before Oracle software is installed, to enter a Cluster Verification Utility command, change directories and start runcluvfy.sh using the following syntax:

```bash
cd /mountpoint
./runcluvfy.sh options
```
In the preceding example, the variable `mountpoint` represents the mountpoint path for the installation media and the variable `options` represents the Cluster Verification Utility command options that you select. For example:

```
$ cd /mnt/dvdrom
$./runcluvfy.sh comp nodereach -n node1,node2 -verbose
```

By default, when you enter a Cluster Verification Utility command, the utility provides a summary of the test. During preinstallation, Oracle recommends that you obtain detailed output by using the `-verbose` argument with the command. The `-verbose` argument produces detailed output of individual checks. Where applicable, it shows results for each node in a tabular layout.

### Using CVU to Determine if Installation Prerequisites are Complete

You can use Cluster Verification Utility (CVU) to determine which system prerequisites for installation are already completed. Use this option if you are installing Oracle 11g release 1 (11.1) on a system with a pre-existing Oracle software installation. In using this option, note the following:

- You must complete the prerequisites for using Cluster Verification Utility, notably configuring SSH between all nodes in the cluster, before you can complete a clusterwide status check.
- Cluster Verification Utility can assist you by finding preinstallation steps that need to be completed, but it cannot perform preinstallation tasks.

Use the following syntax to determine what preinstallation steps are completed, and what preinstallation steps must be performed:

```
$./runcluvfy.sh stage -pre crsinst -n node_list
```

In the preceding syntax example, replace the variable `node_list` with the names of the nodes in your cluster, separated by commas.

For example, for a cluster with mountpoint `/mnt/dvdrom/`, and with nodes `node1`, `node2`, and `node3`, enter the following command:

```
$ cd /mnt/dvdrom/
$./runcluvfy.sh stage -pre crsinst -n node1,node2,node3
```

Review the Cluster Verification Utility report, and proceed to the sections of the preinstallation chapter to complete additional steps as needed.

### Using the Cluster Verification Utility Help

The `cluvfy` commands have context-sensitive help that shows correct syntax usage based on the command line arguments that you enter.

If you enter an invalid Cluster Verification Utility command, then Cluster Verification Utility shows the correct usage for that command. For example, if you type `runcluvfy.sh stage -pre dbinst`, then Cluster Verification Utility shows the correct syntax for the database preinstallation checks that it performs with the `dbinst` stage option. The following is a list of context help commands:

- `cluvfy -help`—Cluster Verification Utility displays detailed command information.
- `cluvfy comp -list`—Cluster Verification Utility displays a list of components that can be checked, and brief descriptions of how each component is checked.
- `cluvfy comp -help` — Cluster Verification Utility displays detailed syntax for each of the valid component checks.
- `cluvfy stage -list` — Cluster Verification Utility displays a list of valid stages.
- `cluvfy stage -help` — Cluster Verification Utility displays detailed syntax for each of the valid stage checks.

**Using Cluster Verification Utility with Oracle Database 10g Release 1 or 2**

You can use Cluster Verification Utility on the Oracle Database 11g release 1 (11.1) media to check system requirements for Oracle Database 10g release 1 (10.1) and later installations. To use Cluster Verification Utility to check 10.2 installations, append the command flag `-r 10gR2` to the standard system check commands.

For example, to perform a verification check for a Cluster Ready Services 10.2 installation, on a system where the media mountpoint is `/mnt/dvdrom`, and the cluster nodes are `node1`, `node2`, and `node3`, enter the following command:

```bash
$ cd /mnt/dvdrom
$./runcluvfy.sh stage -pre crsinst -n node1,node2,node3 -r 10gR2
```

**Note:** If you do not specify a release version to check, then Cluster Verification Utility checks for 11g release 1 (11.1) requirements.

---

**Verbose Mode and "Unknown" Output**

If you run Cluster Verification Utility using the `-verbose` argument, and it responds with `UNKNOWN` for a particular node, then this is because Cluster Verification Utility cannot determine if a check passed or failed. The following is a list of possible causes for an "Unknown" response:

- The node is down
- Executables required by Cluster Verification Utility are missing in the `/bin` directory in the Oracle Clusterware home or Oracle home directory
- The user account starting Cluster Verification Utility does not have privileges to run common operating system executables on the node
- The node is missing an operating system patch, or a required package
- The node has exceeded the maximum number of processes or maximum number of open files, or there is a problem with IPC segments, such as shared memory or semaphores

---

**Checking Oracle Clusterware Installation Readiness with CVU**

Use Cluster Verification Utility (CVU) to check your servers for their readiness to install Oracle Clusterware:

As the installation owner user (oracle or crs), ensure that you have ssh keys loaded into memory, and enter a command using the following syntax to verify that your cluster is properly configured for Oracle Clusterware installation:

```bash
/mountpoint/runcluvfy.sh stage -pre crsinst -n node_list [-verbose]
```

In the preceding syntax example, the variable `node_list` is a comma-delimited list of nodes in your cluster. This command checks node reachability, user and group...
equivalence on each node, node connectivity, and basic system requirements, including kernel versions and packages.

Select the option `-verbose` to receive progress updates as Cluster Verification Utility performs its system checks, and detailed reporting of the test results.

For example, to verify system readiness on a two-node cluster with nodes `node1` and `node2`, with the mountpoint `/mnt/dvdrom`, and with updates and a summary of the verification checks Cluster Verification Utility performs, enter the following command:

```
$ /mnt/dvdrom/runcluvfy.sh stage -pre crsinst -n node1,node2 -verbose
```
This chapter describes the system configuration tasks that are generally completed by the system administrator if you plan to install Oracle Database or Oracle Database with Oracle Real Application Clusters (Oracle RAC). These tasks include creating additional groups and users for the database and for Automatic Storage Management (ASM).

You must complete these tasks before you or a database administrator start Oracle Universal Installer to install Oracle RAC. If you do not plan on installing Oracle Database on this cluster, then you can continue to the next chapter.

This chapter contains the following topics:

- Creating Standard Configuration Operating System Groups and Users
- Creating Custom Configuration Groups and Users for Job Roles
- Understanding the Oracle Base Directory Path
- Creating the Oracle Base Directory Path
- Environment Requirements for Oracle Database and Oracle ASM Owners

---

**Note:** Any task required for Oracle Database is also required for Oracle RAC, unless otherwise stated.

---

### Creating Standard Configuration Operating System Groups and Users

A standard configuration is a configuration with the default groups and users that Oracle Universal Installer (OUI) displays by default during Oracle database installation, which are not created already for Oracle Clusterware installation.

The following sections describe how to create the required operating system user and groups for Oracle Database or Oracle Database with Oracle RAC and ASM installations:

To allocate separate operating system user privileges to different administrative users, refer to "Creating Custom Configuration Groups and Users for Job Roles" on page 3-4.

- Overview of Groups and Users for Oracle Database Installations
- Creating Standard Operating System Groups and Users
Overview of Groups and Users for Oracle Database Installations

The following operating system groups and user are required if you plan to install Oracle Database:

- The OSDBA group (typically, dba)
  You must create this group the first time you install Oracle Database software on the system. In a standard installation, you are prompted to one group to grant the following privileges to its members:
  - Database Administrator (OSDBA)
  - Database Operator (OSOPER)
  - ASM Administrator (OSASM)
  In addition, members of this group are granted database write access to ASM (OSDBA for ASM).
  The default name for this group is dba.

- An unprivileged user
  Verify that the unprivileged user nobody exists on the system. The nobody user must own the external jobs (extjob) executable after the installation.

Creating Standard Operating System Groups and Users

The following sections describe how to create required and optional operating system user and groups:

- Verifying That the User nobody Exists
- Creating the OSDBA Group
- Creating Identical Users and Groups on Other Cluster Nodes

Verifying That the User nobody Exists

If you intend to install Oracle Database or Oracle RAC, then complete the following procedure to verify that the user nobody exists on the system:

1. To determine if the user exists, enter the following command:
   ```bash
 # id nobody
   ```
   If this command displays information about the nobody user, then you do not have to create that user.

2. If the nobody user does not exist, then enter a command similar to the following to create it:
   ```bash
 # /usr/sbin/useradd -u 65001 nobody
   ```

3. Repeat this procedure on all the other nodes in the cluster. Note that the ID number for uid and gid should be the same on all nodes of the cluster.

Creating the OSDBA Group

To create the OSDBA group, complete the following procedure:

1. Enter a command similar to the following:
   ```bash
 # /usr/sbin/groupadd -g 502 dba
   ```
The preceding command creates the group `dba`, with the group ID number 502.

**Creating Identical Users and Groups on Other Cluster Nodes**

**Note:** You must complete the following procedures only if you are using local users and groups. If you are using users and groups defined in a directory service such as NIS, then they are already identical on each cluster node.

Oracle software owner users and groups must exist and be identical on all cluster nodes.

**Identifying Existing User and Group IDs**

To determine the user ID (UID) of the `oracle` user, and the group IDs (GID) of the Oracle Inventory, OSDBA, and OSOPER groups, follow these steps:

1. Enter a command similar to the following (in this case, to determine a user ID):
   ```bash
 # id oracle
   ```
   The output from this command is similar to the following:
   
   ```
 uid=501(oracle) gid=501(oinstall) groups=502(dba),503(oper),506(asmdba)
   ```

2. From the output, identify the user ID (UID) for the user and the group identities (GIDs) for the groups to which it belongs. Ensure that these are identical on each node.

**Creating Users and Groups on the Other Cluster Nodes**

To create users and groups on the other cluster nodes, repeat the following procedure on each node:

1. Log in to the next cluster node as `root`.

2. Enter commands similar to the following to create groups. Use the `-g` option to specify the correct GID for each group.
   ```bash
 # /usr/sbin/groupadd -g 501 oinstall
 # /usr/sbin/groupadd -g 502 dba
   ```

   **Note:** If a group already exists, but has a different group ID, then use the `groupmod` command to modify it if necessary. If you cannot use the same group ID for a particular group on this node, then view the `/etc/group` file on all nodes to identify a group ID that is available on every node. You must then specify that ID for the group on all of the nodes.

3. To create the `oracle` user or another required user, enter a command similar to the following (in this example, to create the `oracle` user):
   ```bash
 # /usr/sbin/useradd -u 501 -g oinstall oracle
   ```

   In the preceding command:
- The \(-u\) option specifies the user ID, which must be the user ID that you identified in the previous subsection
- The \(-g\) option specifies the primary group, which must be the Oracle Inventory group; for example, oinstall

**Note:** If the user already exists, then use the `usermod` command to modify it if necessary. If you cannot use the same user ID for the user on this node, then view the `/etc/passwd` file on all nodes to identify a user ID that is available on every node. You must then specify that ID for the user on all of the nodes.

4. Set the password of the user. For example:

```
passwd oracle
```

---

### Creating Custom Configuration Groups and Users for Job Roles

A Custom configuration is a configuration with groups and users that divide access privileges granted by membership in separate operating system groups and users.

**Note:** This configuration is optional, to restrict user access to Oracle software by responsibility areas for different administrator users.

To allocate operating system user privileges to a minimum number of groups and users, refer to [Creating Standard Configuration Operating System Groups and Users](#) on page 3-1.

- **Overview of Creating Operating System Group and User Options Based on Job Roles**
- **Creating Database Operating System Groups and Users with Job Role Separation**

**Note:** If you want to use a directory service, such as Network Information Services (NIS), refer to your operating system documentation for further information.

---

### Overview of Creating Operating System Group and User Options Based on Job Roles

This section provides an overview of how to create users and groups to divide access privileges by job roles. Log in as `root` to create these groups and users.

- **Users for Oracle Installations with Job Role Separation**
- **Database Groups for Job Role Installations**
- **ASM Groups for Job Role Installations**

**Users for Oracle Installations with Job Role Separation**

Oracle recommends that you create the following operating system group and users for all installations where you create separate software installation owners:
Creating Custom Configuration Groups and Users for Job Roles

- **One software owner to own each Oracle software product** (typically, oracle, for the database software owner user, crs for Oracle Clusterware, and asm for Oracle ASM.

You must create at least one software owner the first time you install Oracle software on the system. This user owns the Oracle binaries of the Oracle Clusterware software, and you can also make this user the owner of the binaries of Automatic Storage Management and Oracle Database or Oracle RAC.

Oracle software owners must have the Oracle Inventory group as their primary group, so that each Oracle software installation owner can write to the Central Inventory, and so that OCR and Oracle Clusterware resource permissions are set correctly. The Database software owner must also have the OSDBA group and (if you create it) the OSOPER group as secondary groups. In Oracle documentation, when Oracle software owner users are referred to, they are called oracle users.

Oracle recommends that you create separate software owner users to own each Oracle software installation. Oracle particularly recommends that you do this if you intend to install more than one database on the system.

In Oracle documentation, a user created to own the Oracle Clusterware binaries is called the crs user.

If you intend to use Automatic Storage Management (ASM), then Oracle recommends that you create a separate user to own ASM files. In Oracle documentation, that user is referred to as asm.

**See Also:** Oracle Database Administrator's Reference for UNIX Systems and Oracle Database Administrator's Guide for more information about the OSDBA, OSASM and OSOPER groups and the SYSDBA, SYSASM and SYSOPER privileges

- **An unprivileged user**

Verify that the unprivileged user nobody exists on the system. The nobody user must own the external jobs (extjob) executable after the installation.

**Database Groups for Job Role Installations**

The following operating system groups and user are required if you are installing Oracle Database:

- **The OSDBA group (typically, dba)**

You must create this group the first time you install Oracle Database software on the system. This group identifies operating system user accounts that have database administrative privileges (the SYSDBA privilege). If you do not create separate OSDBA, OSOPER and OSASM groups for the ASM instance, then operating system user accounts that have the SYSOPER and SYSASM privileges must be members of this group. The name used for this group in Oracle code examples is dba. If you do not designate a separate group as the OSASM group, then the OSDBA group you define is also by default the OSASM group.

If you want to specify a group name other than the default dba group, then you must choose the Custom installation type to install the software or start Oracle Universal Installer (OUI) as a user that is not a member of this group. In this case, OUI prompts you to specify the name of this group.

On Automatic Storage Manager (ASM) instances, members of the OSDBA group are given privileges to perform all administrative privileges granted to the...
SYSASM privileges, including mounting and dismounting disk groups. This privilege grant is deprecated, and will be removed in a future release.

- The OSOPER group for Oracle Database (typically, oper)

  This is an optional group. Create this group if you want a separate group of operating system users to have a limited set of database administrative privileges (the SYSOPER privilege). By default, members of the OSDBA group also have all privileges granted by the SYSOPER privilege.

  If you want to use the OSOPER group to create a database administrator group with fewer privileges than the default dba group, then you must choose the Custom installation type to install the software or start OUI as a user that is not a member of the dba group. In this case, OUI prompts you to specify the name of this group. The usual name chosen for this group is oper.

### ASM Groups for Job Role Installations

SYSASM is a new system privilege that enables the separation of the ASM storage administration privilege from SYSDBA. Members of the database OSDBA group are granted SYSASM privileges, but this privilege is deprecated, and may be removed in a future release.

Use the Custom Installation option to designate separate operating system groups as the operating system authentication groups for privileges on ASM. Before you start OUI, create the following groups and users for ASM:

- The Oracle Automatic Storage Management Group (typically asm)

  SYSASM privileges for ASM files provide administrator privileges for storage file equivalent to SYSDBA privileges for the database. In Oracle documentation, the operating system group whose members are granted SYSASM privileges is called the OSASM group, and in command lines, is referred to as asm.

  If you have more than one database on your system, then you must create a separate OSASM group, and a separate ASM user. ASM can support multiple databases.

  Members of the OSASM group can use SQL to connect to an ASM instance as SYSASM using operating system authentication. The SYSASM privileges permit mounting and dismounting disk groups, and other storage administration tasks. SYSASM privileges provide no access privileges on an RDBMS instance. In this release of Oracle Clusterware and Oracle Database, SYSASM privileges and SYSDBA privileges are equivalent, but using SYSDBA privileges to perform ASM management tasks on ASM instances is deprecated. SYSDBA privileges may be limited on ASM instances in a future release.

- The OSDBA group for ASM (typically asmdba)

  Members of the OSDBA group for ASM are granted read and write access to files managed by ASM. The Oracle database software owner (typically oracle) must be a member of this group, and all users with OSDBA membership on databases that you want to have access to the files managed by ASM should be members of the OSDBA group for ASM.

### Creating Database Operating System Groups and Users with Job Role Separation

The following sections describe how to create the required operating system user and groups:

- Creating the OSDBA Group for Custom Installations
Creating Custom Configuration Groups and Users for Job Roles

- Creating an OSOPER Group
- Creating the Oracle Software Owner User
- Creating Identical Database Users and Groups on Other Cluster Nodes

Creating the OSDBA Group for Custom Installations
You must create an OSDBA group in the following circumstances:

- An OSDBA group does not exist, for example, if this is the first installation of Oracle Database software on the system
- An OSDBA group exists, but you want to give a different group of operating system users database administrative privileges for a new Oracle Database installation

If the OSDBA group does not exist or if you require a new OSDBA group, then create it as follows. In the following procedure, use the group name `dba` unless a group with that name already exists:

```bash
/usr/sbin/groupadd -g 502 dba
```

Creating an OSOPER Group
Create an OSOPER group only if you want to identify a group of operating system users with a limited set of database administrative privileges (SYSOPER operator privileges). For most installations, it is sufficient to create only the OSDBA group. If you want to use an OSOPER group, then you must create it in the following circumstances:

- If an OSOPER group does not exist; for example, if this is the first installation of Oracle Database software on the system
- If an OSOPER group exists, but you want to give a different group of operating system users database operator privileges in a new Oracle installation

If you require a new OSOPER group, then create it as follows. In the following, use the group name `oper` unless a group with that name already exists.

```bash
/usr/sbin/groupadd -g 505 oper
```

Creating the OSASM Group
If the OSASM group does not exist or if you require a new OSASM group, then create it as follows. In the following procedure, use the group name `asm` unless a group with that name already exists:

```bash
/usr/sbin/groupadd -g 504 asm
```

Creating the OSDBA Group for ASM
You must create an OSDBA group for ASM to provide access to the ASM instance. This is necessary if OSASM and OSDBA are different groups.

If the OSDBA group for ASM does not exist or if you require a new OSDBA group for ASM, then create it as follows. In the following procedure, use the group name `asmdba` unless a group with that name already exists:

```bash
/usr/sbin/groupadd -g 506 asmdba
```
Creating Custom Configuration Groups and Users for Job Roles

Creating the Oracle Software Owner User
You must create an Oracle software owner user in the following circumstances:

- If an Oracle software owner user exists, but you want to use a different operating system user, with different group membership, to give database administrative privileges to those groups in a new Oracle Database installation
- If you have created an Oracle software owner for Oracle Clusterware, such as crs, and you want to create a separate Oracle software owner for Oracle Database software, such as dba.

Determining if an Oracle Software Owner User Exists To determine whether an Oracle software owner user named oracle or crs exists, enter a command similar to the following (in this case, to determine if oracle exists):

```
id oracle
```

If the user exists, then the output from this command is similar to the following:

```
uid=501(oracle) gid=501(oinstall) groups=502(dba),503(oper)
```

Determine whether you want to use the existing user, or create another user. If you want to use the existing user, then ensure that the user's primary group is the Oracle Inventory group and that it is a member of the appropriate OSDBA and OSOPER groups. Refer to one of the following sections for more information:

- To modify an existing user, refer to the "Modifying an Existing Oracle Software Owner User" section on page 3-9.
- To create a user, refer to the following section.

Creating an Oracle Software Owner User If the Oracle software owner user does not exist, or if you require a new Oracle software owner user, then create it as follows. In the following procedure, use the user name oracle unless a user with that name already exists.

1. To create an oracle user, enter a command similar to the following:

```
/usr/sbin/useradd -u 502 -g oinstall -G dba oracle
```

In the preceding command:

- The -u option specifies the user ID. Using this command flag is optional, as you can allow the system to provide you with an automatically generated user ID number. However, you must make note of the oracle user ID number, as you require it later during preinstallation.
- The -g option specifies the primary group, which must be the Oracle Inventory group—for example, oinstall
- The -G option specifies the secondary groups, which must include the OSDBA group, and, if required, the OSOPER group. For example: dba, or dba, oper

2. Set the password of the oracle user:

```
passwd oracle
```

Note: If necessary, contact your system administrator before using or modifying an existing user.
Modifying an Existing Oracle Software Owner User  If the oracle user exists, but its primary group is not oinstall, or it is not a member of the appropriate OSDBA or OSOPER groups, then enter a command similar to the following to modify it. Specify the primary group using the \(-g\) option and any required secondary group using the \(-G\) option:

```
/usr/sbin/usermod -g oinstall -G dba[,oper] oracle
```

Repeat this procedure on all of the other nodes in the cluster.

Creating a Separate ASM Owner

1. To create asm, enter a command similar to the following:

```
/usr/sbin/useradd -u 504 -g oinstall -G asm asm
```

   In the preceding command:
   - The \(-u\) option specifies the user ID. Using this command flag is optional, as you can allow the system to provide you with an automatically generated user ID number. However, you must make note of the \asm\ ID number, as you require it later during preinstallation.
   - The \(-g\) option specifies the primary group, which must be the Oracle Inventory group—for example, oinstall
   - The \(-G\) option specifies the secondary groups, which must include the OSASM group. For example: asm.

2. Set the password for \asm:\

```
passwd asm
```

Verifying That the User nobody Exists

Before installing the software, complete the following procedure to verify that the user nobody exists on the system:

1. To determine if the user exists, enter the following command:

```
id nobody
```

   If this command displays information about the nobody user, then you do not have to create that user.

2. If the nobody user does not exist, then enter the following command syntax to create it:

```
/usr/sbin/useradd -u number nobody
```

   for example:

```
/usr/sbin/useradd -u 65555 nobody
```

3. Repeat this procedure on all the other nodes in the cluster.
Creating Identical Database Users and Groups on Other Cluster Nodes

Note: You must complete the following procedures only if you are using local users and groups. If you are using users and groups defined in a directory service such as NIS, then they are already identical on each cluster node.

Oracle software owner users and the Oracle Inventory, OSDBA, and OSOPER groups must exist and be identical on all cluster nodes. To create these identical users and groups, you must identify the user ID and group IDs assigned them on the node where you created them, and then create the user and groups with the same name and ID on the other cluster nodes.

Identifying Existing User and Group IDs
To determine the user ID (UID) of the crs, oracle, or asm users, and the group IDs (GID) of the Oracle Inventory, OSDBA, and OSOPER groups, follow these steps:

1. Enter a command similar to the following (in this case, to determine a user ID for the oracle user):

   ```
 # id oracle
   ```

   The output from this command is similar to the following:

   ```
 uid=502(oracle) gid=501(oinstall) groups=502(dba),503(oper)
   ```

2. From the output, identify the user ID (UID) for the user and the group identities (GIDs) for the groups to which it belongs. Ensure that these ID numbers are identical on each node of the cluster.

Creating Users and Groups on the Other Cluster Nodes
To create users and groups on the other cluster nodes, repeat the following procedure on each node:

1. Log in to the next cluster node as root.

2. Enter commands similar to the following to create the oinstall and dba groups, and if required, the oper and asm groups. Use the -g option to specify the correct GID for each group.

   ```
 # /usr/sbin/groupadd -g 501 oinstall
 # /usr/sbin/groupadd -g 502 crs
 # /usr/sbin/groupadd -g 503 dba
 # /usr/sbin/groupadd -g 505 oper
 # /usr/sbin/groupadd -g 504 asm
 # /usr/sbin/groupadd -g 506 asmdba
   ```

Note: If the group already exists, then use the groupmod command to modify it if necessary. If you cannot use the same group ID for a particular group on this node, then view the /etc/group file on all nodes to identify a group ID that is available on every node. You must then change the group ID on all nodes to the same group ID.
3. To create the `oracle` or `asm` user, enter a command similar to the following (in this example, to create the `oracle` user):

   ```
 # /usr/sbin/useradd -u 502 -g oinstall -G dba[,oper] oracle
   ```

   In the preceding command:
   - The `-u` option specifies the user ID, which must be the user ID that you identified in the previous subsection
   - The `-g` option specifies the primary group, which must be the Oracle Inventory group, for example `oinstall`
   - The `-G` option specifies the secondary groups, which must include the OSDBA group and if required, the OSOPER group. For example: `dba` or `dba,oper`

   **Note:** If the user already exists, then use the `usermod` command to modify it if necessary. If you cannot use the same user ID for the user on every node, then view the `/etc/passwd` file on all nodes to identify a user ID that is available on every node. You must then specify that ID for the user on all of the nodes.

4. Set the password of the user. For example:

   ```
 # passwd oracle
   ```

5. Complete SSH configuration for each user as described in the section “Configuring SSH or RCP on All Cluster Nodes” on page 2-20.

6. Complete user environment configuration tasks for each user as described in the section Configuring Software Owner User Environments on page 2-26.

### Understanding the Oracle Base Directory Path

This section contains information about preparing an Oracle base directory.

#### Overview of the Oracle Base directory

During installation, you are prompted to specify an Oracle base location, which is owned by the user performing the installation. You can choose a location with an existing Oracle home, or choose another directory location that does not have the structure for an Oracle base directory. However, setting an Oracle base directory may become mandatory in a future release.

Using the Oracle base directory path helps to facilitate the organization of Oracle installations, and helps to ensure that installations of multiple databases maintain an Optimal Flexible Architecture (OFA) configuration.

#### Understanding Oracle Base and Oracle Clusterware Directories

Even if you do not use the same software owner to install Oracle Clusterware and Oracle Database, be aware that the `root.sh` script in the clusterware installation changes ownership of the Oracle Clusterware home directory to `root`. For this reason, the Oracle Clusterware home cannot be in the same location as other Oracle software.
Creating the Oracle Base Directory Path

If you have created a path for the Oracle Clusterware home that is compliant with Oracle Optimal Flexible Architecture (OFA) guidelines for Oracle software paths, then you do not need to create an Oracle base directory. When OUI finds an OFA-compliant path, it creates the Oracle base directory in that path.

For OUI to recognize the path as an Oracle software path, it must be in the form u0[1-9]/app, and it must be writable by any member of the oinstall group.

Oracle recommends that you create an Oracle base path manually. The Optimal Flexible Architecture path for the Oracle Base is /u01/app/, where user is the name of the user account that you want to own the Oracle Database software. For example:

```
mkdir -p /u01/app/oracle
chown -R oracle:oinstall /u01/app/oracle
chmod -R 775 /u01/app/oracle
```

Environment Requirements for Oracle Database and Oracle ASM Owners

If you create separate Oracle installation owner accounts for the database or ASM, then complete the following tasks for the Oracle Database software owner (oracle) and Oracle ASM software owner (asm).

- If you create an Oracle base path, as described in the preceding section, then set the path to the Oracle base directory as an environment variable for the Oracle database owner. For example:

  ```
 # ORACLE_BASE=/u01/app/oracle; export ORACLE_BASE
  ```

- Set the installation software owner user (asm, oracle) default file mode creation mask (umask) to 022 in the shell startup file. Setting the mask to 022 ensures that the user performing the software installation creates files with 644 permissions.

- Set ulimit settings for file descriptors and processes for the installation software owner (asm, oracle)

- Set the software owners’ environment variable DISPLAY environment variables in preparation for the ASM or Oracle Database installation
This chapter describes the storage configuration tasks that you must complete before you start Oracle Universal Installer. It includes information about the following tasks:

- Reviewing Storage Options for Oracle Clusterware Files
- Checking for Available Shared Storage with CVU
- Configuring Storage for Oracle Clusterware Files on a Supported Shared File System
- Configuring Storage for Oracle Clusterware Files on Raw Devices

### Reviewing Storage Options for Oracle Clusterware Files

This section describes supported options for storing Oracle Clusterware files. It includes the following sections:

- Overview of Storage Options
- General Storage Considerations for Oracle Clusterware
- Quorum Disk Location Restriction with Existing 9.2 Clusterware Installations
- After You Have Selected Disk Storage Options

#### Overview of Storage Options

There are two ways of storing Oracle Clusterware files:

- **A supported shared file system**: Supported file systems include the following:
  - A supported cluster file system

  **See Also**: The Certify page on OracleMetalink for the status of supported cluster file systems, as none are certified at the time of this release

  - Network File System (NFS): A file-level protocol that enables access and sharing of files

  **See Also**: The Certify page on OracleMetalink for supported Network Attached Storage (NAS) devices

- **Raw Devices**: Oracle Clusterware files can be placed on RAW devices based on shared disk partitions.
General Storage Considerations for Oracle Clusterware

For all installations, you must choose the storage option that you want to use for Oracle Clusterware files and Oracle Database files, or for Oracle Clusterware with Oracle Real Application Clusters databases (Oracle RAC). You do not have to use the same storage option for each file type.

Oracle Clusterware files include voting disks, used to monitor cluster node status, and Oracle Cluster Registry (OCR) which contains configuration information about the cluster. The voting disks and OCR are shared files on a cluster or network file system environment. If you do not use a cluster file system, then you must place these files on shared raw devices. Oracle Universal Installer (OUI) automatically initializes the OCR during the Oracle Clusterware installation.

For voting disk file placement, Oracle recommends that each voting disk is configured so that it does not share any hardware device or disk, or other single point of failure. Any node that does not have available to it an absolute majority of voting disks configured (more than half) will be restarted.

The following table shows the storage options supported for storing Oracle Clusterware files. Oracle Clusterware files include the Oracle Cluster Registry (OCR), a mirrored OCR file (optional), the Oracle Clusterware voting disk, and additional voting disk files (optional).

<table>
<thead>
<tr>
<th>Storage Option</th>
<th>File Types Supported</th>
<th>OCR and Voting Disks</th>
<th>Oracle Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Storage Management</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Local storage</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>NFS file system</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td><strong>Note:</strong> Requires a certified NAS device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared disk partitions (raw devices)</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Shared Logical Volume Manager) (SLVM)</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Use the following guidelines when choosing the storage options that you want to use for Oracle Clusterware:

- You can choose any combination of the supported storage options for each file type provided that you satisfy all requirements listed for the chosen storage options.
- You cannot use ASM to store Oracle Clusterware files, because these files must be accessible before any ASM instance starts.
- If you do not have a storage option that provides external file redundancy, then you must configure at least three voting disk areas to provide voting disk redundancy.

Note: For the most up-to-date information about supported storage options for Oracle RAC installations, refer to the Certify pages on the Oracle MetaLink Web site: https://metalink.oracle.com
Quorum Disk Location Restriction with Existing 9.2 Clusterware Installations

When upgrading your Oracle9i release 9.2 Oracle RAC environment to Oracle Database 11g release 1 (11.1), you are prompted to specify one or more voting disks during the Oracle Clusterware installation. You must specify a new location for the voting disk in Oracle Database 11g release 1 (11.1). You cannot reuse the old Oracle9i release 9.2 quorum disk for this purpose.

After You Have Selected Disk Storage Options

When you have determined your disk storage options, you must perform the following tasks in the order listed:

1: Check for available shared storage with CVU
   Refer to Checking for Available Shared Storage with CVU on page 4-3

2: Configure shared storage for Oracle Clusterware files
   - To use a file system (NFS for Oracle Clusterware files), refer to Configuring Storage for Oracle Clusterware Files on a Supported Shared File System on page 4-3
   - To use raw devices (partitions) for Oracle Clusterware files, refer to “Configuring Storage for Oracle Clusterware Files on Raw Devices” on page 4-6

Checking for Available Shared Storage with CVU

To check for all shared file systems available across all nodes on the cluster on a supported shared file system, log in as the installation owner user (oracle or crs), and use the following syntax:

```
/mountpoint/runcluvfy.sh comp ssa -n node_list
```

If you want to check the shared accessibility of a specific shared storage type to specific nodes in your cluster, then use the following command syntax:

```
/mountpoint/runcluvfy.sh comp ssa -n node_list -s storageID_list
```

In the preceding syntax examples, the variable `mountpoint` is the mountpoint path of the installation media, the variable `node_list` is the list of nodes you want to check, separated by commas, and the variable `storageID_list` is the paths for the storage devices that you want to check.

For example, if you want to check the shared accessibility from node1 and node2 of storage devices `/dw/dsk/c1t2d3` and `/dw/dsk/c2t4d5`, and your mountpoint is `/dev/dvdrom/`, then enter the following command:

```
/dev/dvdrom/clusterware/cluvfy/runcluvfy.sh comp ssa -n node1,node2 -s /dw/dsk/c1t2d3,/dw/dsk/c2t4d5
```

If you do not specify specific storage device IDs in the command, then the command searches for all available storage devices connected to the nodes on the list.

Configuring Storage for Oracle Clusterware Files on a Supported Shared File System

Oracle Universal Installer (OUI) does not suggest a default location for the Oracle Cluster Registry (OCR) or the Oracle Clusterware voting disk. If you choose to create
these files on a file system, then review the following sections to complete storage requirements for Oracle Clusterware files:

- **Requirements for Using a File System for Oracle Clusterware Files**
- **Checking NFS Mount Buffer Size Parameters for Clusterware**
- **Creating Required Directories for Oracle Clusterware Files on Shared File Systems**

---

**Note:** The OCR is a file that contains the configuration information and status of the cluster. Oracle Universal Installer (OUI) automatically initializes the OCR during the Oracle Clusterware installation. Database Configuration Assistant uses the OCR for storing the configurations for the cluster databases that it creates.

---

**Requirements for Using a File System for Oracle Clusterware Files**

To use a file system for Oracle Clusterware files, the file system must comply with the following requirements:

- To use an NFS file system, it must be on a certified NAS device. Log in to OracleMetaLink at the following URL, and click the Certify tab to find a list of certified NAS devices.

  [https://metalink.oracle.com/](https://metalink.oracle.com/)

- If you choose to place your Oracle Cluster Registry (OCR) files on a shared file system, then one of the following must be true:
  - The disks used for the file system are on a highly available storage device (for example, a RAID device that implements file redundancy).
  - At least two file systems are mounted, and use the features of Oracle Database 11g Release 1 (11.1) to provide redundancy for the OCR.

- If you intend to use a shared file system to store database files, then use at least two independent file systems, with the database files on one file system, and the recovery files on a different file system.

- The user account with which you perform the installation (oracle or crs) must have write permissions to create the files in the path that you specify.

---

**Note:** If you are upgrading from Oracle9i release 2, then you can continue to use the raw device or shared file that you used for the SRVM configuration repository instead of creating a new file for the OCR.

If you are upgrading Oracle Clusterware, and your existing cluster uses 100 MB OCR and 20 MB voting disk partitions, then you can continue to use those partition sizes.

---

Use Table 4–2 to determine the partition size for shared file systems.
In Table 4–2, the total required volume size is cumulative. For example, to store all Oracle Clusterware files on the shared file system with normal redundancy, you should have at least 1.3 GB of storage available over a minimum of three volumes (two separate volume locations for the OCR and OCR mirror, and one voting disk on each volume).

### Checking NFS Mount Buffer Size Parameters for Clusterware

If you are using NFS, then you must set the values for the NFS buffer size parameters \texttt{rsize} and \texttt{wsize} to 32768. The NFS mount options are:

\texttt{rw,bg,vers=3,proto=tcp,noac,forcedirectio,hard,nointr,timeo=600,rsize=32768,wsize=32768,suid}

Update the \texttt{/etc/fstab} file on each node with an entry similar to the following:

\begin{verbatim}
nfs_server:/vol/CWfiles /u01/oracle/cwfiles nfs \rw,bg,vers=3,proto=tcp,noac,forcedirectio,hard,nointr,timeo=600,rsize=32768,wsize=32768,suid
\end{verbatim}

Note that mount point options are different for Oracle software binaries, Oracle Clusterware files (OCR and voting disks), and data files.

If you want to create a mount point for binaries only, then enter the following line for a binaries mount point:

\begin{verbatim}
nfs_server:/vol/crshome /u01/oracle/crs nfs -yes \rw,bg,vers=3,proto=tcp,noac,hard,nointr,timeo=600,rsize=32768,wsize=32768,suid
\end{verbatim}

**See Also:** OracleMetaLink bulletin 359515.1, "Mount Options for Oracle Files When Used with NAS Devices" for the most current information about mount options, available from the following URL:

[https://metalink.oracle.com](https://metalink.oracle.com)

**Note:** Refer to your storage vendor documentation for additional information about mount options.

### Creating Required Directories for Oracle Clusterware Files on Shared File Systems

Use the following instructions to create directories for Oracle Clusterware files. You can also configure shared file systems for the Oracle Database and recovery files.
To create directories for the Oracle Clusterware files on separate file systems from the Oracle base directory, follow these steps:

1. If necessary, configure the shared file systems that you want to use and mount them on each node.

   **Note:** The mount point that you use for the file system must be identical on each node. Ensure that the file systems are configured to mount automatically when a node restarts.

2. Use the `bdf` command to determine the free disk space on each mounted file system.

3. From the display, identify the file systems that you want to use. Choose a file system with a minimum of 560 MB of free disk space (one OCR and one voting disk, with external redundancy).

   If you are using the same file system for more than one type of file, then add the disk space requirements for each type to determine the total disk space requirement.

4. Note the names of the mount point directories for the file systems that you identified.

5. If the user performing installation (typically, `crs` or `oracle`) has permissions to create directories on the disks where you plan to install Oracle Clusterware and Oracle Database, then OUI creates the Oracle Clusterware file directory, and DBCA creates the Oracle Database file directory, and the Recovery file directory.

   If the user performing installation does not have write access, then you must create these directories manually using commands similar to the following to create the recommended subdirectories in each of the mount point directories and set the appropriate owner, group, and permissions on the Oracle Clusterware home (or CRS home). For example, where the user is `oracle`, and the CRS home is `oracrs`:

   ```
 # mkdir /mount_point/oracrs
 # chown oracle:oinstall /mount_point/oracrs
 # chmod 750 /mount_point/oracrs
   ```

   **Note:** After installation, directories in the installation path for the Oracle Cluster Registry (OCR) files should be owned by `root`, and not writable by any account other than `root`.

---

**Configuring Storage for Oracle Clusterware Files on Raw Devices**

The following subsections describe how to configure Oracle Clusterware files on raw partitions.

- **Identifying Required Raw Partitions for Clusterware Files**
Identifying Required Raw Partitions for Clusterware Files

Table 4–3 lists the number and size of the raw partitions that you must configure for Oracle Clusterware files.

<table>
<thead>
<tr>
<th>Number</th>
<th>Size for Each Partition (MB)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>256</td>
<td>Oracle Cluster Registry</td>
</tr>
<tr>
<td>(or 1, if you have external redundancy support for this file)</td>
<td>Note: Create these raw partitions only once on the cluster. If you create more than one database on the cluster, they all share the same Oracle Cluster Registry (OCR). You should create two partitions: One for the OCR, and one for a mirrored OCR. If you are upgrading from Oracle9i release 2, then you can continue to use the raw device that you used for the SRVM configuration repository instead of creating this new raw device.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>256</td>
<td>Oracle Clusterware voting disks</td>
</tr>
<tr>
<td>(or 1, if you have external redundancy support for this file)</td>
<td>Note: Create these raw partitions only once on the cluster. If you create more than one database on the cluster, they all share the same Oracle Clusterware voting disk. You should create three partitions: One for the voting disk, and two for additional voting disks.</td>
<td></td>
</tr>
</tbody>
</table>

Disabling Operating System Activation of Shared Volume Groups

To prevent the operating system from activating shared volume groups when it starts, you must edit the /etc/lvmrc file on every node, as follows:

1. Create a backup copy of the /etc/lvmrc file:
   ```
 # cp /etc/lvmrc /etc/lvmrc_orig
   ```

2. Open the /etc/lvmrc file in any text editor and search for the AUTO_VG_ACTIVATE flag.

3. If necessary, change the value of the AUTO_VG_ACTIVATE flag to 0, to disable automatic volume group activation, as follows:
   ```
 AUTO_VG_ACTIVATE=0
   ```

4. Search for the custom_vg_activation function in the /etc/lvmrc file.

5. Add vgchange commands to the function, as shown in the following example, to automatically activate existing local volume groups:
   ```
 custom_vg_activation()
 {
 # e.g. /sbin/vgchange -a y -s
 # parallel vg_sync */dev/vg00 /dev/vg01
 # parallel vg_sync */dev/vg02 /dev/vg03
   ```
/sbin/vgchange -a y vg00
/sbin/vgchange -a y vg01
/sbin/vgchange -a y vg02

return 0
}

In this example, vg00, vg01, and vg02 are the volume groups that you want to activate automatically when the system restarts.

Configuring Raw Disk Devices Without HP Serviceguard Extension

If you are installing Oracle Clusterware or Oracle Clusterware and Oracle Real Application Clusters on an HP-UX cluster without HP Serviceguard Extension for Oracle RAC, then you must use shared raw disk devices for the Oracle Clusterware files. You can also use shared raw disk devices for database file storage, however, Oracle recommends that you use Automatic Storage Management to store database files in this situation. This section describes how to configure the shared raw disk devices for Oracle Clusterware files (Oracle Cluster Registry and Oracle Clusterware voting disk) and database files.

Table 4–4 lists the number and size of the raw disk devices that you must configure for database files.

Note: Because each file requires exclusive use of a complete disk device, Oracle recommends that, if possible, you use disk devices with sizes that closely match the size requirements of the files that they will store. You cannot use the disks that you choose for these files for any other purpose.

| Table 4–4 Raw Disk Devices Required for Database Files on HP-UX |
|---|---|---|---|
| Number | Size (MB) | Purpose and Sample Alternative Device File Name |
| 1 | 500 | SYSTEM tablespace: dbname_system_raw_680m |
| 1 | 300 + (Number of instances * 250) | SYSAUX tablespace: dbname_sysaux_raw_800m |
| Number of instances | 500 | UNDOTBS\textsubscript{n} tablespace (One tablespace for each instance, where \( n \) is the number of the instance): dbname_undotbsn_raw_500m |
| 1 | 250 | TEMP tablespace: dbname_temp_raw_250m |
| 1 | 160 | EXAMPLE tablespace: dbname_example_raw_160m |
| 1 | 120 | USERS tablespace: dbname_users_raw_120m |
| 2 * number of instances | 120 | Two online redo log files for each instance (where \( n \) is the number of the instance and \( m \) is the log number, 1 or 2): dbname_redon_m_raw_120m |
Configuring Storage for Oracle Clusterware Files on Raw Devices

To configure shared raw disk devices for Oracle Clusterware files, database files, or both:

1. If you intend to use raw disk devices for database file storage, then choose a name for the database that you want to create.
   
   The name that you choose must start with a letter and have no more than four characters, for example, `orcl`.

2. Identify or configure the required disk devices.
   
   The disk devices must be shared on all of the cluster nodes.

3. To ensure that the disks are available, enter the following command on every node:
   
   ```
 # /usr/sbin/ioscan -fun -C disk
   ```
   
   The output from this command is similar to the following:

   ```
 Class I H/W Path Driver S/W State H/W Type Description
 ==
 disk 0 0/0/1/0.6.0 sdisk CLAIMED DEVICE HP DVD-ROM 6x/32x
 /dev/dsk/c0t6d0 /dev/rdsk/c0t6d0
 disk 1 0/0/1/1.2.0 sdisk CLAIMED DEVICE SEAGATE ST39103LC
 /dev/dsk/c1t2d0 /dev/rdsk/c1t2d0
   ```
   
   This command displays information about each disk attached to the system, including the character raw device name (`/dev/rdsk/cxyz`).

   ```
 # /usr/sbin/ioscan -funN -C disk
   ```
   
   The output from this command is similar to the following:

   ```
 Class I H/W Path Driver S/W State H/W Type Description
 ==
 disk 4 64000/0xfa00/0x1 esdisk CLAIMED DEVICE HP 73.4GST373454LC
 /dev/disk/disk4 /dev/rdisk/disk4
 disk 907 64000/0xfa00/0x2f esdisk CLAIMED DEVICE COMPAQ MSA1000 VOLUME
 /dev/disk/disk907 /dev/rdisk/disk907
   ```

4. If the `ioscan` command does not display device name information for a device that you want to use, then enter the following command to install the special device files for any new devices:

   ```
   ```

   **Note:** On HP-UX 11i v.3, you can also use agile view to review mass storage devices, including character raw devices (`/dev/rdisk/diskkxyz`). For example:

   ```
 #> ioscan -funN -C disk
   ```
   
   ```
 Class I H/W Path Driver S/W State H/W Type Description
 ==
 disk 4 64000/0xfa00/0x1 esdisk CLAIMED DEVICE HP 73.4GST373454LC
 /dev/disk/disk4 /dev/rdisk/disk4
 disk 907 64000/0xfa00/0x2f esdisk CLAIMED DEVICE COMPAQ MSA1000 VOLUME
 /dev/disk/disk907 /dev/rdisk/disk907
   ```
# /usr/sbin/insf -e

5. For each disk that you want to use, enter the following command on any node to verify that it is not already part of an LVM volume group:

   # /sbin/pvdisplay /dev/dsk/cxtydz

   If this command displays volume group information, then the disk is already part of a volume group. The disks that you choose must not be part of an LVM volume group.

   ______________
   **Note:** If you are using different volume management software, for example VERITAS Volume Manager, then refer to the appropriate documentation for information about verifying that a disk is not in use.
   ______________

6. If the `ioscan` command shows different device names for the same device on any node, then:

   a. Change directory to the `/dev/rdsk` directory.

   b. Enter the following command to list the raw disk device names and their associated major and minor numbers:

      # ls -la

      The output from this command is similar to the following for each disk device:

      `crw-r--r--  1 bin        sys        188 0x032000 Nov  4  2003 c3t2d0`

      In this example, 188 is the device major number and 0x32000 is the device minor number.

   c. Enter the following command to create a new device file for the disk that you want to use, specifying the same major and minor number as the existing device file:

      # mknod ora_ocr_raw_256m c 188 0x032000

   d. Repeat these steps on each node, specifying the correct major and minor numbers for the new device files on each node.

7. Enter commands similar to the following on every node to change the owner, group, and permissions on the character raw device file for each disk device that you want to use:

   ______________
   **Note:** Oracle recommends that you use the alternative device file names shown in the previous table.
   ______________

   # mknod ora_ocr_raw_256m c 188 0x032000

   d. Repeat these steps on each node, specifying the correct major and minor numbers for the new device files on each node.

   ______________
   **Note:** If you are using a multi-pathing disk driver with Automatic Storage Management, then ensure that you set the permissions only on the correct logical device name for the disk.

   If you created an alternative device file for the device, then set the permissions on that device file.
   ______________
# chown root:oinstall /dev/rdsk/cxtydz
# chmod 640 /dev/rdsk/cxtydz

Oracle Clusterware voting disk or database files:

# chown oracle:dba /dev/rdsk/cxtydz
# chmod 660 /dev/rdsk/cxtydz

---

Note: For DSF (agile view) paths, enter commands using paths similar to the following:

# chmod 660 /dev/rdisk/diskxyz

---

8. If you are using raw disk devices for database files, then follow these steps to create the Database Configuration Assistant raw device mapping file:

---

Note: You must complete this procedure only if you are using raw devices for database files. The Database Configuration Assistant raw device mapping file enables Database Configuration Assistant to identify the appropriate raw disk device for each database file. You do not specify the raw devices for the Oracle Clusterware files in the Database Configuration Assistant raw device mapping file.

---

a. Set the ORACLE_BASE environment variable to specify the Oracle base directory that you identified or created previously:

   – Bourne, Bash, or Korn shell:
     
     $ ORACLE_BASE=/u01/app/oracle ; export ORACLE_BASE

   – C shell:
     
     % setenv ORACLE_BASE /u01/app/oracle

b. Create a database file subdirectory under the Oracle base directory and set the appropriate owner, group, and permissions on it:

   # mkdir -p $ORACLE_BASE/oradata/dbname
   # chown -R oracle:oinstall $ORACLE_BASE/oradata
   # chmod -R 775 $ORACLE_BASE/oradata

   In this example, dbname is the name of the database that you chose previously.

c. Change directory to the $ORACLE_BASE/oradata/dbname directory.

d. Using any text editor, create a text file similar to the following that identifies the disk device file name associated with each database file.

   Oracle recommends that you use a file name similar to dbname_raw.conf for this file.
Configuring Storage for Oracle Clusterware Files on Raw Devices

---

**Note:** The following example shows a sample mapping file for a two-instance RAC cluster. Some of the devices use alternative disk device file names. Ensure that the device file name that you specify identifies the same disk device on all nodes.

```bash
system=/dev/rdsk/c2t1d1
sysaux=/dev/rdsk/c2t1d2
examples=/dev/rdsk/c2t1d3
users=/dev/rdsk/c2t1d4
temp=/dev/rdsk/c2t1d5
undotbs1=/dev/rdsk/c2t1d6
undotbs2=/dev/rdsk/c2t1d7
redo1_1=/dev/rdsk/c2t1d8
redo1_2=/dev/rdsk/c2t1d9
redo2_1=/dev/rdsk/c2t1d10
redo2_2=/dev/rdsk/c2t1d11
control1=/dev/rdsk/c2t1d12
control2=/dev/rdsk/c2t1d13
spfile=/dev/rdsk/dbname_spfile_raw_5m
pwdfile=/dev/rdsk/dbname_pwdfile_raw_5m
```

In this example, **dbname** is the name of the database.

Use the following guidelines when creating or editing this file:

- Each line in the file must have the following format:

  ```bash
database_object_identifier=device_file_name
  ```

  The alternative device file names suggested in the previous table include the database object identifier that you must use in this mapping file. For example, in the following alternative disk device file name, **redo1_1** is the database object identifier:

  ```bash
 rac_redo1_1_raw_120m
  ```

- For a RAC database, the file must specify one automatic undo tablespace datafile (**undotbsn**) and two redo log files (**reдон_1, reдон_2**) for each instance.

- Specify at least two control files (**control1, control2**).

- To use manual instead of automatic undo management, specify a single RBS tablespace datafile (**rbs**) instead of the automatic undo management tablespace data files.

**e.** Save the file and note the file name that you specified.

**f.** When you are configuring the oracle user’s environment later in this chapter, set the DBCA_RAW_CONFIG environment variable to specify the full path to this file.

**9.** When you are installing Oracle Clusterware, you must enter the paths to the appropriate device files when prompted for the path of the OCR and Oracle Clusterware voting disk, for example:

```bash
/dev/rdsk/cxtydz
```
Configuring Shared Raw Logical Volumes With HP Serviceguard Extension

Note: The following subsections describe how to create logical volumes on systems with HP Serviceguard extension, using the command line. You can use SAM to complete the same tasks. Refer to the HP-UX documentation for more information about using SAM.

This section describes how to configure shared raw logical volumes for Oracle Clusterware and database file storage for an Oracle Real Application Clusters (RAC) database. The procedures in this section describe how to create a new shared volume group that contains the logical volumes required for both types of files.

To use shared raw logical volumes, HP Serviceguard Extension for Oracle RAC must be installed on all cluster nodes. If HP Serviceguard Extension for Oracle RAC is not installed, then you can use shared raw disk devices to store the Oracle Clusterware or database files. However, Oracle recommends that you use this method only for the Oracle Clusterware files and use an alternative method such as Automatic Storage Management for database file storage.

Before you continue, review the following guidelines, which contain important information about using shared logical volumes with this release:

- You must use shared volume groups for Oracle Clusterware and database files.
- The Oracle Clusterware files require at least 560 MB of disk space, with external redundancy. To make efficient use of the disk space in a volume group, Oracle recommends that you use the same shared volume group for the logical volumes for both the Oracle Clusterware files and the database files.
- If you are upgrading an existing Oracle9i release 2 RAC installation that uses raw logical volumes, then you can use the existing SRVM configuration repository logical volume for the OCR and create a new logical volume in the same volume group for the Oracle Clusterware voting disk. However, before you install Oracle Clusterware, you must remove this volume group from any Serviceguard package that currently activates it.

See Also: The HP Serviceguard or HP Serviceguard Extension for Oracle RAC documentation for information about removing a volume group from a Serviceguard package.

Note: If you are upgrading a database, then you must also create a new logical volume for the SYSAUX tablespace. Refer to the “Create Raw Logical Volumes in the New Volume Group” section on page 4-15 for more information about the requirements for the Oracle Clusterware voting disk and SYSAUX logical volumes.

- You must use either your own startup script or a Serviceguard package to activate new or existing volume groups that contain only database files and Oracle Clusterware files.

See Also: The HP Serviceguard documentation for information about creating a Serviceguard package to activate a shared volume group for Oracle RAC.
All shared volume groups that you intend to use for Oracle Clusterware or database files must be activated in shared mode before you start the installation.

All shared volume groups that you are using for Oracle RAC, including the volume group that contains the Oracle Clusterware files, must be specified in the cluster configuration file using the parameter OPS_VOLUME_GROUP.

---

**Note:** If you create a new shared volume group for Oracle RAC on an existing HP Serviceguard cluster, then you must reconfigure and restart the cluster before installing Oracle Clusterware. Refer to the HP Serviceguard documentation for information about configuring the cluster and specifying shared volume groups.

---

The procedures in this section describe how to create basic volumes groups and volumes. If you want to configure more complex volumes, using mirroring for example, then use this section in conjunction with the HP Serviceguard documentation.

### Create a Volume Group

To create a volume group:

1. If necessary, install the shared disks that you intend to use for the database.

2. To ensure that the disks are available, enter the following command on every node:

   ```
 # /sbin/ioscan -fun -C disk
   ```

   The output from this command is similar to the following:

   ```
 Class I H/W Path Driver S/W State H/W Type Description
 ==
 disk 0 0/0/1/0.6.0 sdisk CLAIMED DEVICE HP DVD-ROM 6x/32x
 /dev/dsk/c0t6d0 /dev/rdsk/c0t6d0
 disk 1 0/0/1/1.2.0 sdisk CLAIMED DEVICE SEAGATE ST39103LC
 /dev/dsk/c1t2d0 /dev/rdsk/c1t2d0
 disk 2 0/0/2/0.2.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC
 /dev/dsk/c2t2d0 /dev/rdsk/c2t2d0
   ```

   This command displays information about each disk attached to the system, including the character raw device name (/dev/rdsk/cxtydz).

3. If the `ioscan` command does not display device name information for a device that you want to use, then enter the following command to install the special device files for any new devices:

   ```
 # /usr/sbin/insf -e
   ```

4. For each disk that you want to add to the volume group, enter the following command on any node to verify that it is not already part of an LVM volume group:

   ```
 # /sbin/pvdisplay /dev/dsk/cxtydz
   ```

   If this command displays volume group information, then the disk is already part of a volume group.

5. For each disk that you want to add to the volume group, enter a command similar to the following on any node:
# /sbin/pvcreate /dev/rdsk/cxtydz

6. To create a directory for the volume group in the /dev directory, enter a command similar to the following, where vg_name is the name that you want to use for the volume group:

   # mkdir /dev/vg_name

7. To identify used device minor numbers, enter the following command on each node of the cluster:

   # ls -la /dev/*/group

   This command displays information about the device numbers used by all configured volume groups, similar to the following:

   crw-r-----   1 root    sys        64 0x000000 Mar  4  2002 /dev/vg00/group
   crw-r--r--   1 root    sys        64 0x010000 Mar  4  2002 /dev/vg01/group

   In this example, 64 is the major number used by all volume group devices and 0x000000 and 0x010000 are the minor numbers used by volume groups vg00 and vg01 respectively. Minor numbers have the format 0xnn0000, where nn is a number in the range 00 to the value of the maxvgs kernel parameter minus 1. The default value for the maxvgs parameter is 10, so the default range is 00 to 09.

8. Identify an appropriate minor number that is unused on all nodes in the cluster.

9. To create the volume group and activate it, enter commands similar to the following:

   # /sbin/mknod /dev/vg_name/group c 64 0xnn0000
   # /sbin/vgcreate /dev/vg_name /dev/rdsk/cxtydz . . .
   # /sbin/vgchange -a y vg_name

   In this example:
   - vg_name is the name that you want to give to the volume group
   - 0xnn0000 is a minor number that is unused on all nodes in the cluster
   - /dev/rdsk/cxtydz... is a list of one or more raw device names for the disks that you want to add to the volume group

Create Raw Logical Volumes in the New Volume Group

To create the required raw logical volumes in the new volume group:

1. Choose a name for the database that you want to create.

   The name that you choose must start with a letter and have no more than four characters, for example, orcl.

2. Identify the logical volumes that you must create.

   Table 4–5 lists the number and size of the logical volumes that you must create for Oracle Clusterware files.

<table>
<thead>
<tr>
<th>Number</th>
<th>Size (MB)</th>
<th>Purpose and Sample Logical Volume Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>SYSTEM tablespace: dbname_system_raw_680m</td>
</tr>
</tbody>
</table>
To create each required logical volume, enter a command similar to the following:

```
/sbin/lvcreate -n LVname -L size /dev/vg_name
```

In this example:

- **LVname** is the name of the logical volume that you want to create
- **size** is the size of the logical volume in megabytes

Oracle recommends that you use the sample names shown in the previous table for the logical volumes. Substitute the **dbname** variable in the sample logical volume name with the name that you chose for the database in step 1.

The following example shows a sample command used to create an 800 MB logical volume in the **oracle_vg** volume group for the **SYSAUX** tablespace of a database named **test**:

```
/sbin/lvcreate -n test_sysaux_raw_800m -L 800 /dev/oracle_vg
```

### Table 4-5 (Cont.) Raw Logical Volumes Required for Database Files on HP-UX

<table>
<thead>
<tr>
<th>Number</th>
<th>Size (MB)</th>
<th>Purpose and Sample Logical Volume Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300 +</td>
<td>SYSAUX tablespace:</td>
</tr>
<tr>
<td></td>
<td>(Number of instances * 250)</td>
<td><strong>dbname</strong>_sysaux_raw_800m</td>
</tr>
<tr>
<td>Number of instances</td>
<td>500</td>
<td>UNDOTBSn tablespace (One tablespace for each instance, where n is the number of the instance):</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>dbname</strong>_undotbsn_raw_500m</td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>TEMP tablespace:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>dbname</strong>_temp_raw_250m</td>
</tr>
<tr>
<td>1</td>
<td>160</td>
<td>EXAMPLE tablespace:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>dbname</strong>_example_raw_160m</td>
</tr>
<tr>
<td>1</td>
<td>120</td>
<td>USERS tablespace:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>dbname</strong>_users_raw_120m</td>
</tr>
<tr>
<td>2*</td>
<td>120</td>
<td>Two online redo log files for each instance (where n is the number of the instance and m is the log number, 1 or 2):</td>
</tr>
<tr>
<td>number of instances</td>
<td></td>
<td><strong>dbname</strong>_redo_n_m_raw_120m</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>First and second control files:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>dbname</strong>_control{1</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Server parameter file (SPFILE):</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>dbname</strong>_spfile_raw_5m</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Password file:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>dbname</strong>_pwdfile_raw_5m</td>
</tr>
</tbody>
</table>

3. To create each required logical volume, enter a command similar to the following:

```
/sbin/lvcreate -n LVname -L size /dev/vg_name
```

In this example:

- **LVname** is the name of the logical volume that you want to create

Oracle recommends that you use the sample names shown in the previous table for the logical volumes. Substitute the **dbname** variable in the sample logical volume name with the name that you chose for the database in step 1.

- **vg_name** is the name of the volume group where you want to create the logical volume

- **size** is the size of the logical volume in megabytes

The following example shows a sample command used to create an 800 MB logical volume in the **oracle_vg** volume group for the **SYSAUX** tablespace of a database named **test**:

```
/sbin/lvcreate -n test_sysaux_raw_800m -L 800 /dev/oracle_vg
```

4. Change the owner, group, and permissions on the character device files associated with the logical volumes that you created, as follows:

```
chown oracle:dba /dev/vg_name/r*
chmod 755 /dev/vg_name
chmod 660 /dev/vg_name/r*
```
5. Change the owner and group on the character device file associated with the logical volume for the Oracle Cluster Registry, as follows:

   # chown root:oinstall /dev/vg_name/rora_ocr_raw_256m

Export the Volume Group and Import It on the Other Cluster Nodes

To export the volume group and import it on the other cluster nodes:

1. Deactivate the volume group:

   # /sbin/vgchange -a n vg_name

2. To export the description of the volume group and its associated logical volumes to a map file, enter a command similar to the following:

   # /sbin/vgexport -v -s -p -m /tmp/vg_name.map /dev/vg_name

3. Enter commands similar to the following to copy the map file to the other cluster nodes:

   # rcp /tmp/vg_name.map nodename:/tmp/vg_name.map

4. Enter commands similar to the following on the other cluster nodes to import the volume group that you created on the first node:

   # mkdir /dev/vg_name
   # /sbin/mknod /dev/vg_name/group c 64 0xnn0000
   # /sbin/vgimport -v -s -m /tmp/vg_name.map /dev/vg_name

5. Enter commands similar to the following on the other cluster nodes to change the owner, group, and permissions on the character device files associated with the logical volumes that you created:

   # chown oracle:dba /dev/vg_name/r*
   # chmod 755 /dev/vg_name
   # chmod 660 /dev/vg_name/r*

6. Change the owner and group on the character device file associated with the logical volume for the Oracle Cluster Registry, as follows:

   # chown root:oinstall /dev/vg_name/rora_ocr_raw_256m

Activate the Volume Group in Shared Mode on All Cluster Nodes

To activate the volume group in shared mode on all cluster nodes, enter the following command on each node:

   # /sbin/vgchange -a s vg_name

Create the Database Configuration Assistant Raw Device Mapping File

Note: You must complete this procedure only if you are using raw logical volumes for database files. You do not specify the raw logical volumes for the Oracle Clusterware files in the Database Configuration Assistant raw device mapping file.
Configuring Storage for Oracle Clusterware Files on Raw Devices

To enable Database Configuration Assistant to identify the appropriate raw device for each database file, you must create a raw device mapping file, as follows:

1. Set the ORACLE_BASE environment variable to specify the Oracle base directory that you identified or created previously:
   - Bourne, Bash, or Korn shell:
     
     ```
 $ ORACLE_BASE=/u01/app/oracle ; export ORACLE_BASE
     ```
   - C shell:
     
     ```
 % setenv ORACLE_BASE /u01/app/oracle
     ```

2. Create a database file subdirectory under the Oracle base directory and set the appropriate owner, group, and permissions on it:
   
   ```
 # mkdir -p $ORACLE_BASE/oradata/
 # chown -R oracle:oinstall $ORACLE_BASE/oradata
 # chmod -R 775 $ORACLE_BASE/oradata
   ```
   
   In this example, `dbname` is the name of the database that you chose previously.

3. Change directory to the `$ORACLE_BASE/oradata/dbname` directory.

4. Enter a command similar to the following to create a text file that you can use to create the raw device mapping file:
   
   ```
 # find /dev/ -user oracle -name 'r*' -print > dbname_raw.conf
   ```

5. Edit the `dbname_raw.conf` file in any text editor to create a file similar to the following:

   ```
 Note: The following example shows a sample mapping file for a two-instance RAC cluster.
   ```

   ```
 system=/dev/vg_name/rdbname_system_raw_500m
 sysaux=/dev/vg_name/rdbname_sysaux_raw_800m
 example=/dev/vg_name/rdbname_example_raw_160m
 users=/dev/vg_name/rdbname_users_raw_120m
 temps=/dev/vg_name/rdbname_temp_raw_250m
 undotbs1=/dev/vg_name/rdbname_undotbs1_raw_500m
 undotbs2=/dev/vg_name/rdbname_undotbs2_raw_500m
 redo1_1=/dev/vg_name/rdbname_redo1_1_raw_120m
 redo1_2=/dev/vg_name/rdbname_redo1_2_raw_120m
 redo2_1=/dev/vg_name/rdbname_redo2_1_raw_120m
 redo2_2=/dev/vg_name/rdbname_redo2_2_raw_120m
 control1=/dev/vg_name/rdbname_control1_raw_110m
 control2=/dev/vg_name/rdbname_control2_raw_110m
 spfile=/dev/vg_name/rdbname_spfile_raw_5m
 pwdfile=/dev/vg_name/rdbname_pwdfile_raw_5m
   ```

   In this example:
   - `vg_name` is the name of the volume group
   - `dbname` is the name of the database

   Use the following guidelines when creating or editing this file:
   - Each line in the file must have the following format:
     ```
 database_object_identifier=logical_volume
     ```
The logical volume names suggested in this manual include the database object identifier that you must use in this mapping file. For example, in the following logical volume name, `redo1_1` is the database object identifier:

\[ /dev/oracle_vg/rrac_redo1_1_raw_120m \]

- The file must specify one automatic undo tablespace datafile (`undotbsn`) and two redo log files (`redo1, redo2`) for each instance.
- Specify at least two control files (`control1, control2`).
- To use manual instead of automatic undo management, specify a single RBS tablespace datafile (`rbs`) instead of the automatic undo management tablespace data files.
- Save the file and note the file name that you specified.
- When you are configuring the oracle user’s environment later in this chapter, set the DBCA_RAW_CONFIG environment variable to specify the full path to this file.
This chapter contains storage administration tasks that you should complete if you intend to use Oracle Clusterware with Oracle Real Application Clusters (Oracle RAC).

This chapter contains the following topics:

- Reviewing Storage Options for Oracle Database and Recovery Files
- Checking for Available Shared Storage with CVU
- Choosing a Storage Option for Oracle Database Files
- Configuring Storage for Oracle Database Files on a Supported Shared File System
- Configuring Disks for Automatic Storage Management
- Configuring Storage for Oracle Database Files on Shared Storage Devices
- Configuring Disks for Database Files on Raw Devices
- Checking the System Setup with CVU

**Overview of Oracle Database and Recovery File Options**

There are three ways of storing Oracle Database and recovery files:

- **Automatic Storage Management:** Automatic Storage Management (ASM) is an integrated, high-performance database file system and disk manager for Oracle Database files. It performs striping and mirroring of database files automatically.

**See Also:** The Oracle Certify site for a list of supported vendors for Network Attached Storage options: http://www.oracle.com/technology/support/metalink/

Refer also to the Certify site on OracleMetalink for the most current information about certified storage options:

https://metalink.oracle.com/
A supported shared file system: Supported file systems include the following:

- A supported cluster file system: Note that if you intend to use a cluster file system for your data files, then you should create partitions large enough for the database files when you create partitions for Oracle Clusterware.

  See Also: The Certify page on OracleMetalink for supported cluster file systems

- NAS Network File System (NFS) listed on Oracle Certify: Note that if you intend to use NFS for your data files, then you should create partitions large enough for the database files when you create partitions for Oracle Clusterware.

  See Also: The Certify page on OracleMetalink for supported Network Attached Storage (NAS) devices, and supported cluster file systems

Raw Devices: A partition is required for each database file. If you do not use ASM, then for new installations on raw devices, you must use a custom installation.

General Storage Considerations for Oracle RAC

For all installations, you must choose the storage option that you want to use for Oracle Database files, or for Oracle Clusterware with Oracle RAC. If you want to enable automated backups during the installation, then you must also choose the storage option that you want to use for recovery files (the flash recovery area). You do not have to use the same storage option for each file type.

For single-instance Oracle Database installations using Oracle Clusterware for failover, you must use ASM, or shared raw disks if you do not want the failover processing to include dismounting and remounting of local file systems.

The following table shows the storage options supported for storing Oracle Database files and Oracle Database recovery files. Oracle Database files include data files, control files, redo log files, the server parameter file, and the password file.

Note: For the most up-to-date information about supported storage options for Oracle RAC installations, refer to the Certify pages on the OracleMetaLink Web site:

https://metalink.oracle.com
Use the following guidelines when choosing the storage options that you want to use for each file type:

- You can choose any combination of the supported storage options for each file type provided that you satisfy all requirements listed for the chosen storage options.

- Oracle recommends that you choose Automatic Storage Management (ASM) as the storage option for database and recovery files.

- For Standard Edition Oracle RAC installations, ASM is the only supported storage option for database or recovery files.

- If you intend to use ASM with Oracle RAC, and you are configuring a new ASM instance, then your system must meet the following conditions:
  - All nodes on the cluster have the 11g release 1 (11.1) version of Oracle Clusterware installed.
  - Any existing ASM instance on any node in the cluster is shut down.

- If you intend to upgrade an existing Oracle RAC database, or an Oracle RAC database with ASM instances, then you must ensure that your system meets the following conditions:
  - Oracle Universal Installer (OUI) and Database Configuration Assistant (DBCA) are run on the node where the Oracle RAC database or Oracle RAC database with ASM instance is located.
  - The Oracle RAC database or Oracle RAC database with an ASM instance is running on the same nodes that you intend to make members of the new cluster installation. For example, if you have an existing Oracle RAC database running on a three-node cluster, then you must install the upgrade on all three nodes. You cannot upgrade only 2 nodes of the cluster, removing the third instance in the upgrade.

  See Also: Oracle Database Upgrade Guide for information about how to prepare for upgrading an existing database

- If you do not have a storage option that provides external file redundancy, then you must configure at least three voting disk areas to provide voting disk redundancy.
After You Have Selected Disk Storage Options

After you have installed and configured Oracle Clusterware storage, and after you have reviewed your disk storage options for Oracle Database files, you must perform the following tasks in the order listed:

1: Check for available shared storage with CVU
Refer to Checking for Available Shared Storage with CVU on page 5-4.

2: Configure storage for Oracle Database files and recovery files
- To use a shared file system for database or recovery file storage, refer to Configuring Storage for Oracle Database Files on a Supported Shared File System on page 5-5, and ensure that in addition to the volumes you create for Oracle Clusterware files, you also create additional volumes with sizes sufficient to store database files.
- To use Automatic Storage Management for database or recovery file storage, refer to "Configuring Disks for Automatic Storage Management" on page 5-10
- To use shared devices for database file storage, refer to "Configuring Storage for Oracle Database Files on Shared Storage Devices" on page 5-16.
- To use raw devices (partitions) for database file storage, refer to "Configuring Disks for Database Files on Raw Devices" on page 5-17.

Checking for Available Shared Storage with CVU

To check for all shared file systems available across all nodes on the cluster on a supported shared file system, log in as the installation owner user (oracle or crs), and use the following syntax:

```
/mountpoint/runcluvfy.sh comp ssa -n node_list
```

If you want to check the shared accessibility of a specific shared storage type to specific nodes in your cluster, then use the following command syntax:

```
/mountpoint/runcluvfy.sh comp ssa -n node_list -s storageID_list
```

In the preceding syntax examples, the variable `mountpoint` is the mountpoint path of the installation media, the variable `node_list` is the list of nodes you want to check, separated by commas, and the variable `storageID_list` is the list of storage device IDs for the storage devices managed by the file system type that you want to check.

For example, if you want to check the shared accessibility from node1 and node2 of storage devices `/dw/dsk/c1t2d3` and `/dw/dsk/c2t4d5`, and your mountpoint is `/dev/dvdrom/`, then enter the following command:

```
/dev/dvdrom/clusterware/cluvfy/runcluvfy.sh comp ssa -n node1,node2 -s /dw/dsk/c1t2d3,/dw/dsk/c2t4d5
```

If you do not specify specific storage device IDs in the command, then the command searches for all available storage devices connected to the nodes on the list.

Choosing a Storage Option for Oracle Database Files

Database files consist of the files that make up the database, and the recovery area files. There are four options for storing database files:

- Network File System (NFS)
Configuring Storage for Oracle Database Files on a Supported Shared File System

- Automatic Storage Management (ASM)
- Raw devices (Database files only—not for the recovery area)

During configuration of Oracle Clusterware, if you selected NFS, and the volumes that you created are large enough to hold the database files and recovery files, then you have completed required preinstallation steps. You can proceed to Chapter 6, "Installing Oracle Clusterware" on page 6-1.

If you want to place your database files on ASM, then proceed to “Configuring Disks for Automatic Storage Management” on page 5-10.

If you want to place your database files on raw devices, and manually provide storage management for your database and recovery files, then proceed to "Configuring Storage for Oracle Database Files on Shared Storage Devices” on page 5-16.

**Note:** Databases can consist of a mixture of ASM files and non-ASM files. Refer to Oracle Database Administrator’s Guide for additional information about ASM. For NFS certification status, refer to the Certify page on OracleMetaLink.

### Configuring Storage for Oracle Database Files on a Supported Shared File System

Review the following sections to complete storage requirements for Oracle Database files:

- Requirements for Using a File System for Oracle Database Files
- Deciding to Use NFS for Data Files
- Deciding to Use Direct NFS for DataFiles
- Enabling Direct NFS Client Oracle Disk Manager Control of NFS
- Disabling Direct NFS Client Oracle Disk Management Control of NFS
- Checking NFS Mount Buffer Size Parameters for Oracle RAC
- Creating Required Directories for Oracle Database Files on Shared File Systems

### Requirements for Using a File System for Oracle Database Files

To use a file system for Oracle Database files, the file system must comply with the following requirements:

- To use a cluster file system, it must be a supported cluster file system. At the time of this release, no cluster file system is supported.
- To use an NFS file system, it must be on a certified NAS device.
- If you choose to place your database files on a shared file system, then one of the following must be true:
  - The disks used for the file system are on a highly available storage device, (for example, a RAID device that implements file redundancy).
  - The file systems consist of at least two independent file systems, with the database files on one file system, and the recovery files on a different file system.
The Oracle user must have write permissions to create the files in the path that you specify.

Use Table 5–2 to determine the partition size for shared file systems.

### Table 5–2 Shared File System Volume Size Requirements

<table>
<thead>
<tr>
<th>File Types Stored</th>
<th>Number of Volumes</th>
<th>Volume Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Database files</td>
<td>1</td>
<td>At least 1.5 GB for each volume</td>
</tr>
<tr>
<td>Recovery files</td>
<td>1</td>
<td>At least 2 GB for each volume</td>
</tr>
</tbody>
</table>

*Note:* Recovery files must be on a different volume than database files

In Table 5–2, the total required volume size is cumulative. For example, to store all database files on the shared file system, you should have at least 3.4 GB of storage available over a minimum of two volumes.

### Deciding to Use NFS for Data Files

Network-attached storage (NAS) systems use NFS to access data. You can store data files on a supported NFS system.

NFS file systems must be mounted and available over NFS mounts before you start installation. Refer to your vendor documentation to complete NFS configuration and mounting.

### Deciding to Use Direct NFS for Datafiles

This section contains the following information about Direct NFS:

- About Direct NFS Storage
- Using the Oranfstab File with Direct NFS
- Mounting NFS Storage Devices with Direct NFS

### About Direct NFS Storage

With Oracle Database 11g release 1 (11.1), instead of using the operating system kernel NFS client, you can configure Oracle Database to access NFS V3 servers directly using an Oracle internal Direct NFS client.

To enable Oracle Database to use Direct NFS, the NFS file systems must be mounted and available over regular NFS mounts before you start installation. The mount options used in mounting the file systems are not relevant, as Direct NFS manages settings after installation. Refer to your vendor documentation to complete NFS configuration and mounting.

Some NFS file servers require NFS clients to connect using reserved ports. If your filer is running with reserved port checking, then you must disable it for Direct NFS to operate. To disable reserved port checking, consult your NFS file server documentation.

### Using the Oranfstab File with Direct NFS

If you use Direct NFS, then you can choose to use a new file specific for Oracle datafile management, `oranfstab`, to specify additional options specific for Oracle Database to Direct NFS. For example, you can use `oranfstab` to specify additional paths for a
mount point. You can add the `oranfstab` file either to `/etc` or to `$ORACLE_HOME/dbs`. The `oranfstab` file is not required to use NFS or Direct NFS.

With Oracle RAC installations, if you want to use Direct NFS, then you must replicate the file `/etc/oranfstab` on all nodes, and keep each `/etc/oranfstab` file synchronized on all nodes.

When the `oranfstab` file is placed in `$ORACLE_HOME/dbs`, the entries in the file are specific to a single database. In this case, all nodes running an Oracle RAC database use the same `$ORACLE_HOME/dbs/oranfstab` file.

When the `oranfstab` file is placed in `/etc`, then it is globally available to all Oracle databases, and can contain mount points used by all Oracle databases running on nodes in the cluster, including single-instance databases. However, on Oracle RAC systems, if the `oranfstab` file is placed in `/etc`, then you must replicate the file `/etc/oranfstab` file on all nodes, and keep each `/etc/oranfstab` file synchronized on all nodes, just as you must with the `/etc/fstab` file.

In all cases, mount points must be mounted by the kernel NFS system, even when they are being served using Direct NFS.

**Mounting NFS Storage Devices with Direct NFS**

Direct NFS determines mount point settings to NFS storage devices based on the configurations in `/etc/mtab`, which are changed with configuring the `/etc/fstab` file.

Direct NFS searches for mount entries in the following order:

1. `$ORACLE_HOME/dbs/oranfstab`
2. `/etc/oranfstab`
3. `/etc/mtab`

Direct NFS uses the first matching entry found.

**Note:** You can have only one active Direct NFS implementation for each instance. Using Direct NFS on an instance will prevent another Direct NFS implementation.

If Oracle Database uses Direct NFS mount points configured using `oranfstab`, then it first verifies kernel NFS mounts by cross-checking entries in `oranfstab` with operating system NFS mount points. If a mismatch exists, then Direct NFS logs an informational message, and does not serve the NFS server.

If Oracle Database is unable to open an NFS server using Direct NFS, then Oracle Database uses the platform operating system kernel NFS client. In this case, the kernel NFS mount options must be set up as defined in "Checking NFS Mount Buffer Size Parameters for Oracle RAC" on page 5-9. Additionally, an informational message will be logged into the Oracle alert and trace files indicating that Direct NFS could not be established.

The Oracle files resident on the NFS server that are served by the Direct NFS Client are also accessible through the operating system kernel NFS client. The usual considerations for maintaining integrity of the Oracle files apply in this situation.
Specifying Network Paths with the oranfstab File

Direct NFS can use up to four network paths defined in the oranfstab file for an NFS server. The Direct NFS client performs load balancing across all specified paths. If a specified path fails, then Direct NFS reissues I/O commands over any remaining paths.

Use the following views for Direct NFS management:

- **v$dnfs_servers**: Shows a table of servers accessed using Direct NFS.
- **v$dnfs_files**: Shows a table of files currently open using Direct NFS.
- **v$dnfs_channels**: Shows a table of open network paths (or channels) to servers for which Direct NFS is providing files.
- **v$dnfs_stats**: Shows a table of performance statistics for Direct NFS.

Enabling Direct NFS Client Oracle Disk Manager Control of NFS

Complete the following procedure to enable Direct NFS:

1. Create an oranfstab file with the following attributes for each NFS server to be accessed using Direct NFS:
   - **Server**: The NFS server name.
   - **Path**: Up to four network paths to the NFS server, specified either by IP address, or by name, as displayed using the ifconfig command.
   - **Export**: The exported path from the NFS server.
   - **Mount**: The local mount point for the NFS server.

   **Note**: On Linux and UNIX platforms, the location of the oranfstab file is $ORACLE_HOME/dbs.

   The following is an example of an oranfstab file with two NFS server entries:

   server: MyDataServer1
   path: 132.34.35.12
   path: 132.34.35.13
   export: /vol/oradata1 mount: /mnt/oradata1

   server: MyDataServer2
   path: NfsPath1
   path: NfsPath2
   path: NfsPath3
   path: NfsPath4
   export: /vol/oradata2 mount: /mnt/oradata2
   export: /vol/oradata3 mount: /mnt/oradata3
   export: /vol/oradata4 mount: /mnt/oradata4
   export: /vol/oradata5 mount: /mnt/oradata5

2. Oracle Database uses an ODM library, libnfsodm10.so, to enable Direct NFS. To replace the standard ODM library, $ORACLE_HOME/lib/libodm10.so, with the ODM NFS library, libnfsodm10.so, complete the following steps:
   - Change directory to $ORACLE_HOME/lib.
   - Enter the following commands:
     
     ```bash
 cp libodm10.so libodm10.so_stub
     ```
ln -s libnfsodm10.so libodm10.so

Disabling Direct NFS Client Oracle Disk Management Control of NFS
Use one of the following methods to disable the Direct NFS client:
- Remove the oranfstab file.
- Restore the stub libodm10.so file by reversing the process you completed in step 2b, "Enabling Direct NFS Client Oracle Disk Manager Control of NFS"
- Remove the specific NFS server or export paths in the oranfstab file.

Note: If you remove an NFS path that Oracle Database is using, then you must restart the database for the change to be effective.

Checking NFS Mount Buffer Size Parameters for Oracle RAC
If you are using NFS, then you must set the values for the NFS buffer size parameters rsize and wsize to 32768.

If you are using Direct NFS, note that it will not serve an NFS server with write size values (wtmax) less than 32768.

Update the /etc/fstab file on each node with an entry similar to the following:

nfs_server:/vol/DATA/oradata  /u02/oradata     nfs\rw,bg,vers=3,proto=tcp,noac,forcedirectio,hard,nointer,timeout=600,rsize=32768,wsize=32768,suid

Note: Refer to your storage vendor documentation for additional information about mount options.

Creating Required Directories for Oracle Database Files on Shared File Systems
Use the following instructions to create directories for shared file systems for Oracle Database and recovery files (for example, for a RAC database).

1. If necessary, configure the shared file systems that you want to use and mount them on each node.

   Note: The mount point that you use for the file system must be identical on each node. Ensure that the file systems are configured to mount automatically when a node restarts.

2. Use the bdf command to determine the free disk space on each mounted file system.

3. From the display, identify the file systems that you want to use:

<table>
<thead>
<tr>
<th>File Type</th>
<th>File System Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database files</td>
<td>Choose either:</td>
</tr>
<tr>
<td></td>
<td>- A single file system with at least 1.5 GB of free disk space.</td>
</tr>
<tr>
<td></td>
<td>- Two or more file systems with at least 1.5 GB of free disk space in total.</td>
</tr>
</tbody>
</table>
Configuring Disks for Automatic Storage Management

This section describes how to configure disks for use with Automatic Storage Management. Before you configure the disks, you must determine the number of disks and the amount of free disk space that you require. The following sections describe how to identify the requirements and configure the disks on each platform:

- Identifying Storage Requirements for Automatic Storage Management
- Using an Existing Automatic Storage Management Disk Group

### Configuring Disks for Automatic Storage Management

If you are using the same file system for more than one type of file, then add the disk space requirements for each type to determine the total disk space requirement.

4. Note the names of the mount point directories for the file systems that you identified.

5. If the user performing installation (typically, oracle) has permissions to create directories on the disks where you plan to install Oracle Database, then DBCA creates the Oracle Database file directory, and the Recovery file directory.

If the user performing installation does not have write access, then you must create these directories manually using commands similar to the following to create the recommended subdirectories in each of the mount point directories and set the appropriate owner, group, and permissions on them:

- **Database file directory:**
  
  ```
 # mkdir /mount_point/oradata
 # chown oracle:oinstall /mount_point/oradata
 # chmod 775 /mount_point/oradata
  ```

- **Recovery file directory (flash recovery area):**
  
  ```
 # mkdir /mount_point/flash_recovery_area
 # chown oracle:oinstall /mount_point/flash_recovery_area
 # chmod 775 /mount_point/flash_recovery_area
  ```

By making the oracle user the owner of these directories, this permits them to be read by multiple Oracle homes, including those with different OSDBA groups.

---

### Identifying Storage Requirements for Automatic Storage Management

<table>
<thead>
<tr>
<th>File Type</th>
<th>File System Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery files</td>
<td>Choose a file system with at least 2 GB of free disk space.</td>
</tr>
</tbody>
</table>

Note: Although this section refers to disks, you can also use zero-padded files on a certified NAS storage device in an Automatic Storage Management disk group. Refer to Oracle Database Installation Guide for HP-UX for information about creating and configuring NAS-based files for use in an Automatic Storage Management disk group.
Identifying Storage Requirements for Automatic Storage Management

**Note:** For the most up-to-date information about supported configurations, refer to the Certify pages on the Oracle MetaLink Web site at the following URL:

https://metalink.oracle.com

To identify the storage requirements for using Automatic Storage Management, you must determine how many devices and the amount of free disk space that you require. To complete this task, follow these steps:

1. Determine whether you want to use Automatic Storage Management for Oracle Database files, recovery files, or both.

   **Note:** You do not have to use the same storage mechanism for database files and recovery files. You can use the file system for one file type and Automatic Storage Management for the other.

   If you choose to enable automated backups and you do not have a shared file system available, then you must choose Automatic Storage Management for recovery file storage.

If you enable automated backups during the installation, you can choose Automatic Storage Management as the storage mechanism for recovery files by specifying an Automatic Storage Management disk group for the flash recovery area. Depending on how you choose to create a database during the installation, you have the following options:

- If you select an installation method that runs Database Configuration Assistant in interactive mode (for example, by choosing the Advanced database configuration option) then you can decide whether you want to use the same Automatic Storage Management disk group for database files and recovery files, or you can choose to use different disk groups for each file type.

  The same choice is available to you if you use Database Configuration Assistant after the installation to create a database.

- If you select an installation method that runs Database Configuration Assistant in noninteractive mode, then you must use the same Automatic Storage Management disk group for database files and recovery files.

2. Choose the Automatic Storage Management redundancy level that you want to use for the Automatic Storage Management disk group.

   The redundancy level that you choose for the Automatic Storage Management disk group determines how Automatic Storage Management mirrors files in the disk group and determines the number of disks and amount of disk space that you require, as follows:

   - **External redundancy**

     An external redundancy disk group requires a minimum of one disk device. The effective disk space in an external redundancy disk group is the sum of the disk space in all of its devices.

     Because Automatic Storage Management does not mirror data in an external redundancy disk group, Oracle recommends that you use only RAID or
similar devices that provide their own data protection mechanisms as disk devices in this type of disk group.

- Normal redundancy

In a normal redundancy disk group, Automatic Storage Management uses two-way mirroring by default, to increase performance and reliability. A normal redundancy disk group requires a minimum of two disk devices (or two failure groups). The effective disk space in a normal redundancy disk group is half the sum of the disk space in all of its devices.

For most installations, Oracle recommends that you select normal redundancy disk groups.

- High redundancy

In a high redundancy disk group, Automatic Storage Management uses three-way mirroring to increase performance and provide the highest level of reliability. A high redundancy disk group requires a minimum of three disk devices (or three failure groups). The effective disk space in a high redundancy disk group is one-third the sum of the disk space in all of its devices.

While high redundancy disk groups do provide a high level of data protection, you must consider the greater cost of additional storage devices before deciding to select high redundancy disk groups.

3. Determine the total amount of disk space that you require for the database files and recovery files.

Use the following table to determine the minimum number of disks and the minimum disk space requirements for the installation:

<table>
<thead>
<tr>
<th>Redundancy Level</th>
<th>Minimum Number of Disks</th>
<th>Database Files</th>
<th>Recovery Files</th>
<th>Both File Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>1</td>
<td>1.15 GB</td>
<td>2.3 GB</td>
<td>3.45 GB</td>
</tr>
<tr>
<td>Normal</td>
<td>2</td>
<td>2.3 GB</td>
<td>4.6 GB</td>
<td>6.9 GB</td>
</tr>
<tr>
<td>High</td>
<td>3</td>
<td>3.45 GB</td>
<td>6.9 GB</td>
<td>10.35 GB</td>
</tr>
</tbody>
</table>

for Oracle RAC installations, you must also add additional disk space for the Automatic Storage Management metadata. You can use the following formula to calculate the additional disk space requirements (in MB):

\[ 15 + (2 \times \text{number_of_disks}) + (126 \times \text{number_of_Automatic_Storage_Management_instances}) \]

For example, for a four-node RAC installation, using three disks in a high redundancy disk group, you require an additional 525 MB of disk space:

\[ 15 + (2 \times 3) + (126 \times 4) = 525 \]

If an Automatic Storage Management instance is already running on the system, then you can use an existing disk group to meet these storage requirements. If necessary, you can add disks to an existing disk group during the installation.

The following section describes how to identify existing disk groups and determine the free disk space that they contain.

4. Optionally, identify failure groups for the Automatic Storage Management disk group devices.
If you intend to use a normal or high redundancy disk group, then you can further protect your database against hardware failure by associating a set of disk devices in a custom failure group. By default, each device comprises its own failure group. However, if two disk devices in a normal redundancy disk group are attached to the same SCSI controller, then the disk group becomes unavailable if the controller fails. The controller in this example is a single point of failure.

To protect against failures of this type, you could use two SCSI controllers, each with two disks, and define a failure group for the disks attached to each controller. This configuration would enable the disk group to tolerate the failure of one SCSI controller.

5. If you are sure that a suitable disk group does not exist on the system, then install or identify appropriate disk devices to add to a new disk group. Use the following guidelines when identifying appropriate disk devices:

- All of the devices in an Automatic Storage Management disk group should be the same size and have the same performance characteristics.

- Do not specify more than one partition on a single physical disk as a disk group device. Automatic Storage Management expects each disk group device to be on a separate physical disk.

- Although you can specify a logical volume as a device in an Automatic Storage Management disk group, Oracle does not recommend their use. Logical volume managers can hide the physical disk architecture, preventing Automatic Storage Management from optimizing I/O across the physical devices.

See Also: The "Configuring Disks for Automatic Storage Management" section on page 5-10 for information about completing this task

Using an Existing Automatic Storage Management Disk Group

If you want to store either database or recovery files in an existing Automatic Storage Management disk group, then you have the following choices, depending on the installation method that you select:

- If you select an installation method that runs Database Configuration Assistant in interactive mode (for example, by choosing the Advanced database configuration option), then you can decide whether you want to create a disk group, or use an existing one.

The same choice is available to you if you use Database Configuration Assistant after the installation to create a database.
If you select an installation method that runs Database Configuration Assistant in noninteractive mode, then you must choose an existing disk group for the new database; you cannot create a disk group. However, you can add disk devices to an existing disk group if it has insufficient free space for your requirements.

---

**Note:** The Automatic Storage Management instance that manages the existing disk group can be running in a different Oracle home directory.

---

To determine whether an existing Automatic Storage Management disk group exists, or to determine whether there is sufficient disk space in a disk group, you can use Oracle Enterprise Manager Grid Control or Database Control. Alternatively, you can use the following procedure:

1. View the contents of the `oratab` file to determine whether an Automatic Storage Management instance is configured on the system:

   ```
 # more /etc/oratab
   ```

   If an Automatic Storage Management instance is configured on the system, then the `oratab` file should contain a line similar to the following:

   ```
 +ASM2:oracle_home_path
   ```

   In this example, `+ASM2` is the system identifier (SID) of the Automatic Storage Management instance, with the node number appended, and `oracle_home_path` is the Oracle home directory where it is installed. By convention, the SID for an Automatic Storage Management instance begins with a plus sign.

2. Set the `ORACLE_SID` and `ORACLE_HOME` environment variables to specify the appropriate values for the Automatic Storage Management instance that you want to use.

3. Connect to the Automatic Storage Management instance as the SYS user with SYSDBA privilege and start the instance if necessary:

   ```
 # $ORACLE_HOME/bin/sqlplus "SYS/SYS_password as SYSDBA"
 SQL> STARTUP
   ```

4. Enter the following command to view the existing disk groups, their redundancy level, and the amount of free disk space in each one:

   ```
 SQL> SELECT NAME,TYPE,TOTAL_MB,FREE_MB FROM V$ASM_DISKGROUP;
   ```

5. From the output, identify a disk group with the appropriate redundancy level and note the free space that it contains.

6. If necessary, install or identify the additional disk devices required to meet the storage requirements listed in the previous section.

---

**Note:** If you are adding devices to an existing disk group, then Oracle recommends that you use devices that have the same size and performance characteristics as the existing devices in that disk group.

---

### Configuring Disks for Automatic Storage Management

To configure disks for use with ASM on HP-UX, follow these steps:
1. If necessary, install the shared disks that you intend to use for the ASM disk group.

2. To make sure that the disks are available, enter the following command on every node:

   ```
 # /usr/sbin/ioscan -fun -C disk
   ```

   The output from this command is similar to the following:

<table>
<thead>
<tr>
<th>Class</th>
<th>I</th>
<th>H/W Path</th>
<th>Driver</th>
<th>S/W State</th>
<th>H/W Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk</td>
<td>0</td>
<td>0/0/1/0.6.0</td>
<td>sdisk</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>HP   DVD-ROM 6x/32x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rdsk/c0t6d0</td>
<td></td>
<td></td>
<td>/dev/rdsk/c0t6d0</td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td>1</td>
<td>0/0/1/1.2.0</td>
<td>sdisk</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>SEAGATE ST39103LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/rdsk/c1t2d0</td>
<td></td>
<td></td>
<td>/dev/rdsk/c1t2d0</td>
<td></td>
</tr>
</tbody>
</table>

   This command displays information about each disk attached to the system, including character raw device names (/dev/rdsk/).

   **Note:** On HP-UX 11i v.3, you can also use agile view to review mass storage devices, including character raw devices (/dev/rdisk/diskxyz). For example:

   ```
 #>ioscan -funN -C disk
   ```

<table>
<thead>
<tr>
<th>Class</th>
<th>I</th>
<th>H/W Path</th>
<th>Driver</th>
<th>S/W State</th>
<th>H/W Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk</td>
<td>4</td>
<td>64000/0xfa00/0x1</td>
<td>esdisk</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>HP 73.4GST373454LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/disk/disk4</td>
<td></td>
<td></td>
<td>/dev/rdisk/disk4</td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td>907</td>
<td>64000/0xfa00/0x2f</td>
<td>esdisk</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>COMPAQ MSA1000 VOLUME</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/dev/disk/disk907</td>
<td></td>
<td></td>
<td>/dev/rdisk/disk907</td>
<td></td>
</tr>
</tbody>
</table>

   **Note:** If you are using different volume management software, for example VERITAS Volume Manager, refer to the appropriate documentation for information about verifying that a disk is not in use.

3. If the `ioscan` command does not display device name information for a device that you want to use, enter the following command to install the special device files for any new devices:

   ```
 # /usr/sbin/insf -e
   ```

4. For each disk that you want to add to a disk group, enter the following command on any node to verify that it is not already part of an LVM volume group:

   ```
 # /sbin/pvdisplay /dev/dsk/cxtydz
   ```

   If this command displays volume group information, the disk is already part of a volume group. The disks that you choose must not be part of an LVM volume group.

   **Note:** If you are using different volume management software, for example VERITAS Volume Manager, refer to the appropriate documentation for information about verifying that a disk is not in use.

5. Enter commands similar to the following on every node to change the owner, group, and permissions on the character raw device file for each disk that you want to add to a disk group:
# chown oracle:dba /dev/rdsk/cxtdyz
# chmod 660 /dev/rdsk/cxtdyz

---

**Note:** If you are using a multi-pathing disk driver with ASM, make sure that you set the permissions only on the correct logical device name for the disk.

If the nodes are configured differently, the device name for a particular device might be different on some nodes. Make sure that you specify the correct device names on each node.

---

6. If you also want to use raw devices for storage, then refer to the following section, "Configuring Disks for Database Files on Raw Devices" section on page 5-17.

---

### Configuring Storage for Oracle Database Files on Shared Storage Devices

The following subsections describe how to configure Oracle Clusterware files on raw devices.

- Planning Your Shared Storage Device Creation Strategy
- Identifying Required Shared Partitions for Database Files
- Desupport of the Database Configuration Assistant Raw Device Mapping File

---

### Planning Your Shared Storage Device Creation Strategy

Before installing the Oracle Database 11g release 1 (11.1) software with Oracle RAC, create enough partitions of specific sizes to support your database, and also leave a few spare partitions of the same size for future expansion. For example, if you have space on your shared disk array, then select a limited set of standard partition sizes for your entire database. Partition sizes of 50 MB, 100 MB, 500 MB, and 1 GB are suitable for most databases. Also, create a few very small and a few very large spare partitions that are (for example) 1 MB and perhaps 5 GB or greater in size. Based on your plans for using each partition, determine the placement of these spare partitions by combining different sizes on one disk, or by segmenting each disk into same-sized partitions.

**Note:** Be aware that each instance has its own redo log files, but all instances in a cluster share the control files and data files. In addition, each instance’s online redo log files must be readable by all other instances to enable recovery.

In addition to the minimum required number of partitions, you should configure spare partitions. Doing this enables you to perform emergency file relocations or additions if a tablespace data file becomes full.

---

### Identifying Required Shared Partitions for Database Files

Table 5–3 lists the number and size of the shared partitions that you must configure for database files.
Desupport of the Database Configuration Assistant Raw Device Mapping File

With the release of Oracle Database 11g and Oracle RAC release 11g, configuring raw devices using Database Configuration Assistant is not supported.

Configuring Disks for Database Files on Raw Devices

The following subsections describe how to configure raw partitions for database files:

- Identifying Partitions and Configuring Raw Devices for Database Files
- Creating the Database Configuration Assistant Raw Device Mapping File

Identifying Partitions and Configuring Raw Devices for Database Files

Table 5–4 lists the number and size of the raw disk devices that you must configure for database files.

<table>
<thead>
<tr>
<th>Number</th>
<th>Partition Size (MB)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>SYSTEM tablespace</td>
</tr>
<tr>
<td>1</td>
<td>300 + (Number of instances * 250)</td>
<td>SYSAUX tablespace</td>
</tr>
<tr>
<td>Number of instances</td>
<td>500</td>
<td>UNDOTBS$n$ tablespace (One tablespace for each instance)</td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>TEMP tablespace</td>
</tr>
<tr>
<td>1</td>
<td>160</td>
<td>EXAMPLE tablespace</td>
</tr>
<tr>
<td>1</td>
<td>120</td>
<td>USERS tablespace</td>
</tr>
<tr>
<td>2 * number of instances</td>
<td>120</td>
<td>Two online redo log files for each instance</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>First and second control files</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Server parameter file (SPFILE)</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Password file</td>
</tr>
</tbody>
</table>

Note: If you prefer to use manual undo management, instead of automatic undo management, then, instead of the UNDOTBS$n$ shared storage devices, you must create a single rollback segment tablespace (RBS) on a shared storage device partition that is at least 500 MB in size.

Note: Because each file requires exclusive use of a complete disk device, Oracle recommends that, if possible, you use disk devices with sizes that closely match the size requirements of the files that they will store. You cannot use the disks that you choose for these files for any other purpose.
Configuring Disks for Database Files on Raw Devices

1. If you intend to use raw disk devices for database file storage, then choose a name for the database that you want to create. The name that you choose must start with a letter and have no more than four characters, for example, orcl.

2. Identify or configure the required disk devices. The disk devices must be shared on all of the cluster nodes.

3. To ensure that the disks are available, enter the following command on every node:

   # /usr/sbin/ioscan -fun -C disk

   The output from this command is similar to the following:

<table>
<thead>
<tr>
<th>Class</th>
<th>I</th>
<th>H/W Path</th>
<th>Driver S/W State</th>
<th>H/W Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk 0 0/0/1/0.6.0</td>
<td>sdisk</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>HP DVD-ROM 6x/32x</td>
<td></td>
</tr>
<tr>
<td>disk 1 0/0/1/1.2.0</td>
<td>sdisk</td>
<td>CLAIMED</td>
<td>DEVICE</td>
<td>SEAGATE ST39103LC</td>
<td></td>
</tr>
</tbody>
</table>

   This command displays information about each disk attached to the system, including the character raw device name (/dev/rdsk/cxtydz).

### Table 5-4 Raw Disk Devices Required for Database Files on HP-UX

<table>
<thead>
<tr>
<th>Number</th>
<th>Size (MB)</th>
<th>Purpose and Sample Alternative Device File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>SYSTEM tablespace: dbname_system_raw_680m</td>
</tr>
<tr>
<td>1</td>
<td>300 + (Number of instances * 250)</td>
<td>SYSAUX tablespace: dbname_sysaux_raw_800m</td>
</tr>
<tr>
<td>Number of instances</td>
<td>500</td>
<td>UNDOTBSn tablespace (One tablespace for each instance, where n is the number of the instance): dbname_undotbsn_raw_500m</td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>TEMP tablespace: dbname_temp_raw_250m</td>
</tr>
<tr>
<td>1</td>
<td>160</td>
<td>EXAMPLE tablespace: dbname_example_raw_160m</td>
</tr>
<tr>
<td>1</td>
<td>120</td>
<td>USERS tablespace: dbname_users_raw_120m</td>
</tr>
<tr>
<td>2 * number of instances</td>
<td>120</td>
<td>Two online redo log files for each instance (where n is the number of the instance and m is the log number, 1 or 2): dbname_redon_m_raw_120m</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>First and second control files: dbname_control{1</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Server parameter file (SPFILE): dbname_spfile_raw_5m</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Password file: dbname_pwdfile_raw_5m</td>
</tr>
</tbody>
</table>
4. If the `ioscan` command does not display device name information for a device that you want to use, then enter the following command to install the special device files for any new devices:

```
/usr/sbin/insf -e
```

5. For each disk that you want to use, enter the following command on any node to verify that it is not already part of an LVM volume group:

```
/sbin/pvdisplay /dev/dsk/cxtyz
```

If this command displays volume group information, then the disk is already part of a volume group. The disks that you choose must not be part of an LVM volume group.

---

**Note:** If you are using different volume management software, for example VERITAS Volume Manager, then refer to the appropriate documentation for information about verifying that a disk is not in use.

---

6. If the `ioscan` command shows different device names for the same device on any node, then:

a. Change directory to the `/dev/rdsk` directory.

b. Enter the following command to list the raw disk device names and their associated major and minor numbers:

```
ls -la
```

The output from this command is similar to the following for each disk device:

```
crw-r--r-- 1 bin sys 188 0x032000 Nov 4 2003 c3t2d0
```

In this example, 188 is the device major number and 0x32000 is the device minor number.

c. Enter the following command to create a new device file for the disk that you want to use, specifying the same major and minor number as the existing device file:

```
mknod ora_ocr_raw_256m c 188 0x032000
```

---

**Note:** Oracle recommends that you use the alternative device file names shown in the previous table.

---

d. Repeat these steps on each node, specifying the correct major and minor numbers for the new device files on each node.

7. Enter commands similar to the following on every node to change the owner, group, and permissions on the character raw device file for each disk device that you want to use:

```
Note: If you are using different volume management software, for example VERITAS Volume Manager, then refer to the appropriate documentation for information about verifying that a disk is not in use.
```

---

```
chown oracle:oinstall ora_ocr_raw_256m
chmod 666 ora_ocr_raw_256m
```

---
Configuring Disks for Database Files on Raw Devices

**Note:** If you are using a multi-pathing disk driver with Automatic Storage Management, then ensure that you set the permissions only on the correct logical device name for the disk.

If you created an alternative device file for the device, then set the permissions on that device file.

- **OCR:**

  ```
 # chown root:oinstall /dev/rdsk/cxtydz
 # chmod 640 /dev/rdsk/cxtydz
  ```

- **Oracle Clusterware voting disk or database files:**

  ```
 # chown oracle:dba /dev/rdsk/cxtydz
 # chmod 660 /dev/rdsk/cxtydz
  ```

8. If you are using raw disk devices for database files, then follow these steps to create the Database Configuration Assistant raw device mapping file:

**Note:** You must complete this procedure only if you are using raw devices for database files. The Database Configuration Assistant raw device mapping file enables Database Configuration Assistant to identify the appropriate raw disk device for each database file. You do not specify the raw devices for the Oracle Clusterware files in the Database Configuration Assistant raw device mapping file.

a. Set the ORACLE_BASE environment variable to specify the Oracle base directory that you identified or created previously:

  - Bourne, Bash, or Korn shell:
    ```
 $ ORACLE_BASE=/u01/app/oracle ; export ORACLE_BASE
    ```
  
  - C shell:
    ```
 % setenv ORACLE_BASE /u01/app/oracle
    ```

b. Create a database file subdirectory under the Oracle base directory and set the appropriate owner, group, and permissions on it:

  ```
 # mkdir -p $ORACLE_BASE/oradata/
 # chown -R oracle:oinstall $ORACLE_BASE/oradata
 # chmod -R 775 $ORACLE_BASE/oradata
  ```

  In this example, `dbname` is the name of the database that you chose previously.

c. Change directory to the `$ORACLE_BASE/oradata/dbname` directory.

d. Using any text editor, create a text file similar to the following that identifies the disk device file name associated with each database file.

Oracle recommends that you use a file name similar to `dbname_raw.conf` for this file.
Note: The following example shows a sample mapping file for a two-instance RAC cluster. Some of the devices use alternative disk device file names. Ensure that the device file name that you specify identifies the same disk device on all nodes.

```
system=/dev/rdsk/c2t1d1
sysaux=/dev/rdsk/c2t1d2
example=/dev/rdsk/c2t1d3
users=/dev/rdsk/c2t1d4
temp=/dev/rdsk/c2t1d5
undotbs1=/dev/rdsk/c2t1d6
undotbs2=/dev/rdsk/c2t1d7
redo1_1=/dev/rdsk/c2t1d8
redo1_2=/dev/rdsk/c2t1d9
redo2_1=/dev/rdsk/c2t1d10
redo2_2=/dev/rdsk/c2t1d11
control1=/dev/rdsk/c2t1d12
control2=/dev/rdsk/c2t1d13
spfile=/dev/rdsk/ddbname_spfile_raw_5m
pwdfile=/dev/rdsk/ddbname_pwdfile_raw_5m
```

In this example, `dbname` is the name of the database.

Use the following guidelines when creating or editing this file:

- Each line in the file must have the following format:
  
  ```
 database_object_identifier=device_file_name
  ```

  The alternative device file names suggested in the previous table include the database object identifier that you must use in this mapping file. For example, in the following alternative disk device file name, `redo1_1` is the database object identifier:

  ```
 rac_redo1_1_raw_120m
  ```

- For a RAC database, the file must specify one automatic undo tablespace datafile (`undotbsn`) and two redo log files (`redo_1`, `redo_2`) for each instance.

- Specify at least two control files (`controll`, `control2`).

- To use manual instead of automatic undo management, specify a single RBS tablespace datafile (`rbs`) instead of the automatic undo management tablespace data files.

e. Save the file and note the file name that you specified.

f. When you are configuring the Oracle user’s environment later in this chapter, set the DBCA_RAW_CONFIG environment variable to specify the full path to this file.

9. When you are installing Oracle Clusterware, you must enter the paths to the appropriate device files when prompted for the path of the OCR and Oracle Clusterware voting disk, for example:

```
/dev/rdsk/cxtydz
```
Creating the Database Configuration Assistant Raw Device Mapping File

Note: You must complete this procedure only if you are using raw logical volumes for database files.

To enable Database Configuration Assistant to identify the appropriate raw device for each database file, you must create a raw device mapping file, as follows:

1. Set the ORACLE_BASE environment variable to specify the Oracle base directory that you identified or created previously:
   - Bourne, Bash, or Korn shell:
     `$ ORACLE_BASE=/u01/app/oracle ; export ORACLE_BASE`
   - C shell:
     `% setenv ORACLE_BASE /u01/app/oracle`

2. Create a database file subdirectory under the Oracle base directory and set the appropriate owner, group, and permissions on it:
   ```
 # mkdir -p $ORACLE_BASE/oradata/
dbname
 # chown -R oracle:oinstall $ORACLE_BASE/oradata
 # chmod -R 775 $ORACLE_BASE/oradata
   ```
   In this example, `dbname` is the name of the database that you chose previously.

3. Change directory to the `$ORACLE_BASE/oradata/dbname` directory.

4. Enter a command similar to the following to create a text file that you can use to create the raw device mapping file:
   ```
 # find /dev/ -user oracle -name ‘r*’ -print > dbname_raw.conf
   ```

5. Edit the `dbname_raw.conf` file in any text editor to create a file similar to the following:

   ```
 Note: The following example shows a sample mapping file for a two-instance RAC cluster.
   ```

   ```
 system=/dev/vg_name/rdname_system_raw_500m
 sysaux=/dev/vg_name/rdname_sysaux_raw_800m
 example=/dev/vg_name/rdname_example_raw_160m
 users=/dev/vg_name/rdname_users_raw_120m
 temp=/dev/vg_name/rdname_temp_raw_250m
 undotbs1=/dev/vg_name/rdname_undotbs1_raw_500m
 undotbs2=/dev/vg_name/rdname_undotbs2_raw_500m
 redo1_1=/dev/vg_name/rdname_redo1_1_raw_120m
 redo1_2=/dev/vg_name/rdname_redo1_2_raw_120m
 redo2_1=/dev/vg_name/rdname_redo2_1_raw_120m
 redo2_2=/dev/vg_name/rdname_redo2_2_raw_120m
 control1=/dev/vg_name/rdname_control1_raw_110m
 control2=/dev/vg_name/rdname_control2_raw_110m
 spfile=/dev/vg_name/rdname_spfile_raw_5m
 pwdfile=/dev/vg_name/rdname_pwdfile_raw_5m
   ```

   In this example:
■ \textit{vg\_name} is the name of the volume group

■ \textit{dbname} is the name of the database

Use the following guidelines when creating or editing this file:

■ Each line in the file must have the following format:

\begin{verbatim}
database\_object\_identifier=logical\_volume
\end{verbatim}

The logical volume names suggested in this manual include the database object identifier that you must use in this mapping file. For example, in the following logical volume name, \textit{redo\_1} is the database object identifier:

\begin{verbatim}
/dev/oracle\_vg/rrac_redo\_1\_raw\_120m
\end{verbatim}

■ The file must specify one automatic undo tablespace datafile (\textit{undotbsn}) and two redo log files (\textit{redon\_1}, \textit{redon\_2}) for each instance.

■ Specify at least two control files (\textit{control1}, \textit{control2}).

■ To use manual instead of automatic undo management, specify a single RBS tablespace datafile (\textit{rbs}) instead of the automatic undo management tablespace data files.

■ Save the file and note the file name that you specified.

■ When you are configuring the \textit{oracle} user’s environment later in this chapter, set the DBCA\_RAW\_CONFIG environment variable to specify the full path to this file.

**Desupport of the Database Configuration Assistant Raw Device Mapping File**

With the release of Oracle Database 11g and Oracle RAC release 11g, configuring raw devices using Database Configuration Assistant is not supported.

**Checking the System Setup with CVU**

As the \textit{oracle} user, use the following command syntax to start Cluster Verification Utility (CVU) stage verification to check hardware, operating system, and storage setup:

\begin{verbatim}
/mountpoint/runcluvfy.sh stage \_post hwos \_n node\_list \[-verbose\]
\end{verbatim}

In the preceding syntax example, replace the variable \textit{node\_list} with the names of the nodes in your cluster, separated by commas. For example, to check the hardware and operating system of a two-node cluster with nodes \textit{node1} and \textit{node2}, with the mountpoint `/mnt/dvdrom/` and with the option to limit the output to the test results, enter the following command:

\begin{verbatim}
$ /mnt/dvdrom/runcluvfy.sh stage \_post hwos \_n node1,node2
\end{verbatim}

Select the option \textit{-verbose} to receive detailed reports of the test results, and progress updates about the system checks performed by Cluster Verification Utility.
This chapter describes the procedures for installing Oracle Clusterware for HP-UX. If you are installing Oracle Database with Oracle Real Application Clusters (Oracle RAC), then this is phase one of a two-phase installation.

This chapter contains the following topics:

- **Verifying Oracle Clusterware Requirements with CVU**
- **Preparing to Install Oracle Clusterware with OUI**
- **Installing Oracle Clusterware with OUI**
- **Confirming Oracle Clusterware Function**

### Verifying Oracle Clusterware Requirements with CVU

Using the following command syntax, log in as the installation owner user (oracle or crs), and start Cluster Verification Utility (CVU) to check system requirements for installing Oracle Clusterware:

```
/mountpoint/runcluvfy.sh stage -pre crsinst -n node_list
```

In the preceding syntax example, replace the variable `mountpoint` with the installation media mountpoint, and replace the variable `node_list` with the names of the nodes in your cluster, separated by commas.

For example, for a cluster with mountpoint `/mnt/dvdrom/`, and with nodes `node1`, `node2`, and `node3`, enter the following command:

```
$ /mnt/dvdrom/runcluvfy.sh stage -pre crsinst -n node1,node2,node3
```

The Cluster Verification Utility Oracle Clusterware preinstallation stage check verifies the following:

- **Node Reachability**: All of the specified nodes are reachable from the local node.
- **User Equivalence**: Required user equivalence exists on all of the specified nodes.
- **Node Connectivity**: Connectivity exists between all the specified nodes through the public and private network interconnections, and at least one subnet exists that connects each node and contains public network interfaces that are suitable for use as virtual IPs (VIPs).
- **Administrative Privileges**: The oracle user has proper administrative privileges to install Oracle Clusterware on the specified nodes.
- **Shared Storage Accessibility**: If specified, the OCR device and voting disk are shared across all the specified nodes.
Verifying Oracle Clusterware Requirements with CVU

- **System Requirements**: All system requirements are met for installing Oracle Clusterware software, including kernel version, kernel parameters, memory, swap directory space, temporary directory space, and required users and groups.

- **Kernel Packages**: All required operating system software packages are installed.

- **Node Applications**: The virtual IP (VIP), Oracle Notification Service (ONS) and Global Service Daemon (GSD) node applications are functioning on each node.

---

**Note**: Avoid changing host names after you complete the Oracle Clusterware installation, including adding or deleting domain qualifications. Nodes with changed host names must be deleted from the cluster and added back with the new name.

---

**Interpreting CVU Messages About Oracle Clusterware Setup**

If the Cluster Verification Utility report indicates that your system fails to meet the requirements for Oracle Clusterware installation, then use the topics in this section to correct the problem or problems indicated in the report, and run Cluster Verification Utility again.

**User Equivalence Check Failed**

**Cause**: Failure to establish user equivalency across all nodes. This can be due to not creating the required users, or failing to complete secure shell (SSH) configuration properly.

**Action**: Cluster Verification Utility provides a list of nodes on which user equivalence failed. For each node listed as a failure node, review the oracle user configuration to ensure that the user configuration is properly completed, and that SSH configuration is properly completed.

**See Also**: "Creating Identical Users and Groups on Other Cluster Nodes" in Chapter 3 on page 3-3, and "Configuring SSH or RCP on All Cluster Nodes" in Chapter 2 on page 2-20 for user equivalency configuration instructions.

Use the command `su - oracle` and check user equivalence manually by running the `ssh` command on the local node with the `date` command argument using the following syntax:

```
$ ssh node_name date
```

The output from this command should be the timestamp of the remote node identified by the value that you use for `node_name`. If `ssh` is in the default location, the `/usr/bin` directory, then use `ssh` to configure user equivalence. You can also use `rsh` to confirm user equivalence.

If you have not attempted to use SSH to connect to the host node before running, then Cluster Verification Utility indicates a user equivalence error. If you see a message similar to the following when entering the date command with SSH, then this is the probable cause of the user equivalence error:

```
The authenticity of host 'node1 (140.87.152.153)' can't be established.
Are you sure you want to continue connecting (yes/no)?
```

Enter yes, and then run Cluster Verification Utility again to determine if the user equivalence error is resolved.
If ssh is in a location other than the default, /usr/bin, then Cluster Verification Utility reports a user equivalence check failure. To avoid this error, navigate to the directory $CV_HOME/cv/admin, open the file cvu_config with a text editor, and add or update the key ORACLE_SRVM_REMOTESHELL to indicate the ssh path location on your system. For example:

```
Locations for ssh and scp commands
ORACLE_SRVM_REMOTESHELL=/usr/local/bin/ssh
ORACLE_SRVM_REMOTECOPY=/usr/local/bin/scp
```

Note the following rules for modifying the cvu_config file:

- Key entries have the syntax `name=value`
- Each key entry and the value assigned to the key defines one property only
- Lines beginning with the number sign (#) are comment lines, and are ignored
- Lines that do not follow the syntax `name=value` are ignored

When you have changed the path configuration, run Cluster Verification Utility again. If ssh is in another location than the default, then you also need to start OUI with additional arguments to specify a different location for the remote shell and remote copy commands. Enter `runInstaller -help` to obtain information about how to use these arguments.

---

**Note:** When you or OUI run ssh or rsh commands, including any login or other shell scripts they start, you may see errors about invalid arguments or standard input if the scripts generate any output. You should correct the cause of these errors.

To stop the errors, remove all commands from the oracle user’s login scripts that generate output when you run ssh or rsh commands.

If you see messages about X11 forwarding, then complete the task "Setting Display and X11 Forwarding Configuration" on page 2-25 to resolve this issue.

If you see errors similar to the following:

```
stty: standard input: Invalid argument
stty: standard input: Invalid argument
```

These errors are produced if hidden files on the system (for example, .bashrc or .cshrc) contain stty commands. If you see these errors, then refer to Chapter 2, "Preventing Oracle Clusterware Installation Errors Caused by stty Commands" on page 2-26 to correct the cause of these errors.

---

**Node Reachability Check or Node Connectivity Check Failed**

**Cause:** One or more nodes in the cluster cannot be reached using TCP/IP protocol, through either the public or private interconnects.

**Action:** Use the command `/usr/sbin/ping address` to check each node address. When you find an address that cannot be reached, check your list of public and private addresses to make sure that you have them correctly configured. If you use vendor clusterware, then refer to the vendor documentation for assistance. Ensure that the public and private network interfaces have the same interface names on each node of your cluster.
User Existence Check or User-Group Relationship Check Failed

**Cause:** The administrative privileges for users and groups required for installation are missing or incorrect.

**Action:** Use the `id` command on each node to confirm that the `oracle` user is created with the correct group membership. Ensure that you have created the required groups, and create or modify the user account on affected nodes to establish required group membership.

**See Also:** "Creating Standard Configuration Operating System Groups and Users" in Chapter 3 for instructions about how to create required groups, and how to configure the `oracle` user.

---

**Preparing to Install Oracle Clusterware with OUI**

Before you install Oracle Clusterware with Oracle Universal Installer (OUI), use the following checklist to ensure that you have all the information you will need during installation, and to ensure that you have completed all tasks that must be done before starting to install Oracle Clusterware. Mark the box for each task as you complete it, and write down the information needed, so that you can provide it during installation.

1. **Shut Down Running Oracle Processes**

   If you are installing Oracle Clusterware on a node that already has a single-instance Oracle Database 11g release 1 (11.1) installation, then stop the existing ASM instances. After Oracle Clusterware is installed, start up the ASM instances again. When you restart the single-instance Oracle database, the ASM instances use the Cluster Synchronization Services (CSSD) Daemon from Oracle Clusterware instead of the CSSD daemon for the single-instance Oracle database.

   You can upgrade some or all nodes of an existing Cluster Ready Services installation. For example, if you have a six-node cluster, then you can upgrade two nodes each in three upgrading sessions. Base the number of nodes that you upgrade in each session on the load the remaining nodes can handle. This is called a "rolling upgrade."

   If a Global Services Daemon (GSD) from Oracle9i Release 9.2 or earlier is running, then stop it before installing Oracle Database 11g release 1 (11.1) Oracle Clusterware by running the following command:

   ```
 $ Oracle_home/bin/gsdctl stop
   ```

   where `Oracle_home` is the Oracle Database home that is running the GSD.

   **Caution:** If you have an existing Oracle9i release 2 (9.2) Oracle Cluster Manager (Oracle CM) installation, then do not shut down the Oracle CM service. Shutting down the Oracle CM service prevents the Oracle Clusterware 11g release 1 (11.1) software from detecting the Oracle9i release 2 nodestan, and causes failure of the Oracle Clusterware installation.

   **Note:** If you receive a warning to stop all Oracle services after starting OUI, then run the command

   ```
 Oracle_home/bin/localconfig delete
   ```

   where `Oracle_home` is the home that is running CSS.
Prepare for Clusterware Upgrade If You Have Existing Oracle Cluster Ready Services Software

During an Oracle Clusterware installation, if OUI detects an existing Oracle Database 10g release 1 (10.1) Cluster Ready Services (CRS), then you are given the option to perform a rolling upgrade by installing Oracle Database 11g release 1 (11.1) Oracle Clusterware on a subset of cluster member nodes.

If you intend to perform a rolling upgrade, then you should shut down the CRS stack on the nodes you intend to upgrade, and unlock the Oracle Clusterware home using the script `mountpoint/clusterware/upgrade/preupdate.sh`, which is available on the 11g release 1 (11.1) installation media.

If you intend to perform a standard upgrade, then shut down the CRS stack on all nodes, and unlock the Oracle Clusterware home using the script `mountpoint/clusterware/upgrade/preupdate.sh`.

When you run OUI and select the option to install Oracle Clusterware on a subset of nodes, OUI installs Oracle Database 11g release 1 (11.1) Oracle Clusterware software into the existing Oracle Clusterware home on the local and remote node subset. When you run the root script, it starts the Oracle Clusterware 11g release 1 (11.1) stack on the subset cluster nodes, but lists it as an inactive version.

When all member nodes of the cluster are running Oracle Clusterware 11g release 1 (11.1), then the new clusterware becomes the active version.

If you intend to install Oracle RAC, then you must first complete the upgrade to Oracle Clusterware 11g release 1 (11.1) on all cluster member nodes before you install the Oracle Database 11g release 1 (11.1) version of Oracle RAC.

Determine the Oracle Inventory location

If you have already installed Oracle software on your system, then OUI detects the existing Oracle Inventory directory from the `/var/opt/oracle/oraInst.loc` file, and uses this location.

If you are installing Oracle software for the first time on your system, and your system does not have an Oracle inventory, then you are asked to provide a path for the Oracle inventory, and you are also asked the name of the Oracle Inventory group (typically, `oinstall`).

See Also: The preinstallation chapters in Chapter 2 for information about creating the Oracle Inventory, and completing required system configuration.

Obtain root account access

During installation, you are asked to run configuration scripts as the root user. You must run these scripts as root, or be prepared to have your system administrator run them for you. Note that these scripts must be run in sequence. If you attempt to run scripts simultaneously, then the installation will fail.

Decide if you want to install other languages

During installation, you are asked if you want translation of user interface text into languages other than the default, which is English.

Note: If the language set for the operating system is not supported by Oracle Universal Installer, then Oracle Universal Installer, by default, runs in the English language.
See Also: Oracle Database Globalization Support Guide for detailed information on character sets and language configuration

- Determine your cluster name, public node names, private node names, and virtual node names for each node in the cluster

If you install the clusterware during installation, and are not using third-party vendor clusterware, then you are asked to provide a public node name and a private node name for each node. If you use vendor clusterware, then use your vendor documentation to complete setup of your public and private domain addresses.

When you enter the public node name, use the primary host name of each node. In other words, use the name displayed by the hostname command. This node name can be either the permanent or the virtual host name.

In addition, ensure that the following are true:

- Determine a cluster name with the following characteristics:
  - It must be globally unique throughout your host domain.
  - It must be at least one character long and less than 15 characters long.
  - It must consist of the same character set used for host names: underscores (_), hyphens (-), and single-byte alphanumeric characters (a to z, A to Z, and 0 to 9). If you use vendor clusterware, then Oracle recommends that you use the vendor cluster name.

- Determine a private node name or private IP address for each node. The private IP address is an address that is accessible only by the other nodes in this cluster. Oracle Database uses private IP addresses for internode, or instance-to-instance Cache Fusion traffic. Oracle recommends that you provide a name in the format public_hostname-priv. For example: myclstr2-priv.

- Determine a virtual host name for each node. A virtual host name is a public node name that is used to reroute client requests sent to the node if the node is down. Oracle Database uses VIPs for client-to-database connections, so the VIP address must be publicly accessible. Oracle recommends that you provide a name in the format public_hostname-vip. For example: myclstr2-vip.

Note: The following is a list of additional information about node IP addresses:

- For the local node only, OUI automatically fills in public, private, and VIP fields. If your system uses vendor clusterware, then OUI may fill additional fields.

- Host names, private names, and virtual host names are not domain-qualified. If you provide a domain in the address field during installation, then OUI removes the domain from the address.

- Private IP addresses should not be accessible as public interfaces. Using public interfaces for Cache Fusion can cause performance problems.
Identify shared storage for Oracle Clusterware files and prepare disk partitions if necessary

During installation, you are asked to provide paths for two files that must be shared across all nodes of the cluster, either on a shared raw device, or a shared file system file:

- The voting disk is a partition that Oracle Clusterware uses to verify cluster node membership and status.
  
The voting disk must be owned by the user performing the installation (oracle or crs), and must have permissions set to 640.

- The Oracle Cluster Registry (OCR) contains cluster and database configuration information for the Oracle RAC database and for Oracle Clusterware, including the node list, and other information about cluster configuration and profiles.
  
The OCR disk must be owned by the user performing the installation (crs or oracle). That installation user must have oinstall as its primary group. The OCR disk partitions must have permissions set to 640, though permissions files used with system restarts should have ownership set to root:oinstall. During installation, OUI changes ownership of the OCR disk partitions to root. Provide at least 280 MB disk space for the OCR partitions.

If your disks do not have external storage redundancy, then Oracle recommends that you provide one additional location for the OCR disk, and two additional locations for the voting disk, for a total of five partitions (two for OCR, and three for voting disks). Creating redundant storage locations protects the OCR and voting disk in the event of a disk failure on the partitions you choose for the OCR and the voting disk.

See Also: Chapter 2

Installing Oracle Clusterware with OUI

This section provides you with information about how to use Oracle Universal Installer (OUI) to install Oracle Clusterware. It contains the following sections:

- Running OUI to Install Oracle Clusterware
- Installing Oracle Clusterware Using a Cluster Configuration File
- Troubleshooting OUI Error Messages for Oracle Clusterware

Running OUI to Install Oracle Clusterware

Complete the following steps to install Oracle Clusterware on your cluster. At any time during installation, if you have a question about what you are being asked to do, click the Help button on the OUI page.

1. Unless you have the same terminal window open that you used to set up SSH, enter the following commands:
   
   $ exec /usr/bin/ssh-agent $SHELL
   $ /usr/bin/ssh-add

2. Start the runInstaller command from the /Disk1 directory on the Oracle Database 11g release 1 (11.1) installation media.
3. Provide information or run scripts as root when prompted by OUI. If you need assistance during installation, click Help.

**Note:** You must run root.sh scripts one at a time. Do not run root.sh scripts simultaneously.

4. After you run root.sh on all the nodes, OUI runs the Oracle Notification Server Configuration Assistant, Oracle Private Interconnect Configuration Assistant, and Cluster Verification Utility. These programs run without user intervention.

When you have verified that your Oracle Clusterware installation is completed successfully, you can either use it to maintain high availability for other applications, or you can install an Oracle database.

If you intend to install Oracle Database 11g release 1 (11.1) with Oracle RAC, then refer to Oracle Real Application Clusters Installation Guide for HP-UX. If you intend to use Oracle Clusterware by itself, then refer to the single-instance Oracle Database installation guide.

**See Also:** Oracle Real Application Clusters Administration and Deployment Guide for information about using cloning and node addition procedures, and Oracle Clusterware Administration and Deployment Guide for cloning Oracle Clusterware

### Installing Oracle Clusterware Using a Cluster Configuration File

During installation of Oracle Clusterware, on the Specify Cluster Configuration page, you are given the option either of providing cluster configuration information manually, or of using a cluster configuration file. A cluster configuration file is a text file that you can create before starting OUI, which provides OUI with information about the cluster name and node names that it requires to configure the cluster.

Oracle suggests that you consider using a cluster configuration file if you intend to perform repeated installations on a test cluster, or if you intend to perform an installation on many nodes.

To create a cluster configuration file:

1. On the installation media, navigate to the directory Disk1/response.
2. Using a text editor, open the response file crs.rsp, and find the section CLUSTER_CONFIGURATION_FILE.
3. Follow the directions in that section for creating a cluster configuration file.

### Troubleshooting OUI Error Messages for Oracle Clusterware

The following is a list of some common Oracle Clusterware installation issues, and how to resolve them.

**PRKC-1044 Failed to check remote command execution**
- **Cause:** SSH keys need to be loaded into memory, or there is a user equivalence error.
- **Action:** Run the following commands to load SSH keys into memory:

  ```
 $ exec /usr/bin/ssh-agent $SHELL
 $ /usr/bin/ssh-add
  ```
Note that you must have the passphrase used to set up SSH. If you are not the person who set up SSH, then obtain the passphrase. Note also that the .ssh folder in the user home that is performing the installation must be set with 600 permissions.

In addition, confirm group membership by entering the id command, and entering ID username. For example:

```
$ id
$ id oracle
```

**Incorrect permissions on partitions used for OCR or Voting Disks**

**Cause:** The user account performing the installation (oracle or crs) does not have permission to write to these partitions

**Action:** Make the partitions writable by the user performing installation. For example, use the command `chown user` to make the selected partitions writable by the user (oracle or crs) performing the installation. During installation, these permissions are changed to root ownership.

### Confirming Oracle Clusterware Function

After installation, log in as root, and use the following command syntax to confirm that your Oracle Clusterware installation is installed and running correctly:

```
CRS_home/bin/crs_stat -t -v
```

For example:

```
[root@node1 /]:/u01/app/crs/bin/crs_stat -t -v
Name a Type R/RA F/FT Target State Host
crs....ac3.gsd application 0/5 0/0 Online Online node1
crs....ac3.ons application 0/5 0/0 Online Online node1
crs....ac3.vip application 0/5 0/0 Online Online node1
crs....ac3.gsd application 0/5 0/0 Online Online node2
crs....ac3.ons application 0/5 0/0 Online Online node2
crs....ac3.vip application 0/5 0/0 Online Online node2
```

You can also use the command `crsctl check crs` for a less detailed system check. For example:

```
[root@node1 bin] $./crsctl check crs
Cluster Synchronization Services appears healthy
Cluster Ready Services appears healthy
Event Manager appears healthy
```
This chapter describes how to complete the postinstallation tasks after you have installed the Oracle Clusterware software.

This chapter contains the following topics:

- Required Postinstallation Tasks
- Recommended Postinstallation Tasks

### Required Postinstallation Tasks

You must perform the following tasks after completing your installation:

- Back Up the Voting Disk After Installation
- Download and Install Patch Updates

### Back Up the Voting Disk After Installation

After your Oracle Clusterware installation is complete and after you are sure that your system is functioning properly, make a backup of the contents of the voting disk. Use the `dd` utility. For example:

```
dd if=/dev/sda1 of=/dev/myvdisk1.bak
```

Also, make a backup copy of the voting disk contents after you complete any node additions or node deletions, and after running any deinstallation procedures.

### Download and Install Patch Updates

Refer to the OracleMetaLink Web site for required patch updates for your installation. To download required patch updates:

1. Use a Web browser to view the OracleMetaLink Web site:
   
   [https://metalink.oracle.com](https://metalink.oracle.com)

2. Log in to OracleMetaLink.

   **Note:** If you are not an OracleMetaLink registered user, then click Register for MetaLink and register.

3. On the main OracleMetaLink page, click Patches & Updates.
4. On the Patches & Update page, click **Advanced Search**.

5. On the Advanced Search page, click the search icon next to the Product or Product Family field.

6. In the Search and Select: Product Family field, select Database and Tools in the Search list field, enter RDBMS Server in the text field, and click **Go**.
   
   RDBMS Server appears in the Product or Product Family field. The current release appears in the Release field.

7. Select your platform from the list in the Platform field, and at the bottom of the selection list, click **Go**.

8. Any available patch updates appear under the Results heading.

9. Click the number of the patch that you want to download.

10. On the Patch Set page, click **View README** and read the page that appears. The README page contains information about the patch set and how to apply the patches to your installation.

11. Return to the Patch Set page, click **Download**, and save the file on your system.

12. Use the unzip utility provided with Oracle Database 10g to uncompress the Oracle patch updates that you downloaded from OracleMetaLink. The unzip utility is located in the `$ORACLE_HOME/bin` directory.

13. Refer to Appendix B on page B-1 for information about how to stop database processes in preparation for installing patches.

---

**Recommended Postinstallation Tasks**

Oracle recommends that you complete the following tasks after installing Oracle Clusterware.

**Back Up the root.sh Script**

Oracle recommends that you back up the `root.sh` script after you complete an installation. If you install other products in the same Oracle home directory, then the Oracle Universal Installer (OUI) updates the contents of the existing `root.sh` script during the installation. If you require information contained in the original `root.sh` script, then you can recover it from the `root.sh` file copy.

**Run CVU Postinstallation Check**

After installing Oracle Clusterware, check the status of your Oracle Clusterware installation with the command `cluvfy stage -post crsinst`, using the following syntax:

```
cluvfy stage -post crsinst -n node_list [-verbose]
```
Deinstallation of Oracle Clusterware

This chapter describes how to remove Oracle Clusterware.

This chapter contains the following topics:
- Deciding When to Deinstall Oracle Clusterware
- Relocating Single-instance ASM to a Single-Instance Database Home
- Removing Oracle Clusterware

See Also: Product-specific documentation for requirements and restrictions, if you want to remove an individual product

Deciding When to Deinstall Oracle Clusterware

Remove installed components in the following situations:
- You have encountered errors during or after installing or upgrading Oracle Clusterware, and you want to re-attempt an installation.
- Your installation or upgrade stopped because of a hardware or operating system failure.
- You are advised by Oracle Support to reinstall Oracle Clusterware.
- You have successfully installed Oracle Clusterware, and you want to remove the Clusterware installation, either in an educational environment, or a test environment.
- You have successfully installed Oracle Clusterware, but you want to downgrade to a previous release.

Relocating Single-instance ASM to a Single-Instance Database Home

If you have a single-instance Oracle Database on Oracle Clusterware, and you want to remove Oracle Clusterware, then use the following syntax to add the local CSS configuration to the ASM home:

ASM_home/bin/localconfig add

For example:

$ cd /u01/app/asm/bin/
$ ./localconfig add
Removing Oracle Clusterware

The scripts `rootdelete.sh` and `rootdeinstall.sh` remove Oracle Clusterware from your system. After running these scripts, run Oracle Universal Installer to remove the Oracle Clusterware home. The following sections describe the scripts, and later, provide exact procedure to the removal of the Oracle Clusterware software.

About the rootdelete.sh Script

The `rootdelete.sh` script should be run from the Oracle Clusterware home on each node. It stops the Oracle Clusterware stack, removes `inittab` entries, and deletes some of the Oracle Clusterware files. It can also be used to downgrade the Oracle Cluster Registry from the existing release to a previous release. The script uses the following syntax:

```
rootdelete.sh options
```

Options:

- **paramfile**: Use a parameter file containing configuration information for the `rootdelete.sh` command. Provide the path and name of the parameter file. For example: `-paramfile /usr/oracle/cwdeletepar`.
- **local** | **remote**: Use `local` if you are running `rootdelete.sh` on the local node, and use `remote` if you are running the script on one of the other nodes. The local node is the one from which you run OUI (in other words, the last surviving node), and on which you run `rootdeinstall.sh`.
- **nosharedvar** | **sharedvar**: Use `nosharedvar` if the directory path for `ocr.loc` (in `/etc/oracle` or `/var/opt/oracle`) is not on a shared file system. Use `sharedvar` if the directory path for `ocr.loc` is in a shared location. The default is `nosharedvar`.
- **sharedhome** | **nosharedhome**: Use `sharedhome` if the Oracle Clusterware home is shared across the nodes. Otherwise, use `nosharedhome`. The default is `sharedhome`.
- **downgrade**: Use this option if the Oracle Clusterware is downgraded to a previous Oracle Clusterware version. The `downgrade` option takes the following flags:
  - **-version**: Use this option to specify the version to which you want to downgrade. The default is 10.2.
  - **-force**: Use this option to force cleanup of root configuration

For example, to run the `rootdelete.sh` script from an Oracle Clusterware home in the path `/u01/app/crs`, where you are running the script on a remote node, and the `ocr.loc` file is in `/etc/oracle` on each node, enter the following command:

```
cd /u01/app/crs/install/
/rootdelete.sh remote nosharedvar
```

Example of the rootdelete.sh Parameter File

You can create a parameter file for `rootdelete.sh` to repeat deinstallation steps. You may want to do this if you intend to perform repeated reinstallations, as in a test environment. The following is an example of a parameter file for `rootdelete.sh`; terms that change relative to system configuration are indicated with italics:

```
CLUSTER_NODES=mynode1,mynode2
INVENTORY_LOCATION=/u01/app/oracle/oraInventory
```
CRS_HOME=true
ORA_CRS_HOME=/u01/app/crs
ORACLE_OWNER=oracle
DBA_GROUP=oinstall

About the rootdeinstall.sh Script

The rootdeinstall.sh script should be run on the local node only, after rootdelete.sh has been run on all nodes of the cluster. Use this command either to remove the Oracle Clusterware OCR file, or to downgrade your existing installation. The rootdeinstall.sh script has the following command options:

- **paramfile**: A parameter file containing configuration information for the rootdelete.sh command
- **downgrade**: Use this option if the database is downgraded to a previous Oracle Clusterware version. Use the `-version` flag to specify the version to which you want to downgrade. The default is 10.2.

Removing Oracle Clusterware

Complete the following procedure to remove Oracle Clusterware:

1. Log in as the oracle user, and shut down any existing Oracle Database instances on each node, with normal or immediate priority. For example:

   ```
 $ Oracle_home/bin/srvctl stop database -d db_name
 $ Oracle_home/bin/srvctl stop asm -n node
 $ Oracle_home/bin/srvctl stop nodeapps -n node
   ```

2. Use Database Configuration Assistant and NETCA to remove listeners, Automatic Storage Management instances, and databases from the system. This removes the Oracle Clusterware resources associated with the listeners, Automatic Storage Management instances, and databases on the cluster.

3. On each remote node, log in as the root user, change directory to the Oracle Clusterware home, and run the rootdelete script with the options remote nosharedvar nosharedhome. For example:

   ```
 [root@node2 /] # cd /u01/app/crs/install
 [root@node2 /install] # ./rootdelete.sh remote nosharedvar nosharedhome
   ```

4. On the local node, log in as the root user, change directory to the Oracle Clusterware home, and run the rootdelete script with the options local nosharedvar nosharedhome. For example:

   ```
 [root@node1 /] # cd /u01/app/crs/install
 [root@node1 /install] # ./rootdelete.sh local nosharedvar nosharedhome
   ```

5. On the local node, run the script rootdeinstall. For example:

   ```
 [root@node1 install]# ./rootdeinstall.sh
   ```

6. Log in as the oracle user, and run Oracle Universal Installer to remove the Oracle Clusterware home. For example

   ```
 $ cd /u01/app/crs/oui/bin
 $./runInstaller -deinstall -removeallfiles
Troubleshooting the Oracle Clusterware Installation Process

This appendix provides troubleshooting information for installing Oracle Clusterware.

See Also: The Oracle Database 11g Oracle RAC documentation set included with the installation media in the Documentation directory:
- Oracle Clusterware Administration and Deployment Guide
- Oracle Real Application Clusters Administration and Deployment Guide

This appendix contains the following topics:
- Install OS Watcher and RACDDT
- General Installation Issues
- Performing Cluster Diagnostics During Oracle Clusterware Installations
- Interconnect Errors

Install OS Watcher and RACDDT

To address troubleshooting issues, Oracle recommends that you install OS Watcher, and if you intend to install an Oracle RAC database, RACDDT. You must have access to Oracle MetaLink to download OS Watcher and RACDDT.

OS Watcher (OSW) is a collection of UNIX/Linux shell scripts that collect and archive operating system and network metrics to aid Oracle Support in diagnosing various issues related to system and performance. OSW operates as a set of background processes on the server and gathers operating system data on a regular basis. The scripts use common utilities such as vmstat, netstat and iostat.

RACDDT is a data collection tool designed and configured specifically for gathering diagnostic data related to Oracle RAC technology. RACDDT is a set of scripts and configuration files that is run on one or more nodes of an Oracle RAC cluster. The main script is written in Perl, while a number of proxy scripts are written using Korn shell. RACDDT will run on all supported UNIX and Linux platforms, but is not supported on any Windows platforms.

OSW is also included in the RACDDT script file, but is not installed by RACDDT. OSW must be installed on each node where data is to be collected.

To download binaries for OS Watcher and RACDDT, go to the following URL:
https://metalink.oracle.com
General Installation Issues

The following is a list of examples of types of errors that can occur during installation. It contains the following issues:

- An error occurred while trying to get the disks
- Failed to connect to server, Connection refused by server, or Can’t open display
- Nodes unavailable for selection from the OUI Node Selection screen
- Node nodename is unreachable
- PROT-8: Failed to import data from specified file to the cluster registry
- Time stamp is in the future

An error occurred while trying to get the disks

Cause: There is an entry in /etc/oratab pointing to a non-existent Oracle home. The OUI error file should show the following error: “java.io.IOException: /home/oracle/OraHome//bin/kfod: not found” (OracleMetalink bulletin 276454.1)

Action: Remove the entry in /etc/oratab pointing to a non-existing Oracle home.

Failed to connect to server, Connection refused by server, or Can't open display

Cause: These are typical of X Window display errors on Windows or UNIX systems, where xhost is not properly configured.

Action: In a local terminal window, log in as the user that started the X Window session, and enter the following command:

$ xhost fully_qualified_remote_host_name

For example:

$ xhost somehost.example.com

Then, enter the following commands, where workstation_name is the host name or IP address of your workstation.

Bourne, Bash, or Korn shell:

$ DISPLAY=workstation_name:0.0
$ export DISPLAY

To determine whether X Window applications display correctly on the local system, enter the following command:

$ xclock

The X clock should appear on your monitor.

If the X clock appears, then close the X clock and start Oracle Universal Installer again.

Nodes unavailable for selection from the OUI Node Selection screen
Cause: Oracle Clusterware is either not installed, or the Oracle Clusterware services are not up and running.

Action: Install Oracle Clusterware, or review the status of your Oracle Clusterware. Consider restarting the nodes, as doing so may resolve the problem.

Node nodename is unreachable

Cause: Unavailable IP host

Action: Attempt the following:

1. Run the shell command `ifconfig -a`. Compare the output of this command with the contents of the `/etc/hosts` file to ensure that the node IP is listed.

2. Run the shell command `nslookup` to see if the host is reachable.

3. As the `oracle` user, attempt to connect to the node with `ssh` or `rsh`. If you are prompted for a password, then user equivalence is not set up properly. Review the section "Configuring SSH or RCP on All Cluster Nodes" on page 2-20.

PROT-8: Failed to import data from specified file to the cluster registry

Cause: Insufficient space in an existing Oracle Cluster Registry device partition, which causes a migration failure while running `rootupgrade`. To confirm, look for the error "utopen:12:Not enough space in the backing store" in the log file `$ORA_CRS_HOME/log/hostname/client/ocrconfig_pid.log`.

Action: Identify a storage device that has 280 MB or more available space. Locate the existing raw device name from `/var/opt/oracle/srvConfig.loc`, and copy the contents of this raw device to the new device using the command `dd`.

Time stamp is in the future

Cause: One or more nodes has a different clock time than the local node. If this is the case, then you may see output similar to the following:

`time stamp 2005-04-04 14:49:49 is 106 s in the future`

Action: Ensure that all member nodes of the cluster have the same clock time.

Performing Cluster Diagnostics During Oracle Clusterware Installations

If Oracle Universal Installer (OUI) does not display the Node Selection page, then perform clusterware diagnostics by running the `olsnodes -v` command from the binary directory in your Oracle Clusterware home (`CRS_home/bin` on Linux and UNIX-based systems, and `CRS_home\BIN` on Windows-based systems) and analyzing its output. Refer to your clusterware documentation if the detailed output indicates that your clusterware is not running.

In addition, use the following command syntax to check the integrity of the Cluster Manager:

`cluvfy comp clumgr -n node_list -verbose`

In the preceding syntax example, the variable `node_list` is the list of nodes in your cluster, separated by commas.

Interconnect Errors

If you use more than one NIC for the interconnect, then you must use NIC bonding, or the interconnect will fail.
If you install Oracle Clusterware and Oracle RAC, then they must use the same NIC or bonded NIC cards for the interconnect.

If you use bonded NIC cards, then they must be on the same subnet.
This appendix describes how to perform Oracle Clusterware rolling upgrades. Because you must stop database processes on the nodes you intend to upgrade when you perform an Oracle Clusterware upgrade, it includes information about how to stop processes in Oracle Real Application Clusters (Oracle RAC) databases.

The instructions in this section specify a single node, and assume that you are upgrading one node at a time. To upgrade a subset of nodes together, you can specify a list of nodes (the subset), where the example commands specify a single node. For example, instead of `-n node`, specify `-n node1,node2,node3`.

This appendix contains the following topics:

- Back Up the Oracle Software Before Upgrades
- Restrictions for Clusterware Upgrades to Oracle Clusterware 11g
- Verify System Readiness for Patchset and Release Upgrades
- Installing a Patch Set On a Subset of Nodes
- Installing an Upgrade On a Subset of Nodes

Back Up the Oracle Software Before Upgrades

Before you make any changes to the Oracle software, whether you intend to upgrade or patch part of the database or clusterware, or all of your cluster installation, Oracle recommends that you create a backup of the Oracle software.

Restrictions for Clusterware Upgrades to Oracle Clusterware 11g

To upgrade existing Oracle Clusterware and Cluster Ready Services installations to Oracle Clusterware 11g, you must first upgrade the existing installations to a minimum patch level. The minimum patch level is listed in the following table:
Verify System Readiness for Patchset and Release Upgrades

To upgrade your Oracle Clusterware installation to the minimum patch level using a rolling upgrade, follow the directions in the Patch Readme file.

<table>
<thead>
<tr>
<th>Oracle Clusterware Release</th>
<th>Minimum Patch Level Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>10g Release 2</td>
<td>10.2.0.3, or 10.2.0.2 with CRS bundle #2 (Patch 526865)</td>
</tr>
<tr>
<td>10g Release 1</td>
<td>10.1.0.3</td>
</tr>
</tbody>
</table>

To upgrade your Oracle Clusterware installation to the minimum patch level using a rolling upgrade, follow the directions in the Patch Readme file.

Note: You can use the procedures in this chapter to prepare to perform rolling upgrades of Oracle Clusterware from any Oracle Clusterware 10g release 10.2 or Oracle Clusterware 11g installation to the latest patchset update. For example, you can use these procedures to prepare to upgrade from Oracle Clusterware 10.2.0.1 to 10.2.0.3.

See Also: Oracle Database Upgrade Guide for additional information about upgrades, and check the following site on the Oracle Technology Network for relevant information about rolling upgrades:

http://www.oracle.com/technology/deploy/availability

My Oracle Support also has an Upgrade Companion for each release that provide additional upgrade information. It is available at the following URL:

https://metalink.oracle.com/

Verify System Readiness for Patchset and Release Upgrades

If you are completing a patchset update of your database or clusterware, then after you download the patch software, and before you start to patch or upgrade your database, review the Patch Set Release Notes that accompany the patch to determine if your system meets the system requirements for the operating system and the hardware platform.

Use the following Cluster Verification Utility (CVU) command to assist you with system checks in preparation for starting a database patch or upgrade, where node is the node, or comma-delimited subset of nodes, that you want to check, and inventory_group is the name of the Oracle Inventory group:

cluvfy stage -pre crsinst -n node -orainv inventory_group

For example, to perform a system check on nodes node1, node2 and node3, and where the Oracle Inventory group is oinstall, enter the following command:

$ cluvfy stage -pre crsinst -n node1,node2,node3 -orainv oinstall

Note: Before you start an upgrade, Oracle recommends that you download the latest Cluster Verification Utility version from Oracle Technology Network at the following URL:

http://otn.oracle.com
Installing a Patch Set On a Subset of Nodes

To patch Oracle Clusterware, review the instructions in the Patch Set README document for additional instructions specific to the patchset.

Before you shut down any processes that are monitored by Enterprise Manager Grid Control, set a blackout in Grid Control for the processes that you intend to shut down. This is necessary so that the availability records for these processes indicate that the shutdown was planned downtime, rather than an unplanned system outage.

To patch a subset of nodes, complete the following steps:

Note: You must perform these steps in the order listed.

1. Change directory to the Oracle Clusterware home. As root, run the `preupdate.sh` script on the local node, and on all other nodes in the subset that you intend to upgrade. Use the following command syntax, where `clusterware_home` is the path to the existing Oracle Clusterware home, and `installation_owner` is the Oracle Clusterware installation owner:

   ```
   ./preupdate.sh -crshome clusterware_home -crsuser installation_owner
   ```

 For example:

   ```
   # cd $ORACLE_HOME/install
   # ./preupdate.sh -crshome /opt/crs -crsuser oracle
   ```

 The script output should be similar to the following:

 - Shutting down Oracle Cluster Ready Services (CRS):
 - Stopping resources. This could take several minutes.
 - Successfully stopped CRS resources.
 - Stopping CSSD.
 - Shutting down CSS daemon.
 - Shutdown request successfully issued.
 - Shutdown has begun. The daemons should exit soon.
 - Checking to see if Oracle CRS stack is down...
 - Oracle CRS stack is down now.

2. Confirm that you are logged in as the Oracle Clusterware installation owner, and start Oracle Universal Installer to install the software.

 For example:

   ```
   $ whoami
   crs
   $ cd /cdrom/clusterware/.
   ./runInstaller
   ```

 Provide information as prompted by the Installer.

 Note: You cannot change the owner of the Oracle Clusterware home.

3. During an Oracle Clusterware installation, if Oracle Universal Installer detects an existing Oracle Clusterware 10g release 1 or release 2 installation, then you are given the option to perform a rolling upgrade by installing the patch on a subset of cluster member nodes.
You can patch the entire cluster, and then run the `root.sh` patch script in a rolling fashion to make the patch update active.

4. After you select the nodes you want to upgrade, the Installer installs the patch software in the existing Oracle Clusterware home on the local and the remote subset of nodes you have selected.

OUI prompts you to run the appropriate root script for the patchset. The script starts the Oracle Clusterware stack on the upgraded subset of nodes. However, it lists it as an inactive version.

5. After you upgrade the initial node or subset of nodes, repeat steps 1 through 4 for each remaining node or subset of nodes until all nodes in the cluster have been patched, and the new version is the the active version.

When all member nodes of the cluster are running the new Oracle Clusterware release, then the new clusterware becomes the active version. Otherwise, the older Oracle Clusterware release is still used.

To list the version of Oracle Clusterware that is installed on a node, enter the following command, where `CRShome` is the Oracle Clusterware home, and `nodename` is the name of the node:

```
# CRShome/bin/crsctl query crs softwareversion [nodename]
```

To list the Oracle Clusterware software version that is running on a node, enter the following command, where `CRShome` is the Oracle Clusterware home:

```
# CRShome/bin/crsctl query crs activeversion
```

If you intend to install or upgrade Oracle RAC, then you must first complete the upgrade to Oracle Clusterware 11g release 1 (11.1) on all cluster member nodes before you install the Oracle Database 11g release 1 (11.1) version of Oracle RAC.

6. Check with Oracle Support to confirm you have installed any recommended patchsets, bundle patches or critical patches.

To check for the latest recommended patches for Oracle Clusterware and Oracle Real Application Clusters, log on to the following site:

https://metalink2.oracle.com

Click Patches & Updates, and click Oracle Database from the Recommended Patches list. Provide information as prompted.

Installing an Upgrade On a Subset of Nodes

To upgrade an Oracle Clusterware release, you must shut down all Oracle Database instances on the subset of nodes you want to upgrade before modifying the Oracle software. Review the instructions in the release upgrade README document for additional instructions specific to the upgrade.

Before you shut down any processes that are monitored by Enterprise Manager Grid Control, set a blackout in Grid Control for the processes that you intend to shut down. This is necessary so that the availability records for these processes indicate that the shutdown was planned downtime, rather than an unplanned system outage.

To shut down Oracle processes and upgrade a subset of nodes, complete the following steps:
1. Shut down any processes that may be accessing a database on each node you intend to upgrade. For example, shut down Oracle Enterprise Manager Database Control.

2. Shut down all Oracle RAC instances on the nodes you intend to upgrade. To shut down an Oracle RAC instance for a database, enter the following command:

   ```bash
   $ Oracle_home/bin/srvctl stop instance -d db_name -i inst_name
   ```

3. Shut down all ASM instances on all nodes you intend to upgrade. To shut down an ASM instance, enter the following command, where `ASM_home` is the ASM home location, and `node` is the name of the node where the ASM instance is running:

   ```bash
   $ ASM_home/bin/srvctl stop asm -n node
   ```

4. Stop all listeners on the node. To shut down listeners on the node, enter the following command, where `nodename` is the name of the node, and the listener is running from the ASM home:

   ```bash
   $ ASM_home/bin/srvctl stop listener -n node_name
   ```

5. Stop all node applications on all nodes. To stop node applications running on a node, enter the following command, where `node` is the name of the node where the applications are running:

   ```bash
   $ Oracle_home/bin/srvctl stop nodeapps -n node
   ```

6. Change directory to the Oracle Clusterware home. As `root`, run the `preupdate.sh` script on the local node, and on all other nodes in the subset that you intend to upgrade. Use the following command syntax, where `clusterware_home` is the path to the existing Oracle Clusterware or Cluster Ready Services home, and `installation_owner` is the Oracle Clusterware installation owner:

   ```bash
   ./preupdate.sh -crshome clusterware_home -crsuser installation_owner
   ```

 For example:

   ```bash
   # cd $ORACLE_HOME/install
   # ./preupdate.sh -crshome /opt/crs -crsuser oracle
   ```

 The script output should be similar to the following:

 Shutting down Oracle Cluster Ready Services (CRS):
 Stopping resources. This could take several minutes.
 Successfully stopped CRS resources.
 Stopping CSSD.
 Shutting down CSS daemon.
 Shutdown request successfully issued.
 Shutdown has begun. The daemons should exit soon.
Checking to see if Oracle CRS stack is down...
Oracle CRS stack is down now.

7. Confirm that you are logged in as the Oracle Clusterware installation owner, and start Oracle Universal Installer to install the software.

 For example:

 $ whoami
 crs
 $ cd /cdrom/clusterware/
 ./runInstaller

 Provide information as prompted by the Installer.

 Note: You cannot change the owner of the Oracle Clusterware home.

8. During an Oracle Clusterware installation, if Oracle Universal Installer detects an existing Oracle Clusterware 10g release 1 or release 2 installation, then you are given the option to perform a rolling upgrade by installing Oracle Clusterware 11g release 1 on a subset of cluster member nodes.

 By default, all the cluster member nodes are checked for upgrade. To perform a rolling upgrade of a subset of nodes, uncheck the cluster member nodes you do not want to upgrade on the Specify Hardware Cluster Installation Mode installation screen.

9. After you select the nodes you want to upgrade, the Installer installs the Oracle Clusterware 11g release 1 software in the existing Oracle Clusterware home on the local and the remote subset of nodes you have selected.

 OUI prompts you to run the appropriate root script for the release or patchset. The script starts the Oracle Clusterware 11g release 1 stack on the upgraded subset of nodes. However, it lists it as an inactive version.

10. After you upgrade the initial node or subset of nodes, repeat steps 1 through 10 for each remaining node or subset of nodes until all nodes in the cluster have been upgraded and the new version is the active version.

 When all member nodes of the cluster are running the new Oracle Clusterware release, then the new clusterware becomes the active version. Otherwise, the older Oracle Clusterware release is still used.

 To list the version of Oracle Clusterware that is installed on a node, enter the following command, where `CRShome` is the Oracle Clusterware home, and `nodename` is the name of the node:

    ```
    # CRShome/bin/crsctl query crs softwareversion [nodename]
    ```

 To list the Oracle Clusterware software version that is running on a node, enter the following command, where `CRShome` is the Oracle Clusterware home:

    ```
    # CRShome/bin/crsctl query crs activeversion
    ```

 If you intend to install or upgrade Oracle RAC, then you must first complete the upgrade to Oracle Clusterware 11g release 1 (11.1) on all cluster member nodes before you install the Oracle Database 11g release 1 (11.1) version of Oracle RAC.

11. Check with Oracle Support, and apply any recommended patchsets, bundle patches or critical patches.
To check for the latest recommended patches for Oracle Clusterware and Oracle Real Application Clusters, log on to the following site:

https://metalink2.oracle.com

Click **Patches & Updates**, and click Oracle Database from the Recommended Patches list. Provide information as prompted.
Index

A
architecture
 checking system architecture, 2-9
ASM
 and multiple databases, 3-6
 changing owner and permissions of disks
 on HP-UX, 5-15
 character device names
 on HP-UX, 5-15
 checking disk availability on HP-UX, 5-15
 configuring disks
 on HP-UX, 5-14
 creating the asmdba group, 3-7
 identifying available disks on HP-UX, 5-15
 identifying disks on HP-UX, 5-15
 number of instances on each node, 1-5, 5-2
 OSDBA group for ASM, 3-6
 storage option for data files, 4-2, 5-2
asm group
 creating, 3-7
asmdba group
 creating, 3-7
Automatic Storage Management
 changing owner and permissions of disks, 1-6, 4-10, 5-19
 character device names, 1-5, 4-9, 5-18
 characteristics of failure groups, 5-12
 checking disk availability, 1-5, 4-9, 5-18
 disk groups, 5-11
 failure groups, 5-11
 examples, 5-13
 identifying, 5-13
 identifying available disks, 1-5, 4-9, 5-18
 identifying disks, 1-5, 4-9, 5-18
 recommendations for disk groups, 5-11
 space required for preconfigured database, 5-12
Automatic Storage Management See ASM.

B
Bash shell
 default user startup file, 2-27
 .bash_profile file, 2-27
Bourne shell
 default user startup file, 2-27
 bundle
 checking, 2-17

C
C compiler
 requirement, 2-15
C shell
 default user startup file, 2-27
Central Inventory, 3-5
 about, 2-4
 See also oraInventory
changing host names, 6-2
character device
 device name, 1-5, 4-9, 4-14, 5-18
 device name on HP-UX, 5-15
character device names, 1-5, 4-9, 4-14, 5-18
checking disk availability for Automatic Storage
 Management, 1-5, 4-9, 5-18
checking disk availability for raw devices, 4-14
checking existence of the nobody user, 3-2, 3-9
checking quality pack requirement, 2-17
checking version, 2-17
chmod command, 1-6, 4-6, 4-10, 5-10, 5-15, 5-19
chown command, 1-6, 4-6, 4-10, 5-10, 5-15, 5-19
cluster configuration file, 6-8
cluster file system
 storage option for data files, 4-2, 5-2
cluster interconnect
 Hyper Messaging protocol, 2-2, 2-17
cluster name
 requirements for, 6-6
cluster nodes
 private node names, 6-6
 public node names, 6-6
 specifying uids and gids, 3-3, 3-10
 virtual node names, 6-6
Cluster Ready Services
 upgrading, 6-4
Cluster Synchronization Services, 6-4
Cluster Verification Utility
 difference between runcluvfy.sh and cluvfy, 2-30
 hardware and operating system setup stage
 verification, 5-23
 Oracle Clusterware configuration check, 6-1
 shared storage area check, 4-3, 5-4
Index-2

user equivalency troubleshooting, 6-2
clusterware diagnostics, A-3
COBOL
 required compiler for, 2-16
commands
 chmod, 4-6, 5-10
 chown, 4-6, 5-10
 cluvfy, 2-31
 groupadd, 3-10
 id, 3-2, 3-3, 3-9, 3-10
 mkdir, 4-6, 5-10
 passwd, 3-4, 3-11
 runcluvfy.sh, 2-30
 umask, 3-12
 useradd, 2-6, 3-3, 3-8, 3-9, 3-11
 usermod, 3-9
 xhost, 2-2
 xterm, 2-2
configuring kernel parameters, 2-18
control files
 raw devices for, 4-9, 4-16, 5-17, 5-18
creating a volume group directory, 4-15
creating logical volumes, 4-16
creating required X library symbolic links, 2-29
creating volume groups, 4-15
CRS
 raw device for OCR, 4-7
CSD
 download location for WebSphere MQ, 2-18
CSS, 6-4
OCCSD, 6-4
custom database
 failure groups for Automatic Storage Management, 5-13
 requirements when using Automatic Storage Management, 5-12
Custom installation type
 reasons for choosing, 3-5
CVU. See Cluster Verification Utility

D
data files
 creating separate directories for, 4-5, 5-9
 setting permissions on data file directories, 4-6, 5-10
 storage options, 4-2, 5-2
data loss
 minimizing with Automatic Storage Management, 5-12
database files
 supported storage options, 4-2, 5-3
databases
 Automatic Storage Management requirements, 5-12
dba group
 and ASM disks on HP-UX, 5-15
 and Automatic Storage Management disks, 1-6, 4-10, 5-19
 and SYSDBA privilege, 3-2, 3-5
creating, 3-7
creating on other nodes, 3-3, 3-10
definition, 3-2, 3-5
raw device group, 4-16, 4-17
DBCA_RAW_CONFIG environment variable, 1-8, 2-28, 4-12, 4-19, 5-21, 5-23
default file mode creation mask
 setting, 3-12
device names
 identifying minor numbers, 4-15
diagnostics, A-3
Direct NFS
 disabling, 5-9
 enabling, 5-8
 for datafiles, 5-6
directory
 creating separate data file directories, 4-5, 5-9
 permission for data file directories, 4-6, 5-10
disk
 changing permissions and owner for ASM on HP-UX, 5-15
disk group
 Automatic Storage Management, 5-11
 recommendations for Automatic Storage Management disk groups, 5-11
disk space
 checking, 2-9
 requirements for preconfigured database in Automatic Storage Management, 5-12
disks
 changing permissions and owner for ASM on HP-UX, 5-15
 changing permissions and owner for Automatic Storage Management, 1-6, 4-10, 5-19
 checking availability for ASM on HP-UX, 5-15
 checking availability for Automatic Storage Management, 1-5, 4-9, 5-18
 checking availability for raw devices, 4-14
 configuring for ASM on HP-UX, 5-14
 identifying LVM disks, 1-5, 4-10, 4-14, 5-19
 identifying LVM disks on HP-UX, 5-15
 raw voting disk, 4-7
DISPLAY environment variable, 2-19
 setting, 2-27

E
evaluator
 installing from X emulator, 2-2
environment
 configuring for oracle user, 2-26
environment variables
 DBCA_RAW_CONFIG, 1-8, 4-12, 4-19, 5-21, 5-23
 DISPLAY, 2-19, 2-27
 ORACLE_HOME, 2-28
 removing from shell startup file, 2-27
 SHELL, 2-27
 TEMP and TMPDIR, 2-9, 2-27
TNS_ADMIN, 2-28
error
 X11 forwarding, 2-25
/etc/lvmrc file, 4-7
EXAMPLE tablespace
 raw device for, 4-8, 4-16, 5-18
 raw devices for, 5-17
examples
 Automatic Storage Management failure groups, 5-13
executable_stack parameter
 recommended value, 2-18
external jobs
 UNIX user required for, 3-2, 3-5
extjob executable
 UNIX user required for, 3-2, 3-5

F
failure group
 Automatic Storage Management, 5-11
 characteristics of Automatic Storage Management failure group, 5-12
 examples of Automatic Storage Management failure groups, 5-13
file mode creation mask
 setting, 3-12
file system
 storage option for data files, 4-2, 5-2
files
 $ORACLE_HOME/lib/libnfsodm10.so, 5-8
 $ORACLE_HOME/lib/libodm10.so, 5-8
 .bash_profile, 2-27
 control files
 raw devices for, 4-9, 4-16, 5-17, 5-18
 editing shell startup file, 2-27
 /etc/lvmrc, 4-7
 .login, 2-27
 oraInst.loc, 2-5
 password file
 raw device for, 4-9, 4-16, 5-18
 raw devices for, 5-17
 .profile, 2-27
 raw device mapping file, 2-28
 desupport for, 5-17, 5-23
redo log files
 raw devices for, 4-8, 4-16, 5-17, 5-18
server parameter file
 raw devices for, 4-9, 4-16, 5-18
SPFILE
 raw devices for, 4-16, 5-17
SPFILE file
 raw device for, 4-9, 5-18
 raw devices for, 5-17
filesets, 2-13
 checking, 2-17
Fortran
 required compiler for, 2-16

G
gid
 identifying existing, 3-3, 3-10
 specifying, 3-3, 3-10
 specifying on other nodes, 3-3, 3-10
globalization
 support for, 6-5
group IDs
 identifying existing, 3-3, 3-10
 specifying, 3-3, 3-10
 specifying on other nodes, 3-3, 3-10
groups
 checking for existing oinstall group, 2-4
 creating identical groups on other nodes, 3-3, 3-10
 creating the asm group, 3-7
 creating the asmdba group, 3-7
 creating the dba group, 3-7
 creating the oinstall group, 2-4
 creating the oper group, 3-7
 specifying when creating users, 3-3, 3-10
 UNIX OSDBA group (dba), 3-2, 3-5
 UNIX OSOPER group (oper), 3-6
 using NIS, 3-1, 3-3, 3-4, 3-10

H
hardware requirements, 2-7
host names
 changing, 6-2
HP Serviceguard. See Serviceguard
HP-UX
 11.23, 2-14
 11.31, 2-14
 character device names, 5-15
 checking disk availability for ASM, 5-15
 configuring disks for ASM, 5-14
 identifying disks for ASM, 5-15
 identifying LVM disks, 5-15
Hyper Messaging Protocol
 using as a cluster interconnect, 2-14, 2-17
HyperFabric software
 requirement, 2-14, 2-17

I
id command, 3-2, 3-3, 3-9, 3-10
identifying disks for Automatic Storage Management, 1-5, 4-9, 5-18
identifying disks for LVM, 4-14
identifying LVM disks, 1-5, 4-10, 4-14, 5-19
initializing disks for LVM, 4-14
installation
 and globalization, 6-5
 using cluster configuration file, 6-8
installation types
 and Automatic Storage Management requirements, 5-12
ioscan command, 1-5, 4-9, 4-14, 5-15, 5-18
Itanium
operating system requirements, 2-15

J

JDK requirements, 2-13

K

kernel parameters
 configuring, 2-18
 maxvgs, 4-15
 setting, 2-19
Korn shell
 default user startup file, 2-27
ksi_alloc_max parameter
 recommended value, 2-18

L

libnfsodm10.so, 5-8
libodm10.so, 5-8
logical volumes
 creating, 4-16
 .login file, 2-27
 lvcreate command, 4-16
LVM
 checking disk availability, 4-14
 creating a volume group directory, 4-15
 creating volume groups, 4-15
 identifying available disks, 4-14
 identifying LVM disks, 4-14
 identifying minor device numbers, 4-15
 identifying volume group devices, 1-5, 4-10, 5-19
 identifying volume group devices on HP-UX, 5-15
 initializing disks, 4-14
 maximum number of volume groups, 4-15
 recommendations for Automatic Storage Management, 5-11
lvmrc file, 4-7

M

mapping file
 for raw devices, 2-28
 mask
 setting default file mode creation mask, 3-12
 max_thread_proc parameter
 recommended value, 2-18
 maxdsiz parameter
 recommended value, 2-18
 maxdsiz_64bit parameter
 recommended value, 2-18
 maxssiz parameter
 recommended value, 2-18
 maxssiz_64bit parameter
 recommended value, 2-18
 maxuprc parameter
 recommended value, 2-18
 maxvgs parameter, 4-15
MC/ServiceGuard
 memory requirements, 2-7
 minor device numbers
 identifying, 4-15
 mkdir command, 4-6, 5-10
 mknod command, 4-15
 mode
 setting default file mode creation mask, 3-12
 msgmap parameter
 recommended value, 2-18
 msgmni parameter
 recommended value, 2-18
 msgseg parameter
 recommended value, 2-19
 msgtql parameter
 recommended value, 2-19
 multiple databases
 and ASM, 3-6
 multiple oracle homes, 2-6, 5-10

N

ncsize parameter
 recommended value, 2-19
Network Information Services
 See NIS
nfile parameter
 recommended value, 2-19
nflocks parameter
 recommended value, 2-19
NFS, 4-5, 5-9
 and data files, 5-6
 and Oracle Clusterware files, 4-4, 5-5
 buffer size parameters for, 4-5, 5-9
 Direct NFS, 5-6
 for datafiles, 5-6
 rsize, 4-5, 5-9
ninode parameter
 recommended value, 2-19
NIS
 alternative to local users and groups, 3-1, 3-2, 3-4, 3-6
 nkthread parameter
 recommended value, 2-19
 nobody user
 checking existence of, 3-2, 3-9
 description, 3-2, 3-5
 nproc parameter
 recommended value, 2-19

O

OCCSD, 6-4
OCR
 raw device for, 4-7
OCR, See Oracle Cluster Registry
oinstall
 and oraInst.loc, 2-4
oinstall group
 checking for existing, 2-4
creating, 2-4
creating on other nodes, 3-3, 3-10
description, 2-3
olsnodes command, A-3
oper group
and SYSOPER privilege, 3-6
creating, 3-7
creating on other nodes, 3-3, 3-10
description, 3-6
operating system
checking version, 2-17
operating system requirements, 2-13
Itanium, 2-15
Oracle base directory
about, 3-11
minimum disk size for, 2-8
Oracle Cluster Registry
configuration of, 6-7
mirroring, 4-4, 5-5
partition sizes, 4-4
See OCR
supported storage options, 4-2
Oracle Clusterware
and upgrading ASM instances, 1-5, 5-2
installing, 6-1
installing with Oracle Universal Installer, 6-7
raw device for voting disk, 4-7
rolling upgrade of, 6-5
supported storage options for, 4-2
upgrading, 4-4
Oracle Database
creating data file directories, 4-5, 5-9
data file storage options, 4-2, 5-2
privileged groups, 3-2, 3-5
requirements with Automatic Storage Management, 5-12
supported storage options for, 5-1
Oracle Disk Manager
and Direct NFS, 5-8
Oracle Inventory
pointer file, 2-5
Oracle Inventory Group
and Central Inventory (oraInventory), 2-4
Oracle Inventory Group
checking for existing, 2-4
creating, 2-4, 2-5
creating on other nodes, 3-3, 3-10
description, 2-3
Oracle Notification Server Configuration Assistant, 6-8
Oracle patch updates, 7-1
Oracle Private Interconnect Configuration Assistant, 6-8
Oracle RAC
configuring disks for raw devices, 5-16
Oracle Real Application Clusters
shared storage device setup, 5-16
Oracle Software Owner user
and ASM disks, 5-15
and Automatic Storage Management disks, 1-6, 4-10, 5-19
configuring environment for, 2-26
creating, 2-6, 3-8
creating on other nodes, 3-3, 3-10
description, 2-3, 3-5
determining default shell, 2-27
raw device owner, 4-16, 4-17
required group membership, 2-3, 3-5
Oracle Universal Installer
and Oracle Clusterware, 6-7
Oracle Upgrade Companion, 2-1
oracle user
and ASM disks, 5-15
and Automatic Storage Management disks, 1-6, 4-10, 5-19
configuring environment for, 2-26
creating, 2-6, 3-8
creating on other nodes, 3-3, 3-10
description, 2-3, 3-5
determining default shell, 2-27
raw device owner, 4-16, 4-17
required group membership, 2-3, 3-5
ORACLE_BASE environment variable
removing from shell startup file, 2-27
ORACLE_HOME environment variable
removing from shell startup file, 2-27
unsetting, 2-28
ORACLE_SID environment variable
removing from shell startup file, 2-27
OracleMetaLink, 7-1
oraInst.loc
and Central Inventory, 2-4
contents of, 2-4
oraInst.loc file
location, 2-5
location of, 2-5
oraInventory, 3-5
creating, 2-5
oraInventory directory
and Oracle Inventory Group, 2-4
OSASM
and multiple databases, 3-6
and SYSASM, 3-6
OSASM group
creating, 3-7
OSDBA group
and ASM disks on HP-UX, 5-15
and Automatic Storage Management disks, 1-6, 4-10, 5-19
and SYSDBA privilege, 3-2, 3-5
creating, 3-7
creating on other nodes, 3-3, 3-10
description, 3-2, 3-5
for ASM, 3-6
raw device group, 4-16, 4-17
OSDBA group for ASM
creating, 3-7
OSOPER group
and SYSOPER privilege, 3-6
creating, 3-7
creating on other nodes, 3-3, 3-10
description, 3-6

OUI
see Oracle Universal Installer

PA-RISC system
 operating system requirement, 2-14
 partition
 using with Automatic Storage Management, 5-11
 partitions
 creating, 5-16
 creating raw partitions, 4-7
 required sizes for raw devices, 4-7
passwd command, 3-4, 3-11
password file
 raw device for, 4-9, 4-16, 5-18
 raw devices for, 5-17
patch download location, 2-18
patch updates
 download, 7-1
 install, 7-1
 OracleMetaLink, 7-1
patches
 download location, 2-18
PC X server
 installing from, 2-2
permissions
 for data file directories, 4-6, 5-10
 physical RAM requirements, 2-7
postinstallation
 patch download and install, 7-1
 root.sh back up, 7-2
Precompilers
 requirements, 2-15
preconfigured database
 Automatic Storage Management disk space
 requirements, 5-12
 requirements when using Automatic Storage
 Management, 5-12
preinstallation
 shared storage device creation, 5-16
 privileged groups
 for Oracle Database, 3-2, 3-5
Pro*C/C++
 requirements, 2-15
processor
 checking system architecture, 2-9
product
 checking, 2-17
 .profile file, 2-27
pvcreate command, 4-14
pvdisplay command, 1-5, 4-10, 4-14, 5-15, 5-19

quality pack
 checking requirements, 2-17
 download location, 2-17
quality pack download location, 2-17

R
 configuring disks for ASM on HP-UX, 5-15
 configuring disks for raw devices, 4-14
RAID
 and mirroring Oracle Cluster Registry and voting
 disk, 5-5
 and mirroring Oracle Cluster Registry and voting
 disks, 4-4
 recommended Automatic Storage Management
 redundancy level, 5-11
RAM requirements, 2-7
raw device
 for OCR, 4-7
 for password file, 4-9, 4-16, 5-18
 for server parameter file, 4-9, 4-16, 5-18
 for SPFILE, 4-9, 4-16, 5-17, 5-18
 for SPFILE file, 5-17
 for voting disk, 4-7
raw device sizes, 4-15
raw devices
 character device names, 4-14
 checking disk availability, 4-14
 creating logical volumes, 4-16
 creating partitions on, 5-16
 creating raw partitions, 4-7
 DBCA_RAW_CONFIG environment
 variable, 2-28
desupport for creating a raw device mapping
 file, 5-17, 5-23
 for control files, 4-9, 4-16, 5-17, 5-18
 for EXAMPLE tablespace, 4-8, 4-16, 5-17, 5-18
 for password file, 5-17
 for redo log files, 4-8, 4-16, 5-17, 5-18
 for SYSAUX tablespace, 4-8, 4-16, 5-17, 5-18
 for SYSTEM tablespace, 4-8, 4-15, 5-17, 5-18
 for TEMP tablespace, 4-8, 4-16, 5-17, 5-18
 for UNDOTBS tablespace, 4-8, 4-16, 5-17, 5-18
 for USER tablespace, 4-8, 4-16, 5-17, 5-18
 identifying disks, 4-14
 identifying LVM disks, 4-14
 initializing disks for LVM, 4-14
 required sizes, 4-7, 4-15
 specifying location of mapping file, 2-28
 specifying owner and permissions, 4-16, 4-17
 storage option for data files, 4-2, 5-2
 value for DBCA_RAW_CONFIG environment
 variable, 1-8, 4-12, 4-19, 5-21, 5-23
recovery files
 supported storage options, 4-2, 5-3
redo log files
 raw devices for, 4-8, 4-16, 5-17, 5-18
 redundancy level
 and space requirements for preconfigured
 database, 5-12
 requirements
 hardware, 2-7

Index-6
requirements on PA-RISC systems, 2-14
rolling upgrade
Oracle Clusterware, 6-5
root user
logging in as, 2-2
root.sh, 6-8
back up, 7-2
running, 6-5
rsise parameter, 4-5, 5-9

S
SAM
starting, 2-19
sam command, 2-19
scripts
root.sh, 6-5
security
dividing ownership of Oracle software, 3-4
semmni parameter
recommended value, 2-19
semmns parameter
recommended value, 2-19
semmnu parameter
recommended value, 2-19
semvmax parameter
recommended value, 2-19
server parameter file
raw device for, 4-9, 4-16, 5-18
Serviceguard
requirement, 2-14, 2-17
setting kernel parameters, 2-19
shared storage devices
configuring for datafiles, 5-16
shell
determining default shell for oracle user, 2-27
SHELL environment variable
checking value of, 2-27
shell startup file
editing, 2-27
removing environment variables, 2-27
shmmax parameter
recommended value, 2-19
shmmin parameter
recommended value, 2-19
shmseg parameter
recommended value, 2-19
software requirements, 2-13
checking software requirements, 2-17
specifying owner and permissions of raw
devices, 4-16, 4-17
SPFILE
raw device for, 4-9, 4-16, 5-18
raw devices for, 5-17
ssh
and X11 Forwarding, 2-25
user equivalency errors with, 2-20
Standard Edition Oracle Database
supported storage options for, 5-2
startup file
for shell, 2-27
storage options
for Enterprise Edition installations, 5-1
for Standard Edition installations, 5-1
supported storage options, 5-3
Oracle Clusterware, 4-2
swap space
requirements, 2-7
swlist command, 2-17
symbolic links
X library links required, 2-29
SYSASM
and OSASM, 3-6
SYSAUX tablespace
raw device for, 4-8, 4-16, 5-18
raw devices for, 5-17
SYSDBA
using database SYSDBA on ASM deprecated, 3-6
SYSDBA privilege
associated UNIX group, 3-2, 3-5
SYSOPER privilege
associated UNIX group, 3-6
System Administration Manager
See SAM
System Administration Manager (SAM), 2-19
system architecture
checking, 2-9
SYSTEM tablespace
raw device for, 4-8, 4-15, 5-18
raw devices for, 5-17

T
TEMP environment variable, 2-9
setting, 2-27
TEMP tablespace
raw device for, 4-8, 4-16, 5-18
raw devices for, 5-17
temporary directory, 2-8
temporary disk space
checking, 2-8
freeing, 2-8
requirements, 2-7
/tmp directory
checking space in, 2-8
freeing space in, 2-8
TMPDIR environment variable, 2-9
setting, 2-27
TNS_ADMIN environment variable
unsetting, 2-28
troubleshooting
ssh, 2-21
ssh and user equivalency errors, 2-20
user equivalency, 2-21, 6-2

U
uid
identifying existing, 3-3, 3-10
specifying, 3-3, 3-10
specifying on other nodes, 3-3, 3-10
umask command, 3-12
uname command, 2-17
UNDOTBS tablespace
 raw device for, 4-8, 4-16, 5-18
 raw devices for, 5-17
UNIX commands
 chmod, 1-6, 4-10, 5-15, 5-19
 chown, 1-6, 4-10, 5-15, 5-19
 ioscan, 1-5, 4-9, 4-14, 5-15, 5-18
 lvcreate, 4-16
 mknod, 4-15
 pvcreate, 4-14
 pvsdisplay, 1-5, 4-10, 4-14, 5-15, 5-19
 sam, 2-19
 swap, 2-8
 swapon, 2-8
 swlist, 2-17
 uname, 2-17
 unset, 2-28
 unsetenv, 2-28
 vgchange, 4-15, 4-17
 vgcreate, 4-15
 vgexport, 4-17
 vgimport, 4-17
 xterm, 2-2
UNIX groups
 oinstall, 2-3
 OSDBA (dba), 3-2, 3-5
 OSOPER (oper), 3-6
 required for oracle user, 2-3, 3-5
 using NIS, 3-2, 3-6
UNIX users
 nobody, 3-2, 3-5
 oracle, 2-3, 3-5
 required for external jobs, 3-2, 3-5
 unprivileged user, 3-2, 3-5
 using NIS, 3-2, 3-6
 unprivileged user
 nobody user, 3-2, 3-5
 unset command, 2-28
 unsetenv command, 2-28
upgrade
 of Cluster Ready Services, 6-4
 of Oracle Clusterware, 6-5
upgrades, 2-1
upgrading
 and existing ASM instances, 1-5, 5-2
 and OCR partition sizes, 4-4
 and voting disk partition sizes, 4-4
 user equivalence
 testing, 6-2
 user equivalency errors, 2-20
 user IDs
 identifying existing, 3-3, 3-10
 specifying, 3-3, 3-10
 specifying on other nodes, 3-3, 3-10
USER tablespace
 raw device for, 4-8, 4-16, 5-18
 raw devices for, 5-17
useradd command, 2-6, 3-3, 3-8, 3-9, 3-11
users
 checking existence of the nobody user, 3-2, 3-9
 creating identical users on other nodes, 3-3, 3-10
 creating the oracle user, 2-6, 3-8
 Oracle Software Owner user (oracle), 2-3, 3-5
 specifying groups when creating, 3-3, 3-10
 UNIX nobody user, 3-2, 3-5
 using NIS, 3-1, 3-3, 3-4, 3-10

V

 vgchange command, 4-15, 4-17
 vgcreate command, 4-15
 vgexport command, 4-17
 vgimport command, 4-17
 volume group
 creating a directory for, 4-15
 volume groups
 creating, 4-15
 volumes
 creating logical volumes, 4-16
 voting disk
 configuration of, 6-7
 mirroring, 4-4, 5-5
 raw device for, 4-7
 voting disks, 4-2
 partition sizes, 4-4
 requirement of absolute majority of, 4-2
 supported storage options, 4-2
 vps_ceiling parameter
 recommended value, 2-19

W

 WebSphere MQ
 CSD download location, 2-18
 workstation
 installing from, 2-2
 wsize, 4-5, 5-9
 wsize parameter, 4-5, 5-9

X

 X emulator
 installing from, 2-2
 X library symbolic links
 required, 2-29
 X window system
 enabling remote hosts, 2-2
 X11 forwarding
 error, 2-25
 xhost command, 2-2
 xterm command, 2-2