Introduction to the Einstein Toolkit

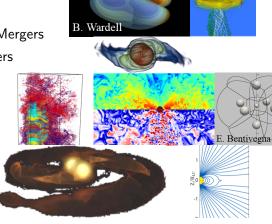
Roland Haas, Steven R. Brandt, Peter Diener, Frank Löffler, others

National Center for Supercomputing Applications, University of Illinois Urbana-Champaign

July 8, 2024

Einstein Toolkit

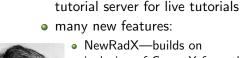
- Collection of scientific software components and tools to simulate and analyze general relativistic astrophysical systems
- Freely available as open source at http://www.einsteintoolkit.org
- Supported by NSF 2004157/2004044/2004311/2227105/2004879/2003893/2114582
- State-of-the-art set of tools for numerical relativity, open source
- Currently 421 members from 291 sites and 49 countries
- > 481 publications, > 58 theses building on these components (as of June 2024)
- Has been a SPEC benchmark twice, may be a third time.
- Received a Gorden-Bell prize (2001), and a Sydney-Fernbach Award (2006)
- Cactus appears in one science fiction story: "Black Torus Run"
- Regular, tested releases
- User support through various channels



L5U Louisiana State University

Einstein Toolkit

Science


- Binary Black Hole Mergers
- Neutron Star Mergers
- Supernovae
- Accretion Disks
- Boson Stars
- Hairy Black Holes
- Cosmic Censorship

"Lev Landau" release

- named after Lev Landau
- 28th release, June 30, 2024
- release managers:
 - Steven R. Brandt
 - Roland Haas

SLURM based multi-node

- NewRadX—builds on inclusion of CarpetX from the Meitner release
- GRHayL-based IllinoisGRMHD—entropy evolution, tabulated EOS, and piecewise polytropes
- Baikal(Vacuum)—NRPy 2.0
- GRHayLHD(X)—now has a tabulated EOS
- Kuibit—supports OpenPMD files generated by CarpetX

L5U Louisiana State University

Community Effort!

Why?

More and more diverse hardware

L5U Louisiana State University

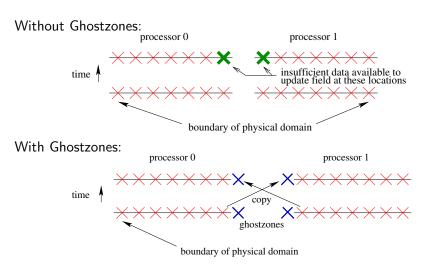
- Simulate cutting edge science
- Use latest numerical methods.
- Make use of latest hardware
 - Cache

- Simulate cutting edge science
- Use latest numerical methods.
- Make use of latest hardware
 - Cache
 - Vector

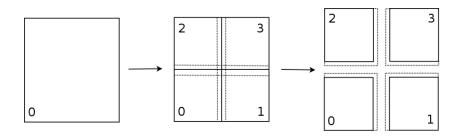
- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Cache
 - Vector
 - Accelerators

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Cache
 - Vector
 - Accelerators
 - Scale to many cores

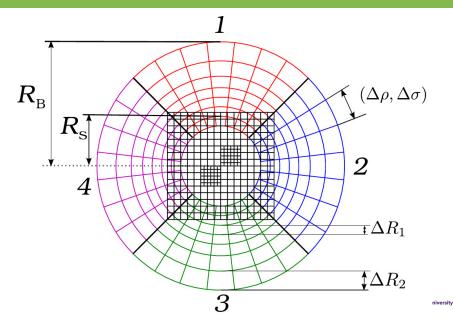
- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Cache
 - Vector
 - Accelerators
 - Scale to many cores
 - Scale to many nodes



- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Cache
 - Vector
 - Accelerators
 - Scale to many cores
 - Scale to many nodes
 - Algorithms



- Efficient use of all hardware is complex and tedious.
- Requires experts from different disciplines
- Requires good data layouts and APIs
- To ensure correctness, need good modularization on a number of levels and understanding of advanced programming concepts.
- Design and implementation needs to be carefully thought out in order to ensure extensibility and portability.


Domain Decomposition

Domain decomposition

Multiblock and refinement

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy)

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy)
 - Scale to many cores (OpenMP)

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)
 - GPU (CarpetX)

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)
 - GPU (CarpetX)
 - Machine learning?

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)
 - GPU (CarpetX)
 - Machine learning?
 - FPGA?

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)
 - GPU (CarpetX)
 - Machine learning?
 - FPGA?
 - ASIC?

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)
 - GPU (CarpetX)
 - Machine learning?
 - FPGA?
 - ASIC?
 - Neuromorphic processor?

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)
 - GPU (CarpetX)
 - Machine learning?
 - FPGA?
 - ASIC?
 - Neuromorphic processor?
 - Q-bits?

More Mundane Challenges

More Mundane Challenges
• Efficient I/O

More Mundane Challenges

- Efficient I/O
- HDF5

More Mundane Challenges

- Efficient I/O
- HDF5
- Checkpoint/Restart

More Mundane Challenges

- Efficient I/O
- HDF5
- Checkpoint/Restart
- Parameter Parsing

Computational Challenges

More Mundane Challenges

- Efficient I/O
- HDF5
- Checkpoint/Restart
- Parameter Parsing
- Visualization

Computational Challenges

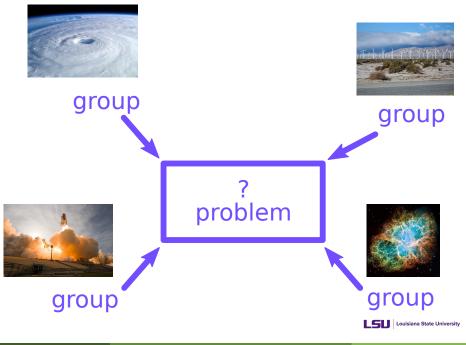
More Mundane Challenges

- Efficient I/O
- HDF5
- Checkpoint/Restart
- Parameter Parsing
- Visualization
- Analysis

Computational Challenges

More Mundane Challenges

- Efficient I/O
- HDF5
- Checkpoint/Restart
- Parameter Parsing
- Visualization
- Analysis
- Steering


Collaborative Challenges



Collaborative Challenges

? problem

group

group

group

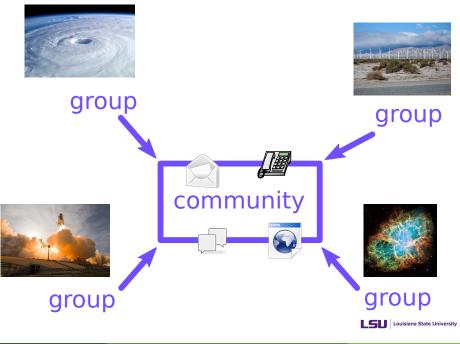
computation

group

LSU Louisiana State University

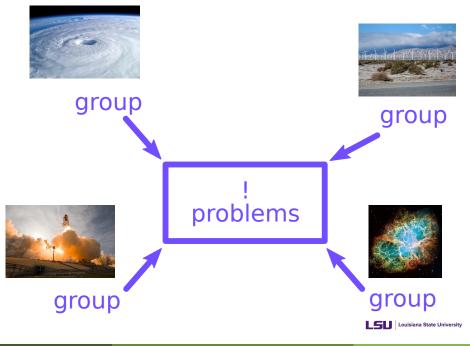
group

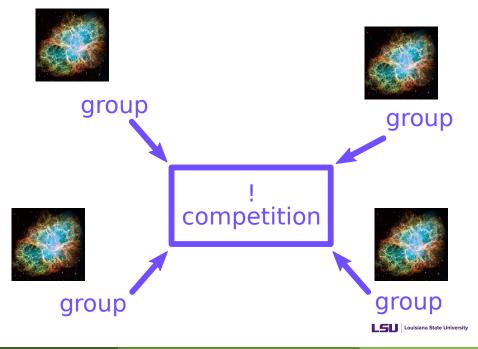
group

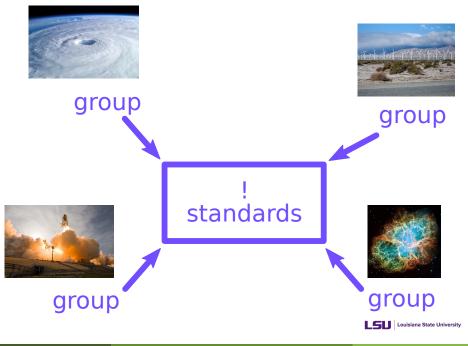

community

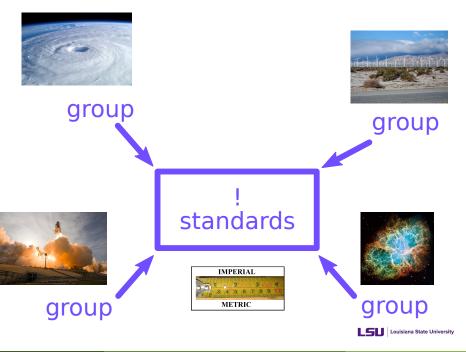
group

LSU Louisiana State University







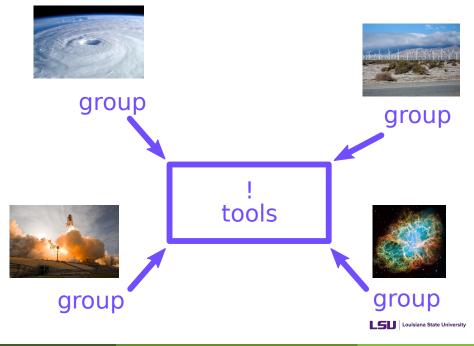


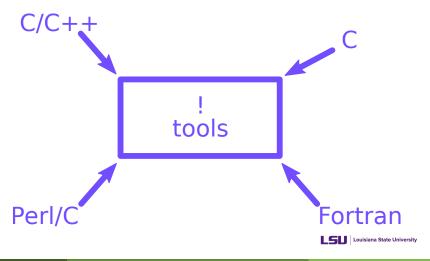
Workshop

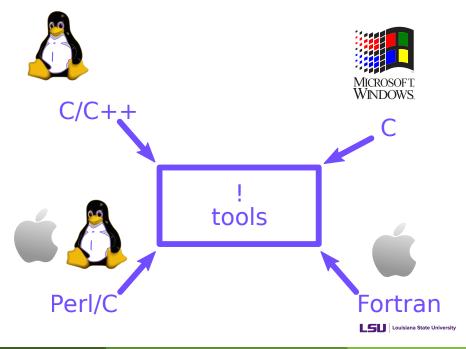
group

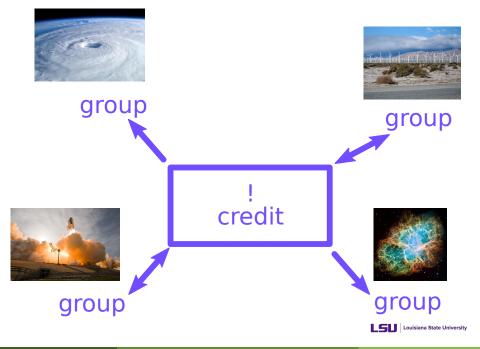
group

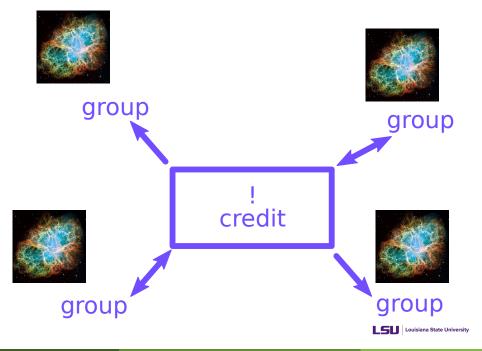
group


standards






group


LSU Louisiana State University

Collaborative Challenges

How can we work together?

- Researchers in the USA
 - Arizona

 - Georgia Louisiana

 - Illinois
 - Indiana

- Florida Idaho
 - Tenessee
 - Texas
 - Pennsylvania
 - California
- In other countries
 - Canada
 - Netherlands
 - Germany
 - Italy
 - Ireland

 - Mexico

- Portugal
- Spain
- Turkey
- United King
 - dom
- and many more

Einstein Toolkit

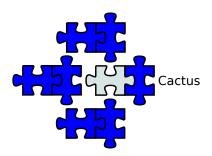
Goals:

- Community Driven
- Core computational tool for numerical astrophyscis
- General purpose tool!

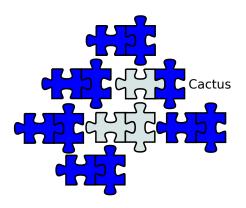
Components:

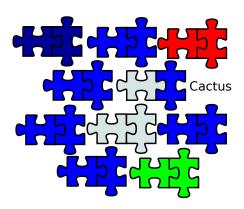
- Cactus
- Simulation Factory
- Kranc

- NRPy
- Science Modules

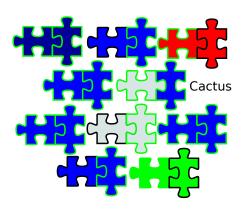

Guiding Principles

- Open
- Community Driven
- Good interfaces
- Separation of physics from computational infrastructure
- Production ready
- High quality code


Initially: some infrastructure, some application code


Growing application suite

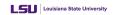
Growing infrastructure "return"

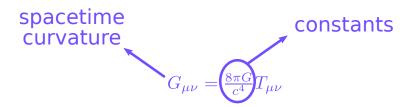


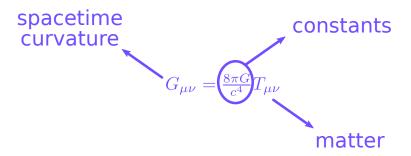
Users from more fields of science

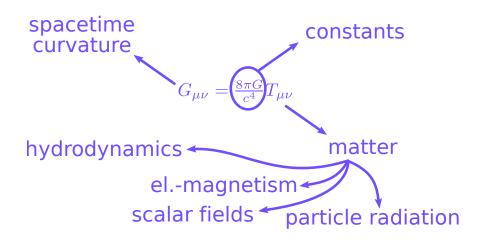
Most modules open-source, but not necessarily all

Base Modules



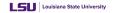

The Einstein Equations


$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$



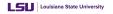
$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

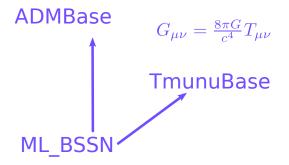



Louisiana State University

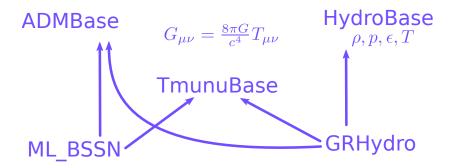
$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

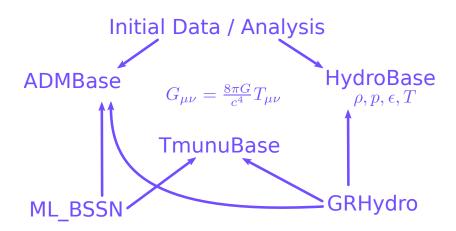
ADMBase

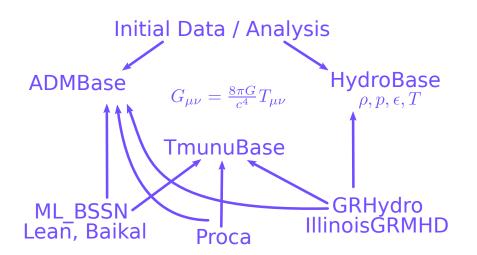

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

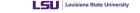



ADMBase


$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$


TmunuBase





Guiding Principles

- Open, community-driven software development
- Separation of **physics** software and **computational** infrastructure
- Stable interfaces, allowing extensions
- Simplify usage where possible:
 - Doing science >> Running a simulation
 - Students need to know a lot about physics (meaningful initial conditions, numerical stability, accuracy/resolution, have patience, have curiosity, develop a "gut feeling" for what is right ...)
 - Einstein Toolkit **cannot** give that, **however**:

Open codes that are easy to use allow to concentrate on these things!

Louisiana State University

open source

Credits, Citations

In academics: citations, citations, citations! For Einstein Toolkit:

- Open and free source
- No requirement to cite anything
- However: requested to cite
 - The DOI doi:10.5281/zenodo.3350841
 - Maybe the ET or Cactus papers
 - Some papers for the components list a few as well
 - List published on website and manage through publication database
- Soon: auto-generate list of citations during simulation run

Cutting Edge / Future

- New Driver Thorn: CarpetX (Meitner Release)
- New Hydro Thorn: AsterX (Next Release?)
- New Boundary Thorn: NewRadX (Landau Release)
- GRHayL thorns (Meitner, Landau, etc...)
- Python Code Generator: Full thorn output from NRPy
- Kerr background support in SelfForce1D (Soon?)

Summary

Einstein Toolkit

- http://www.einsteintoolkit.org/
- Tools for high-performance computing in numerical relativity
- Open Source
- World-wide, open Community
- Used in high-end research

Supported By

The Einstein Toolkit is supported by NSF 2004157/2004044/2004311/2004879/2003893, NSF 1550551/1550461/1550436/1550514 Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.