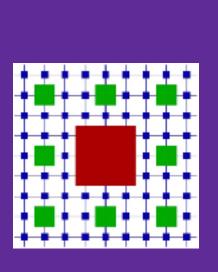
AsterX: a new open-source GPU-accelerated GRMHD code for dynamical spacetimes

Jay V. Kalinani

Center for Computational Relativity and Gravitation, RIT

in collaboration with F.Armengol, S. Brandt, M. Campanelli, R. Ciolfi, L. Ennoggi, B. Giacomazzo, R. Haas, L. Ji, L.T. Sanches, E. Schnetter, J. Tsao, Y. Zlochower

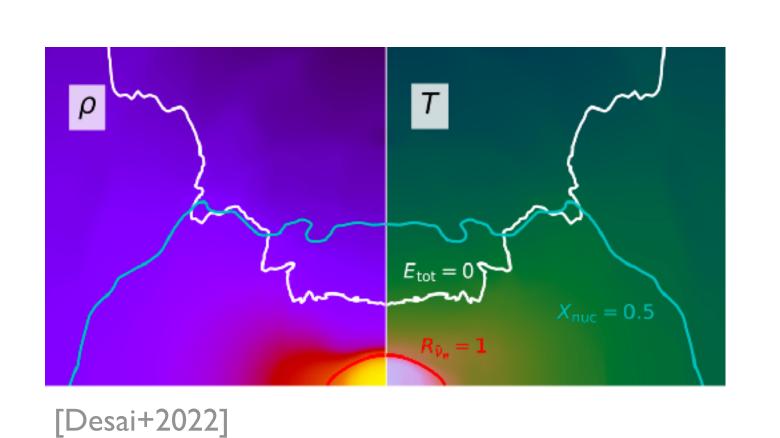


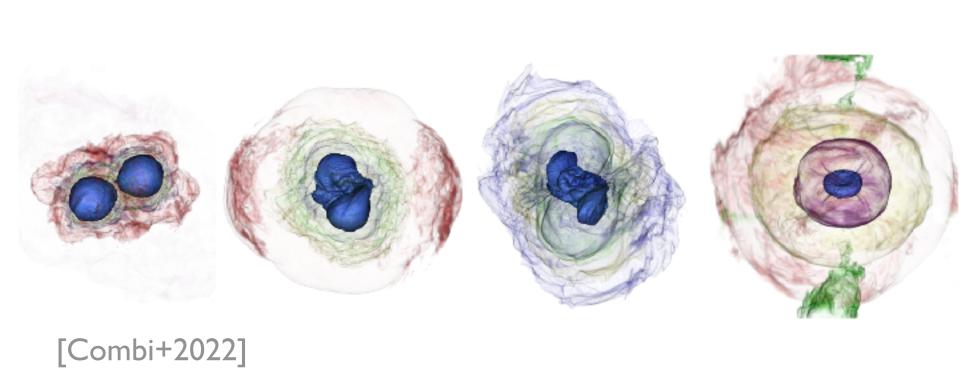
North American Einstein Toolkit Workshop 2024 Louisiana State University, June 6, 2024

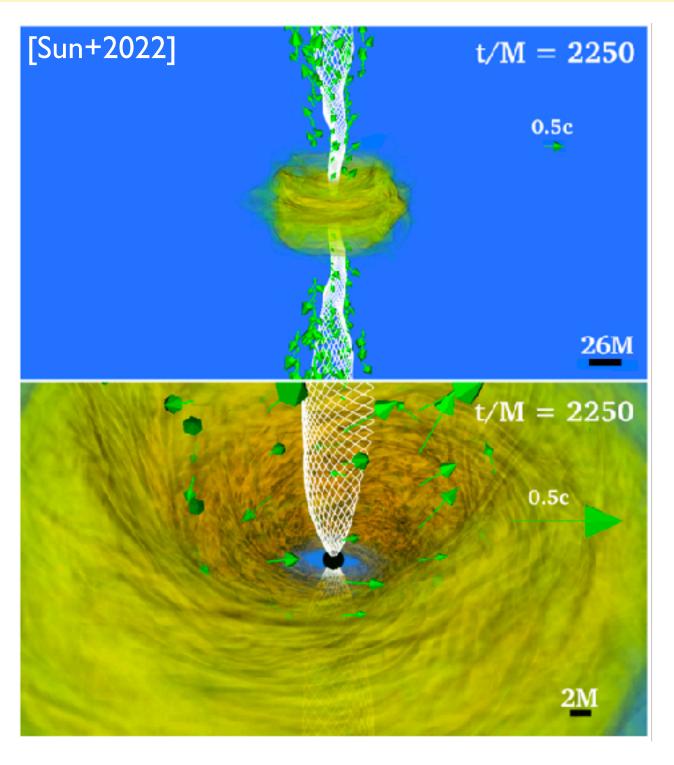
Overview

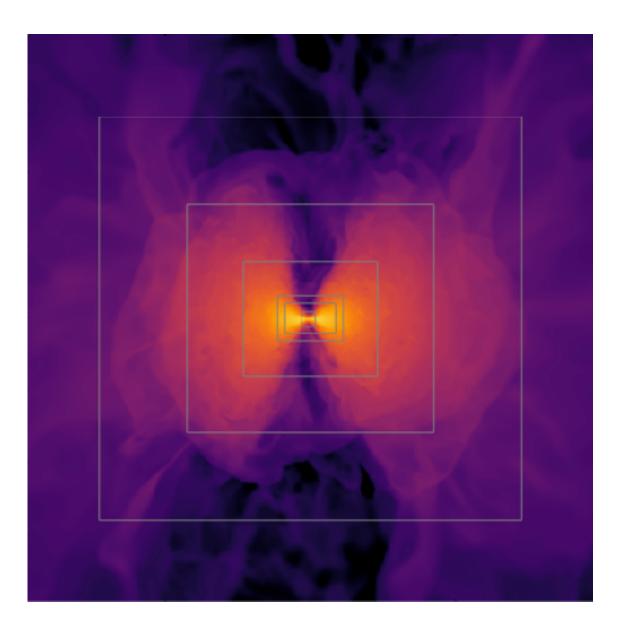
- Numerical background
- Code workflow
- AsterX code
- Test results
- Performance benchmarks
- Hands-on tutorial

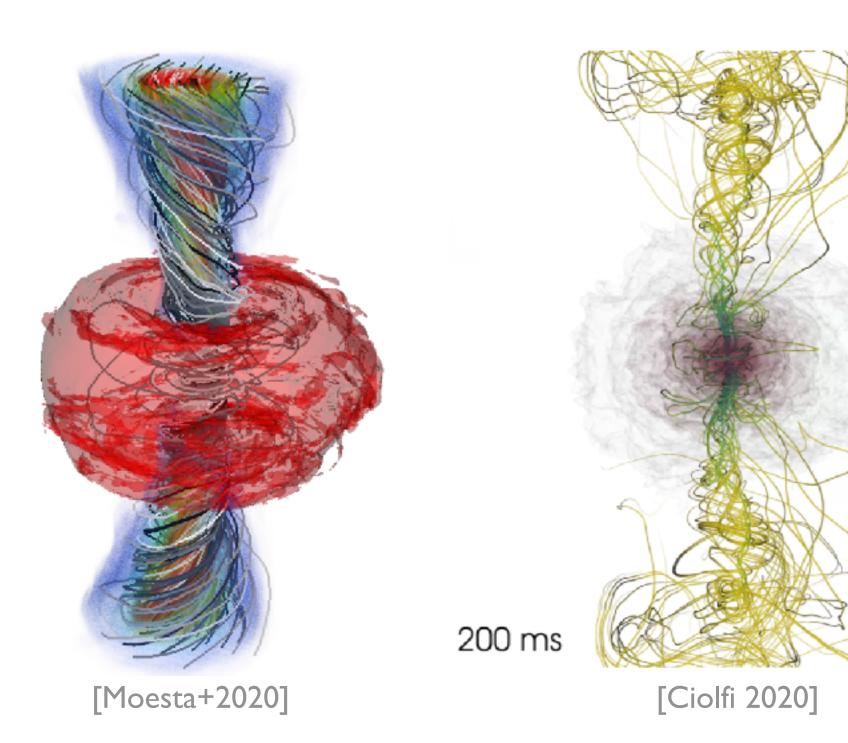
Need for GRMHD simulations

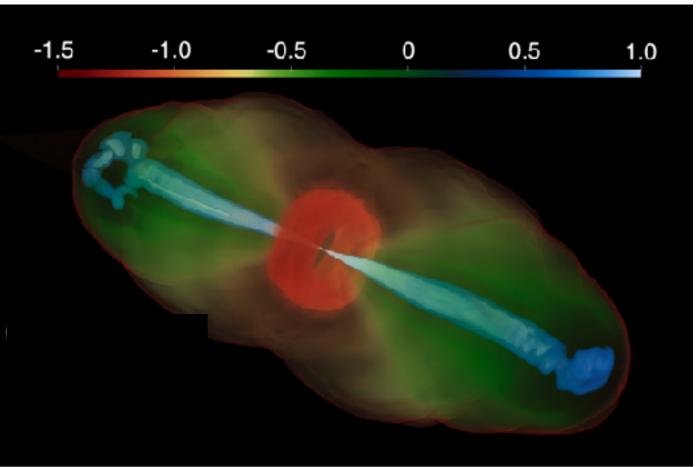












[Lopez-Armengol+2021]

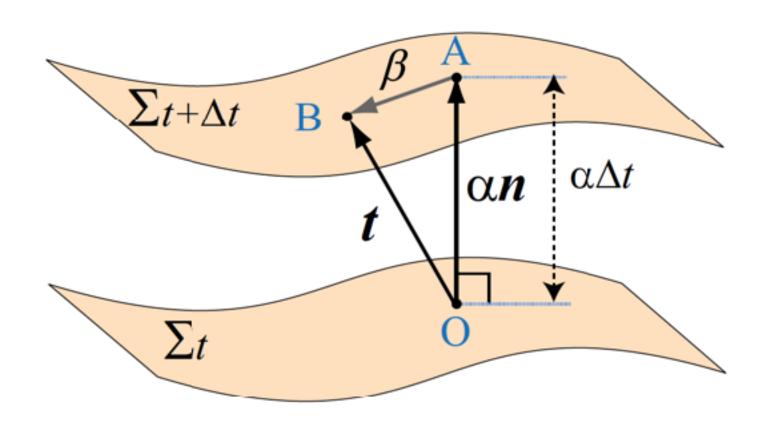
Numerical Background

Einstein field equations:
$$G_{\mu\nu}=R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R=8\pi T_{\mu\nu}$$

Maxwell equations:
$$\nabla_{\nu}^* F^{\mu\nu} = 0; \quad \nabla_{\nu} F^{\mu\nu} = 4\pi \mathcal{J}^{\mu}$$

4-current density:
$$\mathcal{J}^{\mu} = q u^{\mu} + \sigma F^{\mu\nu} u_{\nu}$$

- Energy conservation: $\nabla_{\mu}T^{\mu\nu}=0$
- Mass conservation: $\nabla_{\mu}(\rho u^{\mu}) = 0$
- Equation of state: $P = P(\rho, \epsilon)$
- Numerical Relativity: solve non-linear Einstein equations coupled with MHD equations in GR
- 3+1 foliation: treating the system as initial value problem solution in future based on initial data



Line element:
$$ds^2=g_{\mu\nu}dx^\mu dx^\nu=-\left(\alpha^2-\beta^i\beta_i\right)dt^2+2\beta_i dx^i dt+\gamma_{ij}dx^i dx^j$$

Time-like unit normal:
$$n^{\mu} = \frac{1}{\alpha} (1, -\beta^i); \quad n_{\mu} = (-\alpha, 0, 0, 0)$$

Eulerian 3-velocity:
$$v^i = \frac{1}{\alpha} \left(\frac{u^i}{u^0} + \beta^i \right)$$

Numerical Background

Einstein field equations:
$$G_{\mu\nu}=R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R=8\pi T_{\mu\nu}$$

Maxwell equations:
$$\nabla_{\nu}^* F^{\mu\nu} = 0; \quad \nabla_{\nu} F^{\mu\nu} = 4\pi \mathcal{J}^{\mu}$$

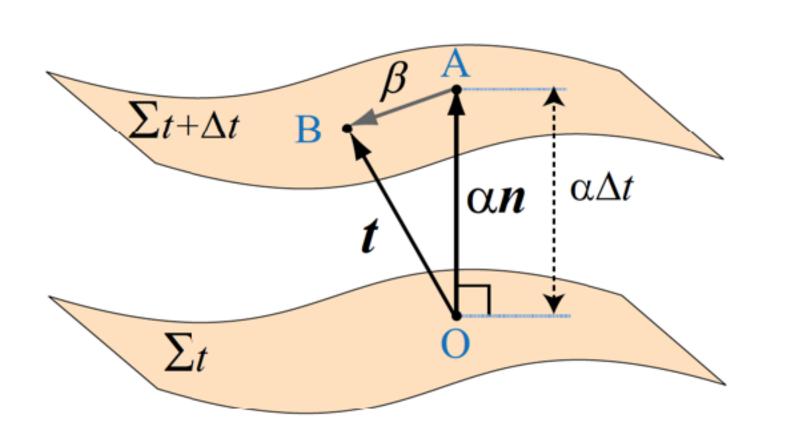
4-current density:
$$\mathcal{J}^{\mu} = q u^{\mu} + \sigma F^{\mu\nu} u_{\nu}$$

Energy conservation: $\nabla_{\mu}T^{\mu\nu}=0$

Mass conservation: $\nabla_u(\rho u^\mu) = 0$

Equation of state: $P = P(\rho, \epsilon)$

- Numerical Relativity: solve non-linear Einstein equations coupled with MHD equations in GR
- 3+1 foliation: treating the system as initial value problem solution in future based on initial data



- Spacetime evolution: based on BSSN/Z4c formulation (via McLachlan, Baikal, Z4c)
- GRMHD evolution: based on Valencia formulation (via WhiskyMHD, IllinoisGRMHD, GRHydro, Spritz, GRHayl)

Sam Cupp's talk on Tuesday!

GRMHD Equations

First order flux-conservative hyperbolic Valencia formalism

$$\frac{1}{\alpha\sqrt{\gamma}}\left[\partial_t\left(\sqrt{\gamma}\mathbf{U}\right) + \partial_i\left(\sqrt{\gamma}\mathbf{F}^i\right)\right] = \mathbf{S}$$

State vector

$$\mathbf{U} \equiv \begin{pmatrix} D \\ S_j \\ \tau \\ B^k \\ DY_e \end{pmatrix}$$

Fluxes

$$\mathbf{F} = \begin{pmatrix} D \\ S_{j} \\ \tau \\ B^{k} \\ DY_{e} \end{pmatrix} \qquad \mathbf{F} \equiv \begin{pmatrix} D\tilde{v}^{i} \\ S_{j}\tilde{v}^{i} + \alpha \left(P + P_{\text{mag}}\right) \delta_{j}^{i} - \alpha b_{j}B^{i}/W \\ \tau\tilde{v}^{i} + \alpha \left(P + P_{\text{mag}}\right) v^{i} - \alpha^{2}b^{0}B^{i}/W \\ B^{k}\tilde{v}^{i} - B^{i}\tilde{v}^{k} \\ DY_{e}\tilde{v}^{i} \end{pmatrix} \qquad \mathbf{S} \equiv \begin{pmatrix} 0 \\ T^{\mu\nu} \left(\partial_{\mu}g_{\nu j} - \Gamma^{\delta}_{\nu\mu}g_{\delta j}\right) \\ \alpha \left(T^{\mu0}\partial_{\mu}\ln\alpha - T^{\mu\nu}\Gamma^{0}_{\nu\mu}\right) \\ 0 \\ 0 \end{pmatrix}$$

Source terms

$$\mathbf{S} \equiv \begin{pmatrix} 0 \\ T^{\mu\nu} \left(\partial_{\mu} g_{\nu j} - \Gamma^{\delta}_{\nu\mu} g_{\delta j} \right) \\ \alpha \left(T^{\mu 0} \partial_{\mu} \ln \alpha - T^{\mu\nu} \Gamma^{0}_{\nu\mu} \right) \\ 0 \\ 0 \end{pmatrix}$$

$$T^{\mu\nu} = (\rho h + b^2) u^{\mu} u^{\nu} + (p_{\text{gas}} + p_{\text{mag}}) g^{\mu\nu} - b^{\mu} b^{\nu}$$

fluid can interchange energy and momentum with the spacetime

Prim2Con

primitives

ρ rest-mass density

 v^i fluid 3-velocity

 ϵ specific internal energy

 Y_e electron fraction

P gas pressure $P_{\mathrm{mag}} \equiv b^2/2$ magnetic pressure $W = 1/\sqrt{1-v^2}$ Lorentz factor $h = 1+\epsilon+P/\rho$ specific enthalpy \overrightarrow{A} vector potential

conservatives

conserved density $D \equiv \rho W$

conserved momentum $S_i \equiv (\rho h + b^2) W^2 v_i - \alpha b^0 b_i$

conserved internal energy $\tau \equiv \left(\rho h + b^2\right) W^2 - \left(P + P_{\mathrm{mag}}\right) - \alpha^2 \left(b^0\right)^2 - D$

conserved magnetic field $\overrightarrow{B} \equiv \overrightarrow{\nabla} \times \overrightarrow{A}$

conserved electron fraction DY_e

Evolution Equations for B

Ideal MHD

$$\sigma \to \infty$$
; $F^{\mu\nu}u_{\nu} \to 0$

co-moving observer measures no electric field

Maxwell equations

$$\nabla_{\nu}^* F^{\mu\nu} = \frac{1}{\sqrt{-g}} \partial_{\nu} \left(\sqrt{-g} \left(b^{\mu} u^{\nu} - b^{\nu} u^{\mu} \right) \right) = 0$$

written solely in terms of b

Divergence-free condition: $\partial_i \tilde{B}^i = 0$

Induction equations:
$$\partial_t \tilde{B}^i = \partial_j \left(\tilde{v}^i \tilde{B}^j - \tilde{v}^j \tilde{B}^i \right)$$

where
$$\tilde{B}^i \equiv \sqrt{\gamma} B^i$$
; $\tilde{v}^i \equiv \alpha v^i - \beta^i$

Co-moving magnetic field components

$$b^{0} = \frac{WB^{i}v_{i}}{\alpha}, \qquad b^{i} = \frac{B^{i} + \alpha b^{0}u^{i}}{W}, \qquad b^{2} \equiv b^{\mu}b_{\mu} = \frac{B^{2} + \alpha^{2}\left(b^{0}\right)^{2}}{W^{2}}$$

Evolution Equations for A

4-vector potential:
$$\mathcal{A}_{\nu} = n_{\nu}\Phi + A_{\nu}$$

Induction equations:
$$\partial_t A_i = -E_i - \partial_i \left(\alpha \Phi - \beta^j A_j \right)$$

Computing B:
$$B^i = \epsilon^{ijk} \partial_j A_k$$

Algebraic gauge:
$$\Phi = \frac{1}{\alpha} \left(\beta^j A_j \right) = - \, n^j A_j$$

$$\partial_t A_i = \epsilon_{ijk} v^j B^k$$

Lorenz gauge:
$$\nabla_{\nu} \mathcal{A}^{\nu} = \xi n_{\nu} \mathcal{A}^{\nu}$$

$$\partial_t \left(\sqrt{\gamma} \Phi \right) + \partial_i \left(\alpha \sqrt{\gamma} A^i - \sqrt{\gamma} \beta^i \Phi \right) = -\xi \alpha \sqrt{\gamma} \Phi$$

Equation of State

Analytical

- ideal gas
$$P(\rho,\epsilon)=(\Gamma-1)\rho\epsilon;\ \epsilon_{\min}=0$$

- polytrope
$$P(\rho) = k\rho^{\Gamma}$$
; $\Gamma = 1 + 1/n$

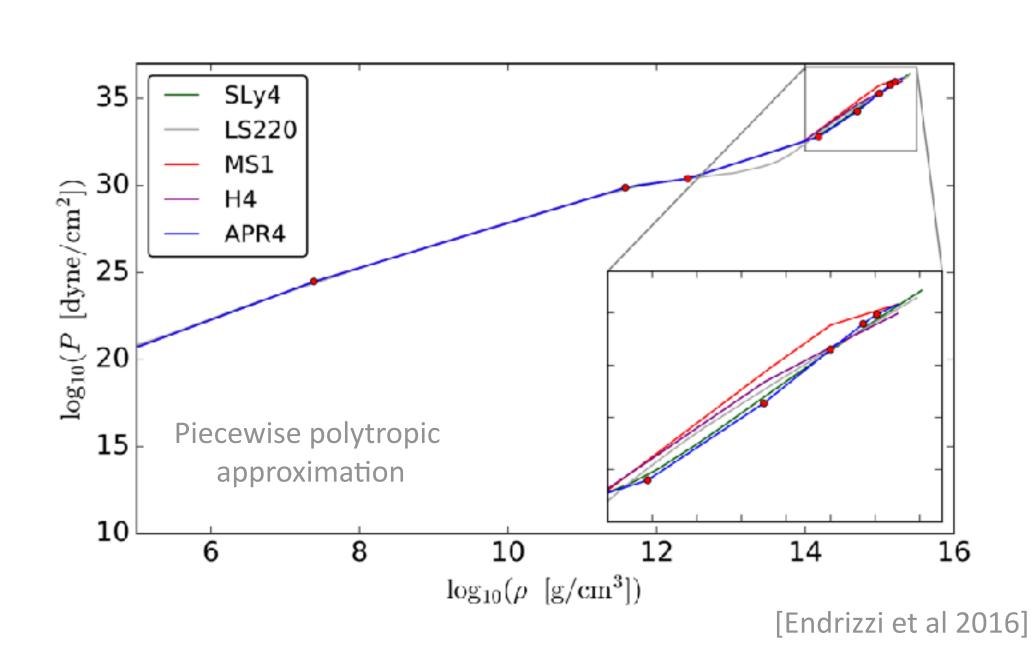
Tabulated

- I parameter
$$P = P(\rho)$$

- 3 parameter
$$P = P(\rho, T, Y_e)$$

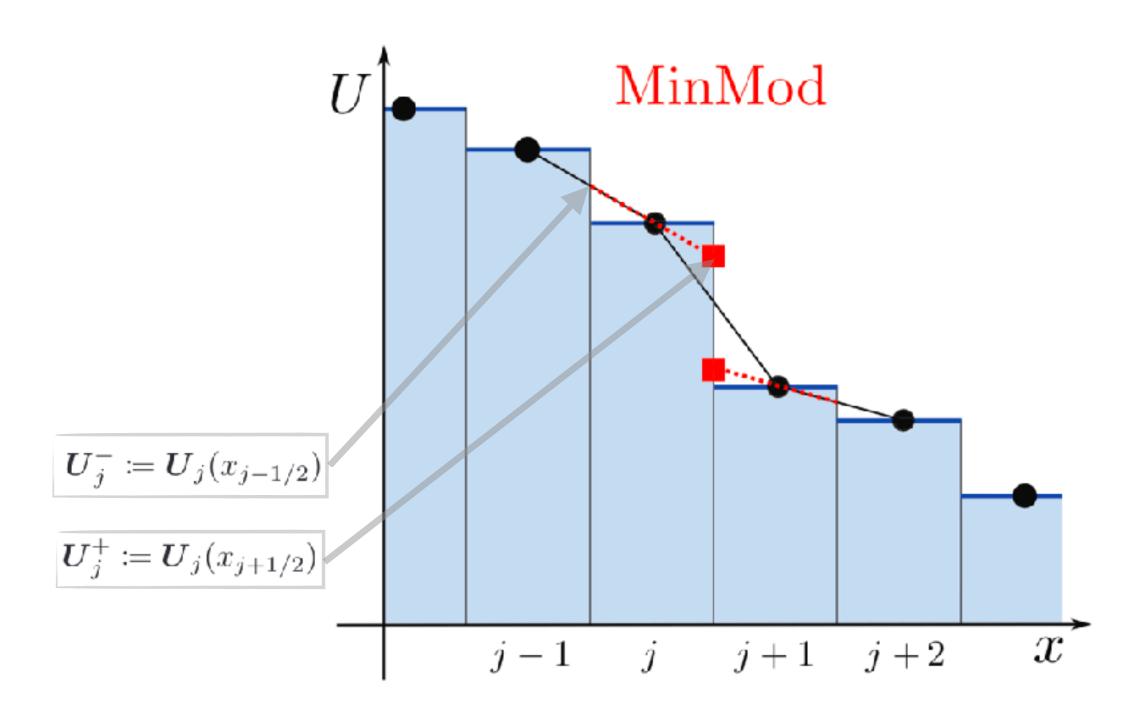
Hybrid

$$\begin{split} P(\rho, \epsilon) &= P_{\text{cold}}(\rho) + (\Gamma_{\text{th}} - 1)\rho \left(\epsilon - \epsilon_{\text{cold}}(\rho)\right) \\ \epsilon_{\text{min}}(\rho) &= \epsilon_{\text{cold}}(\rho) \end{split}$$



HRSC Methods

- Reconstruction methods:
 reconstruct the variables to the left and
 right of the grid-interfaces
 - → Minmod
 - → Piecewise parabolic method (PPM)
- Approximate Riemann solvers: compute the fluxes at cell-interfaces
 - → Lax-Friedrichs
 - → HLLE solver



[Rezzolla+2013]

Con2Prim

- Recover primitive variables from evolved conservative ones: C2P
 - no analytical solution in GRMHD
 - needs numerical approach: root finding algorithms
- Currently known C2P schemes (e.g., Noble+2006, Duran+2008, Neilsen+2014, Newman+2014, Siegel+2018) could all fail in certain regimes, e.g. for high magnetizations and Lorentz factors

Types of methods:

- Newton-Raphson schemes
 - unbounded; usually need initial guess; depend on EOS derivatives
- Root-bracketing schemes
 - bounded; might not depend on initial guess and on EOS derivatives

Code Workflow

$$\frac{1}{\alpha\sqrt{\gamma}}\left[\partial_t\left(\sqrt{\gamma}\mathbf{U}\right) + \partial_i\left(\sqrt{\gamma}\mathbf{F}^i\right)\right] = \mathbf{S}$$

Initialisation: primitive variables defined at each grid point

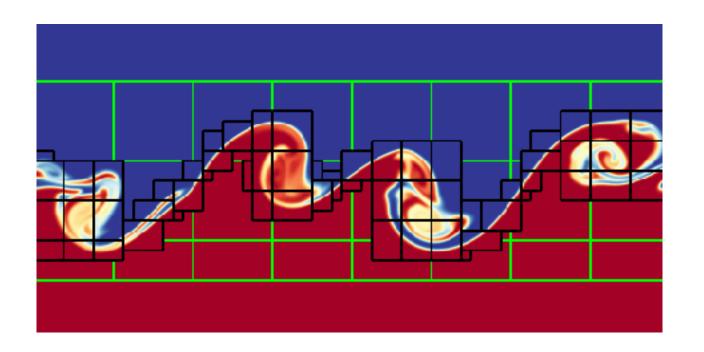
Prim2Con: conserved variables computed from primitives



Flux terms: computed using HRSC methods (reconstruction + approx Riemann solvers)

Time update: ODEs for conserved variables solved using time integrator (such as RK4)

Con2Prim: computes primitives from evaluated conserved variables for next time step

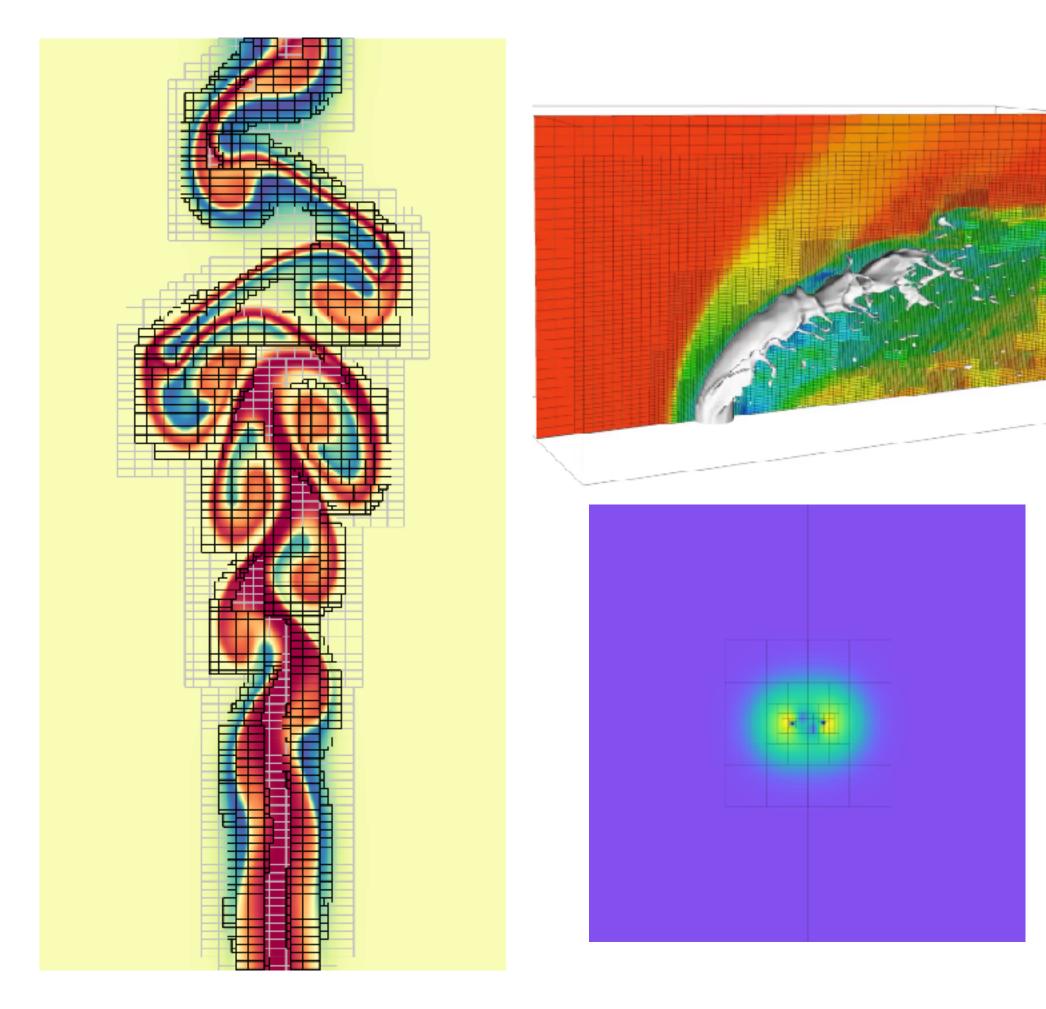


AMReX

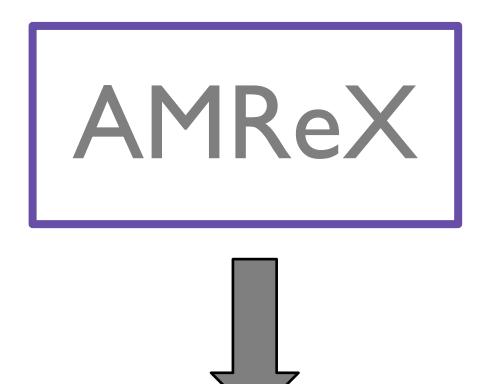
- Software framework for massively parallel, block-structured adaptive mesh refinement (AMR) applications
- Developed at LBNL, NREL and ANL as a part of DOE's Exascale Computing Project

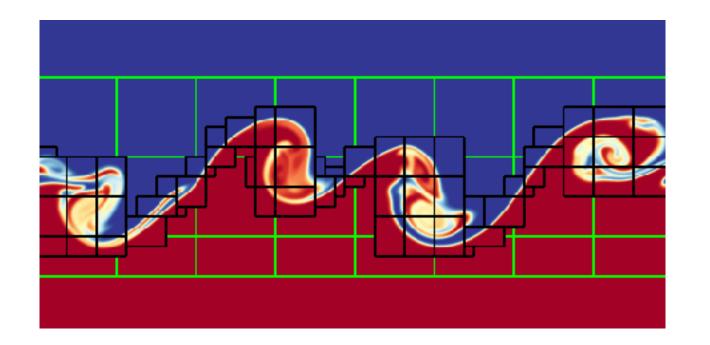
Key features:

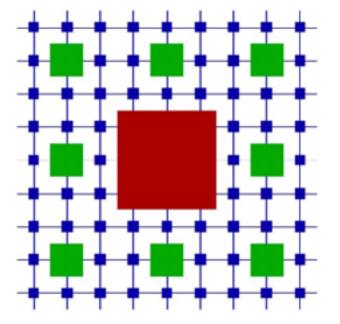
- C++ and Fortran interfaces
- I-, 2- and 3-D support
- Support for cell-, face-, vertex-, edge-centered data
- Support for hyperbolic, parabolic, and elliptic solvers
- Optional subcycling in time for time-dependent PDEs
- Support for particles
- Performance portability: parallelization via flat MPI, OpenMP, hybrid
 MPI/OpenMP, hybrid MPI/(CUDA or HIP or DPC++)
- Parallel I/O



Taken from https://amrex-codes.github.io/amrex/



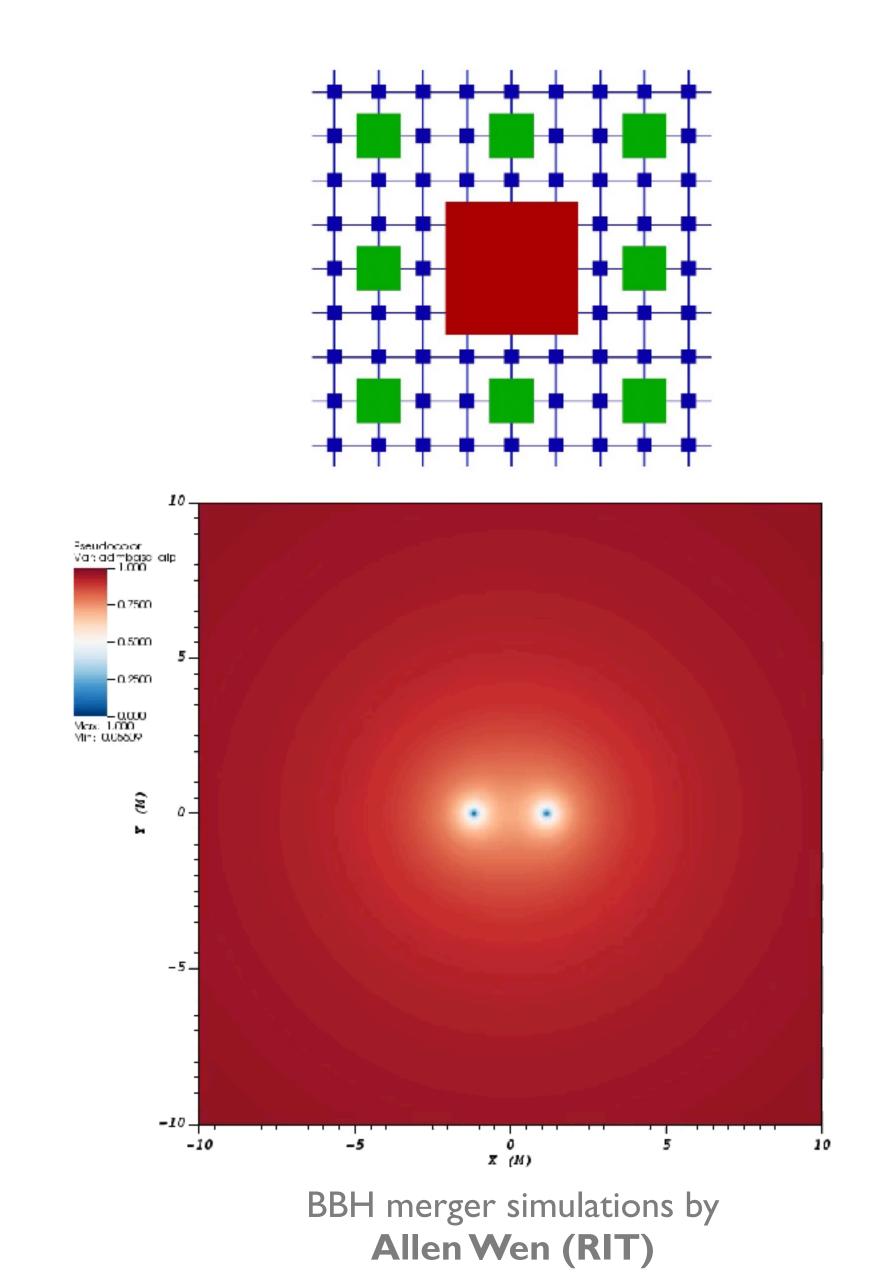




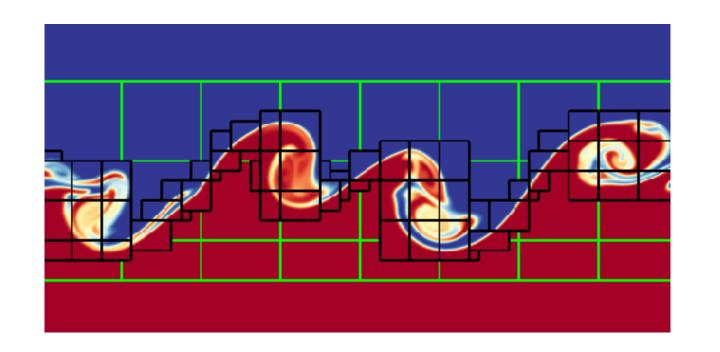
Erik Schnetter's talk on Tuesday!

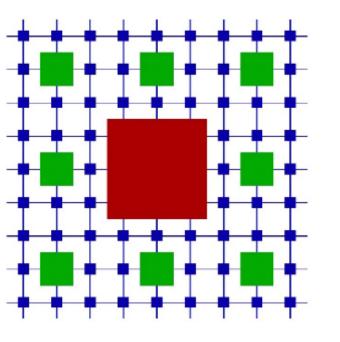
CarpetX: a new driver for the Einstein Toolkit

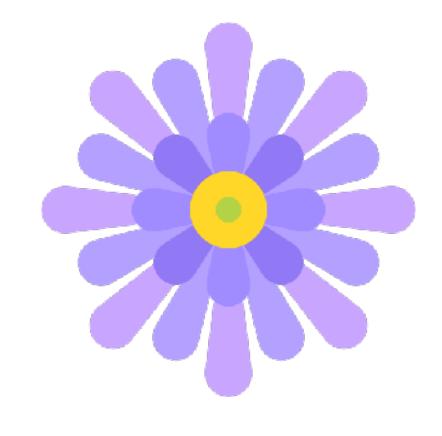
- Support for accelerators (e.g. GPUs)
- AMR based on local criteria
- Scalable → Exascale
- Hydro refluxing
- Elliptic solvers
- I/O in HDF5 (Silo, openPMD) or ASCII
- GitHub: https://github.com/EinsteinToolkit/CarpetX
- Applications:
 - WaveToyX: solves a scalar wave equation
 - Z4c: Einstein field equations in vacuum
 - **GRaM-X:** a new GRMHD code [Shankar et al. 2022]











AsterX: General Relativistic MHD code

Heavily derived from the Spritz code

• ReconX:

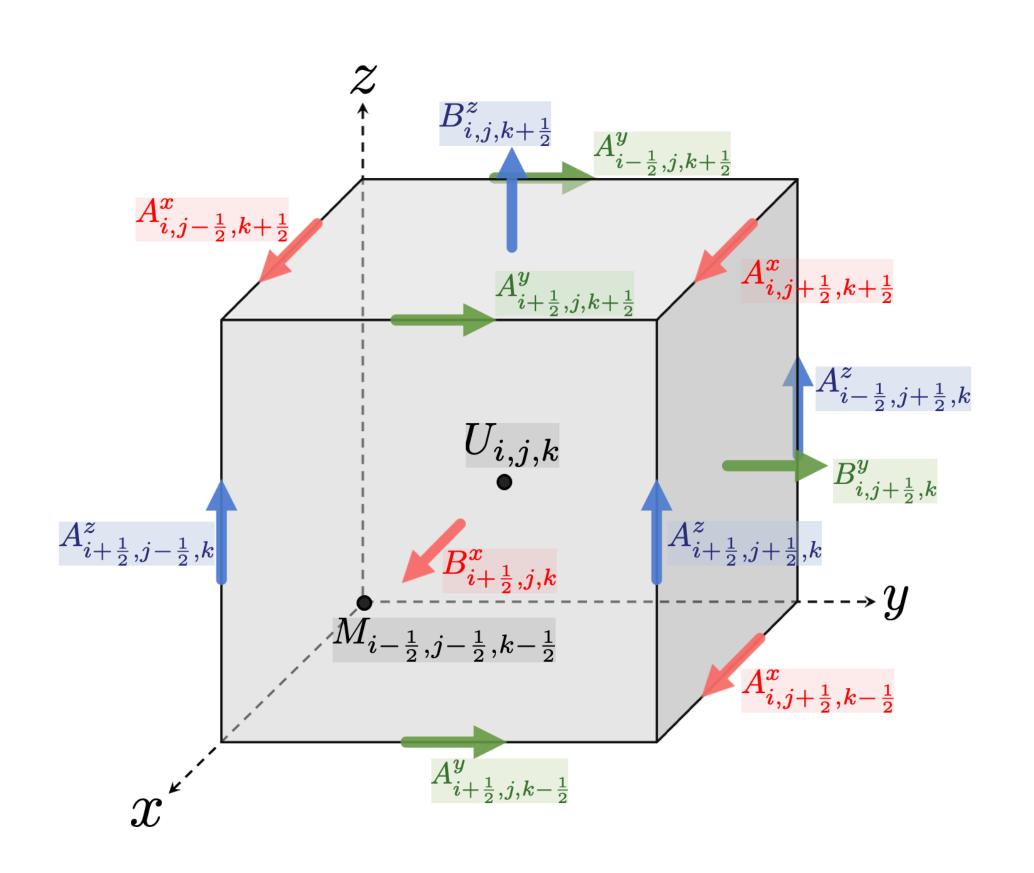
- MinMod (TVD)
- Piecewise Parabolic Method (PPM)
- WENO-Z (weighted essentially non-oscillatory)
- MP5 (5th order monotonicity-preserving)

• Flux solvers:

- Lax-Friedrichs
- HLLE

• Con2PrimFactory:

- o 2D Noble et al.
- o ID Palenzuela et al.
- ID RePrimAnd (only CPU-compatible)
- 3D Anton et al.
- ID Newman & Hamlin



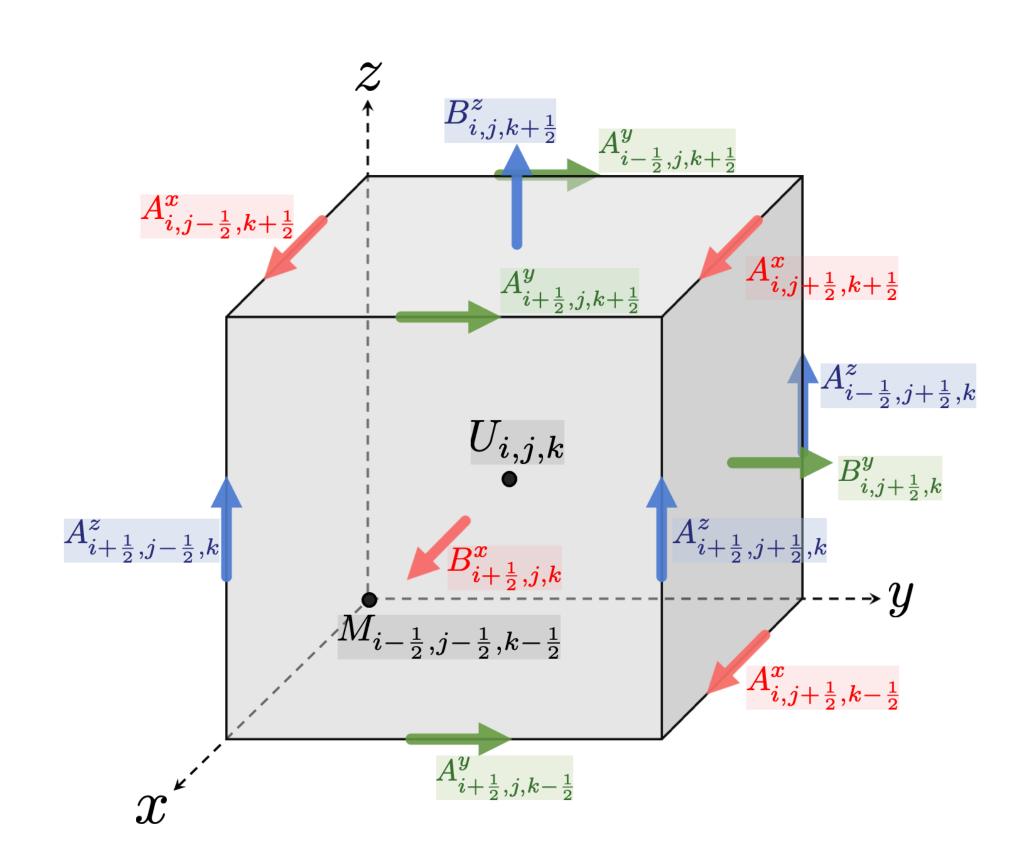
Locations of different grid-functions in a grid-cell

AsterX: General Relativistic MHD code

Heavily derived from the Spritz code

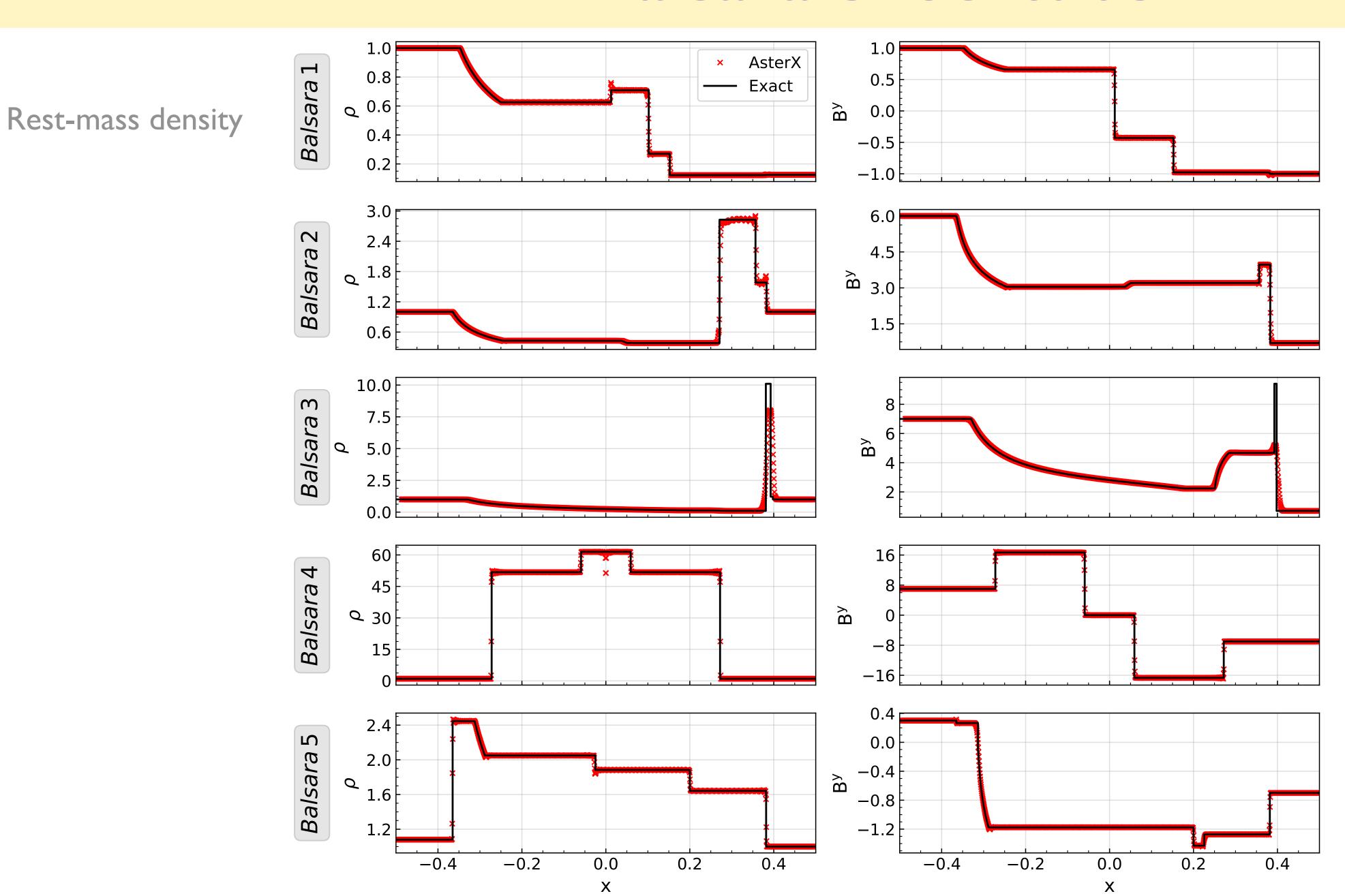
- EOSX:
 - Analytical: Ideal gas, Polytropic
 - Hybrid
 - Finite temperature tabulated
- Vector potential evolution:
 - Flux CT
 - Upwind CT (HLLE)
- GitHub:

https://github.com/jaykalinani/AsterX



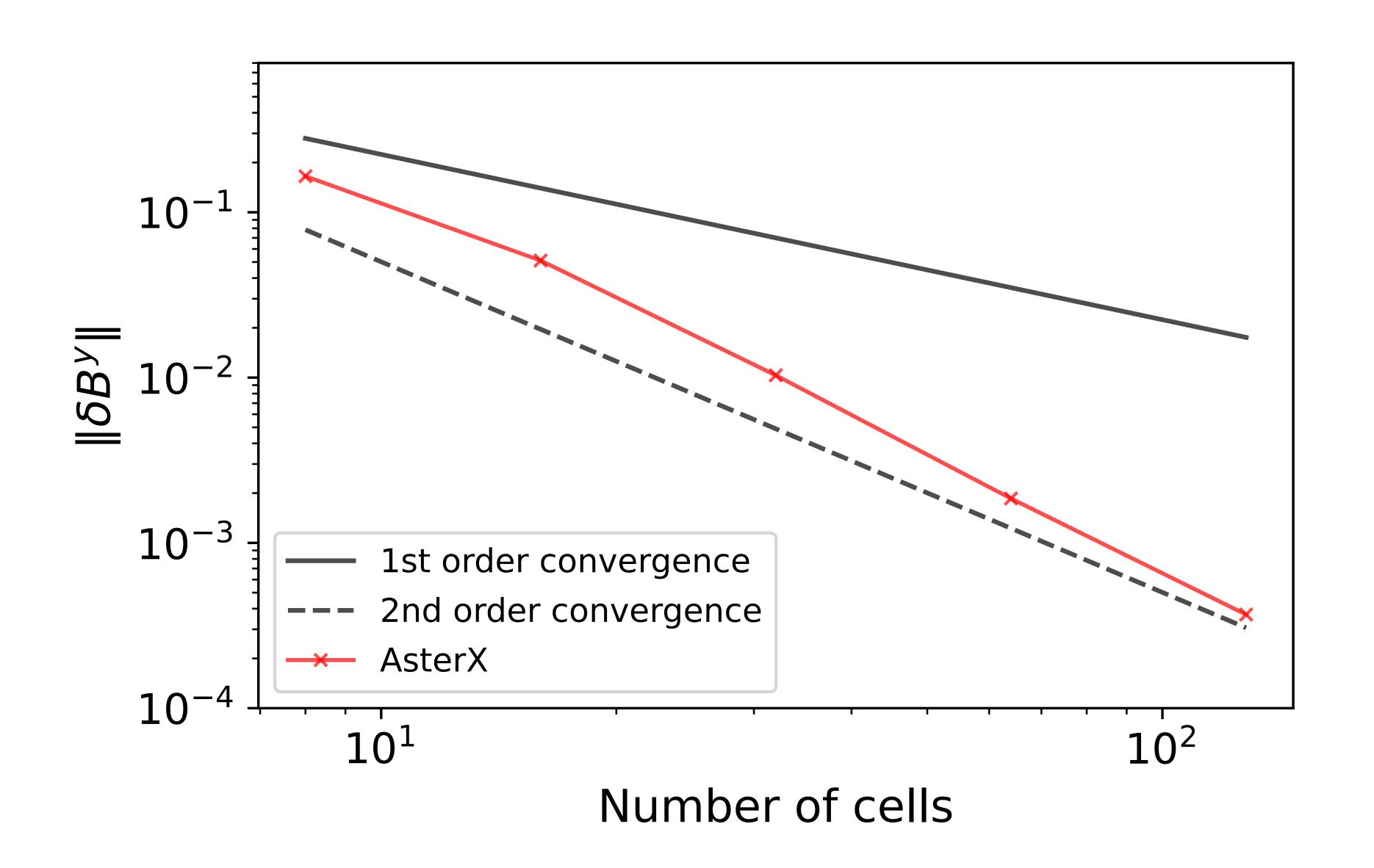
Locations of different grid-functions in a grid-cell

Balsara Shocktube



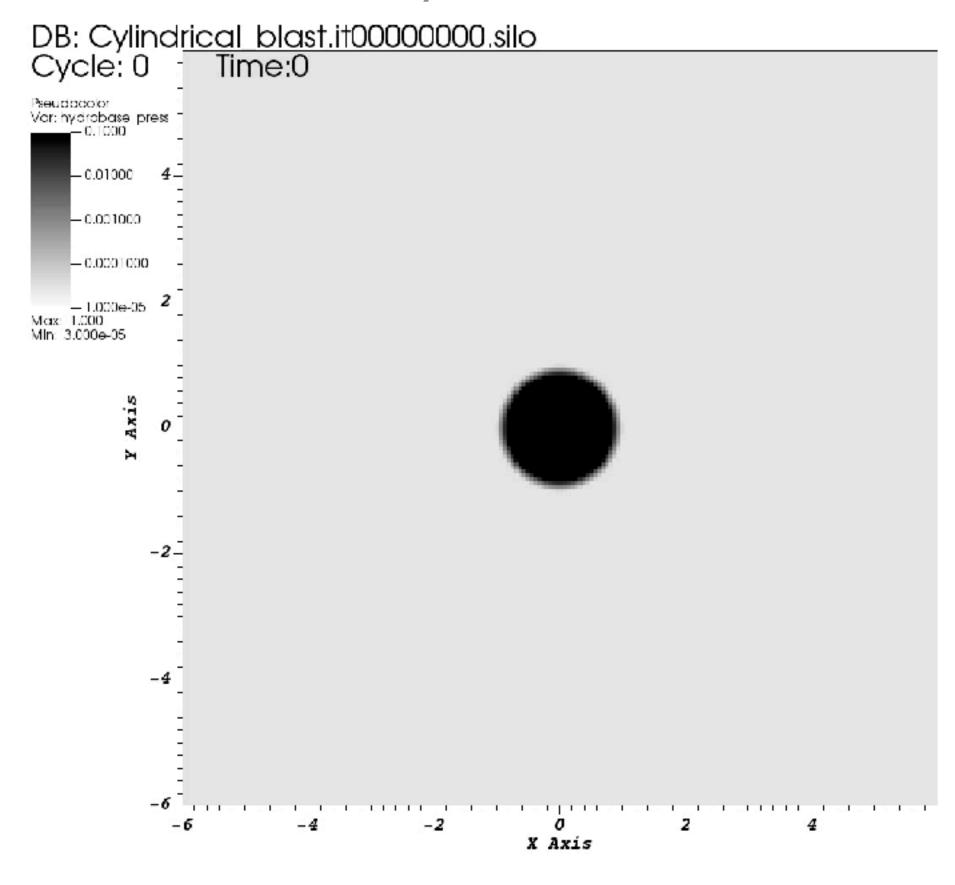
Magnetic field: By

Convergence study: Alfvén wave

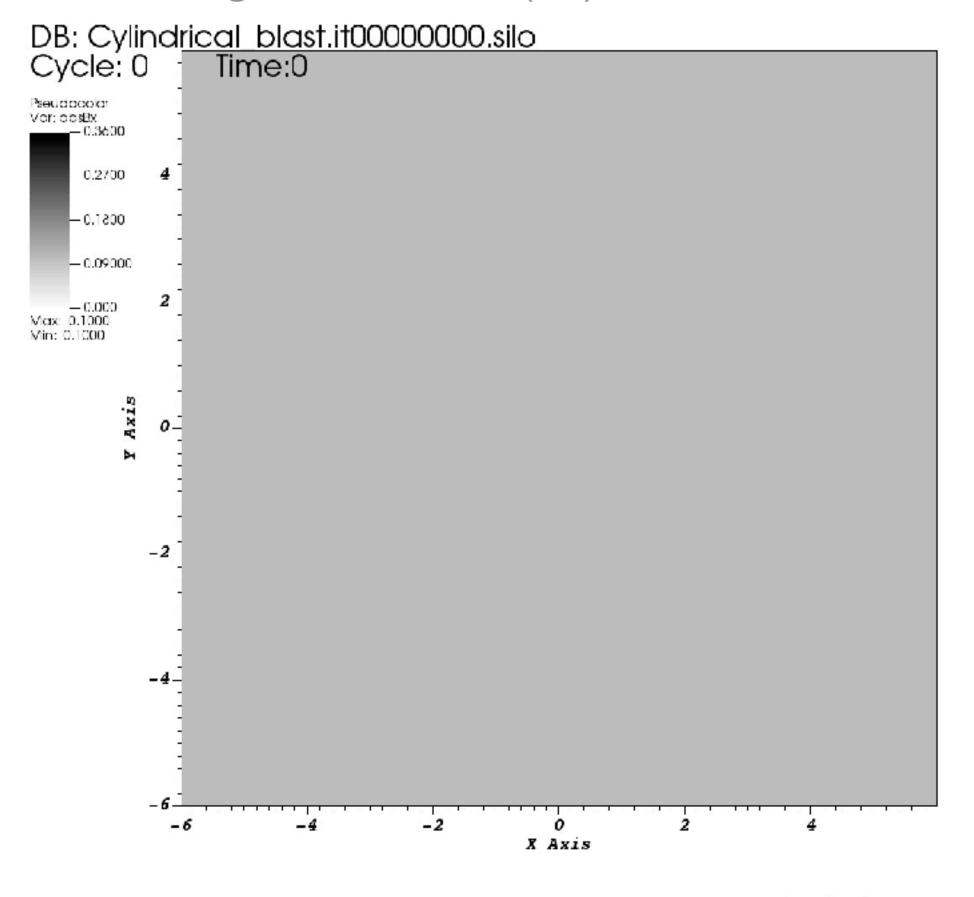


Cylindrical Explosion

Rest-mass density



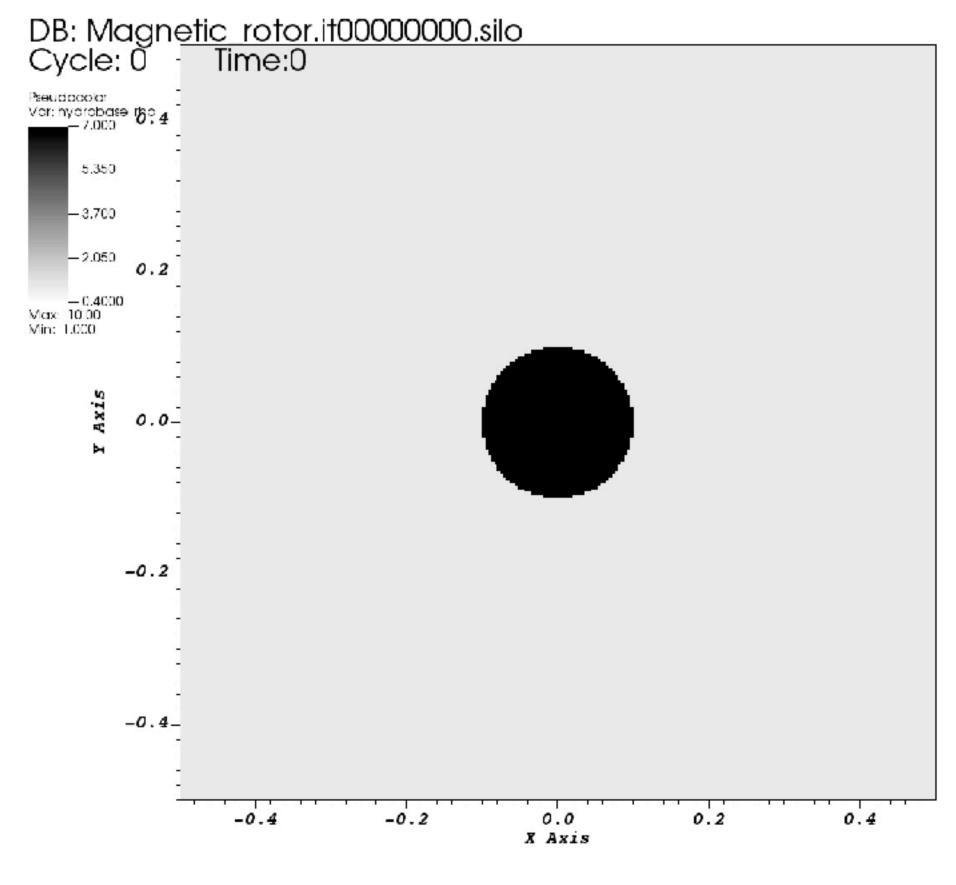
Magnetic field: abs(Bx)



user: jaykalinani Sun Jan 29 23:12:58 2023 user: Jaykalinani Sun Jan 29 23:14:44 2023

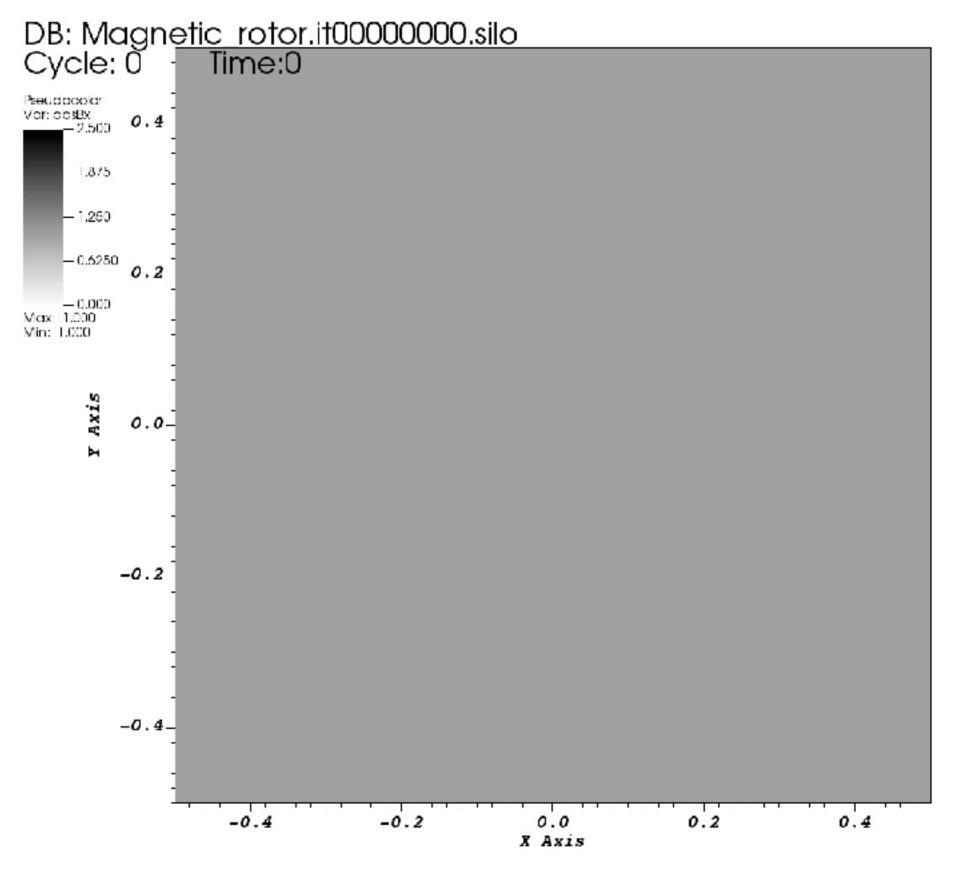
Magnetic Rotor

Rest-mass density



user: Jaykalinani Sun Jan 29 23 08:40 2023

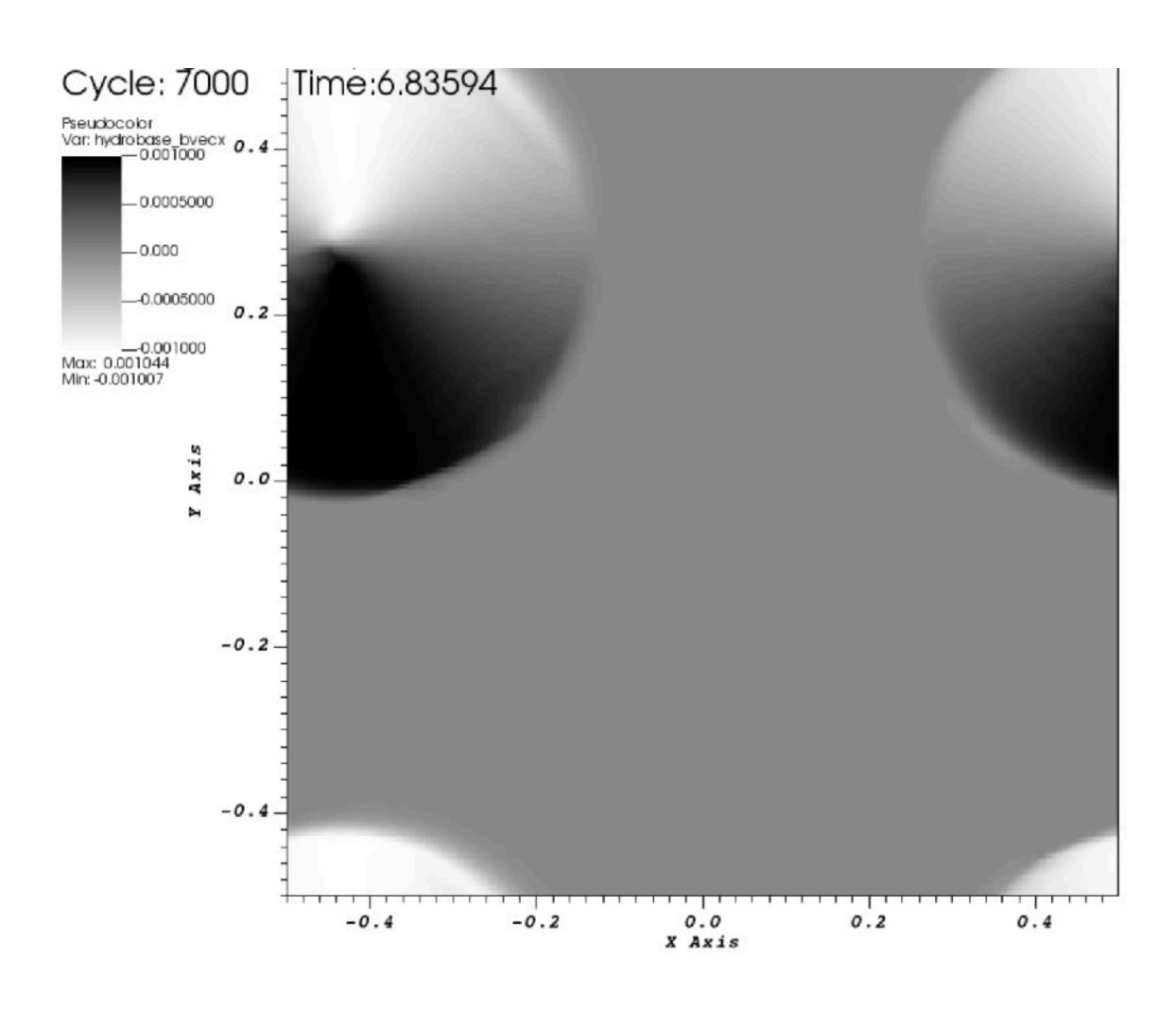
Magnetic field: abs(Bx)



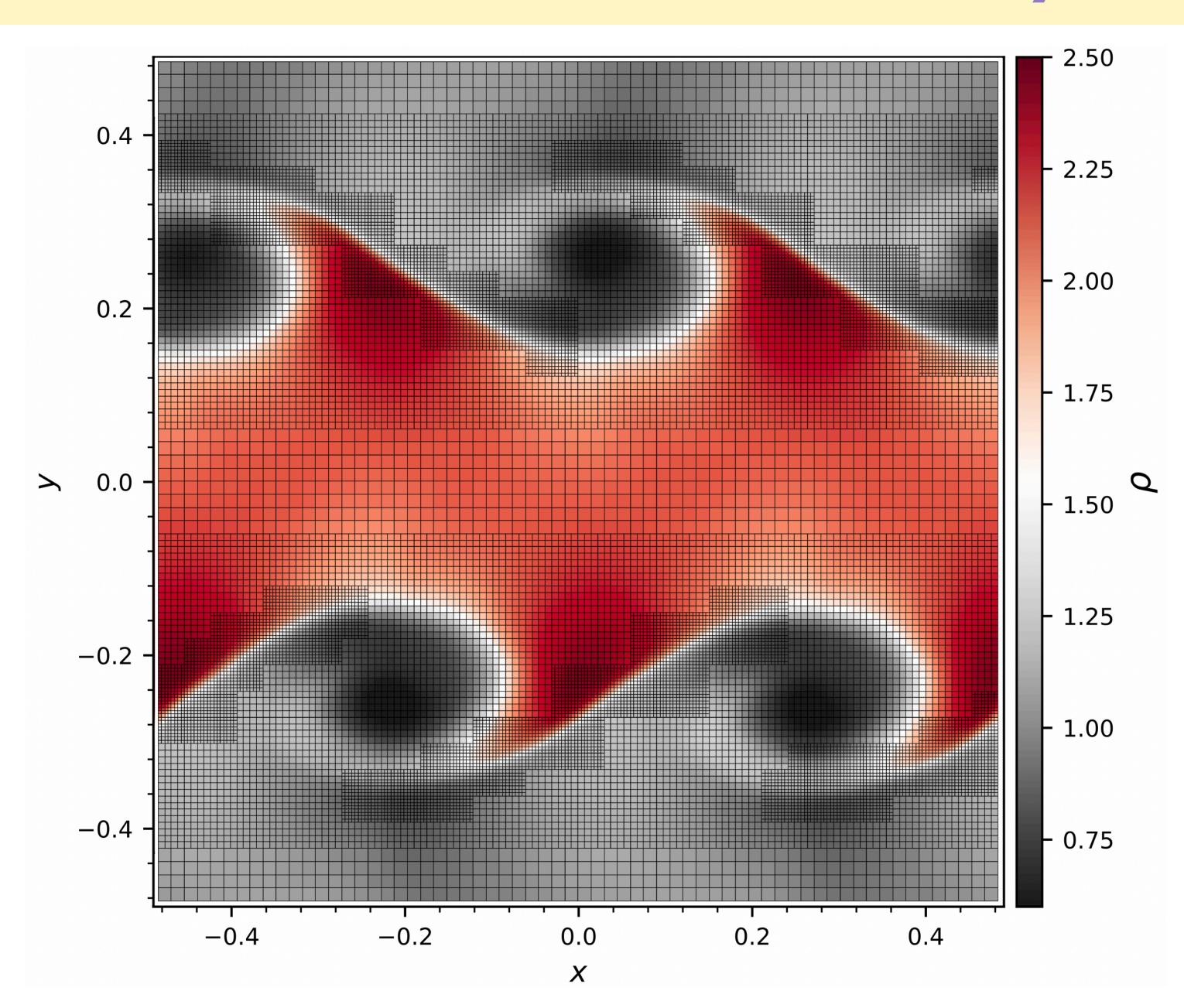
user: Jaykalinani Sun Jan 29 23:03:49 2023

Magnetic Loop Advection

Magnetic field: Bx



Kelvin Helmholtz Instability

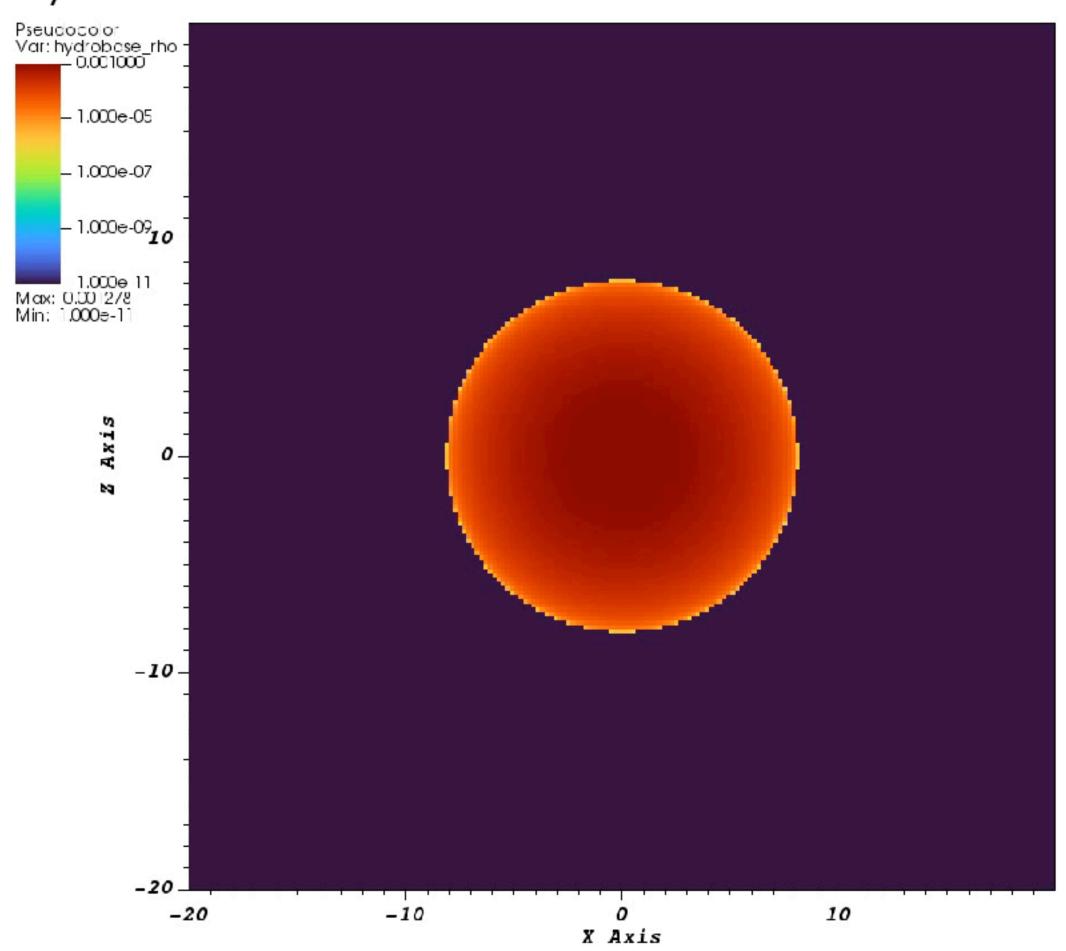


Rest-mass density

Magnetized TOV

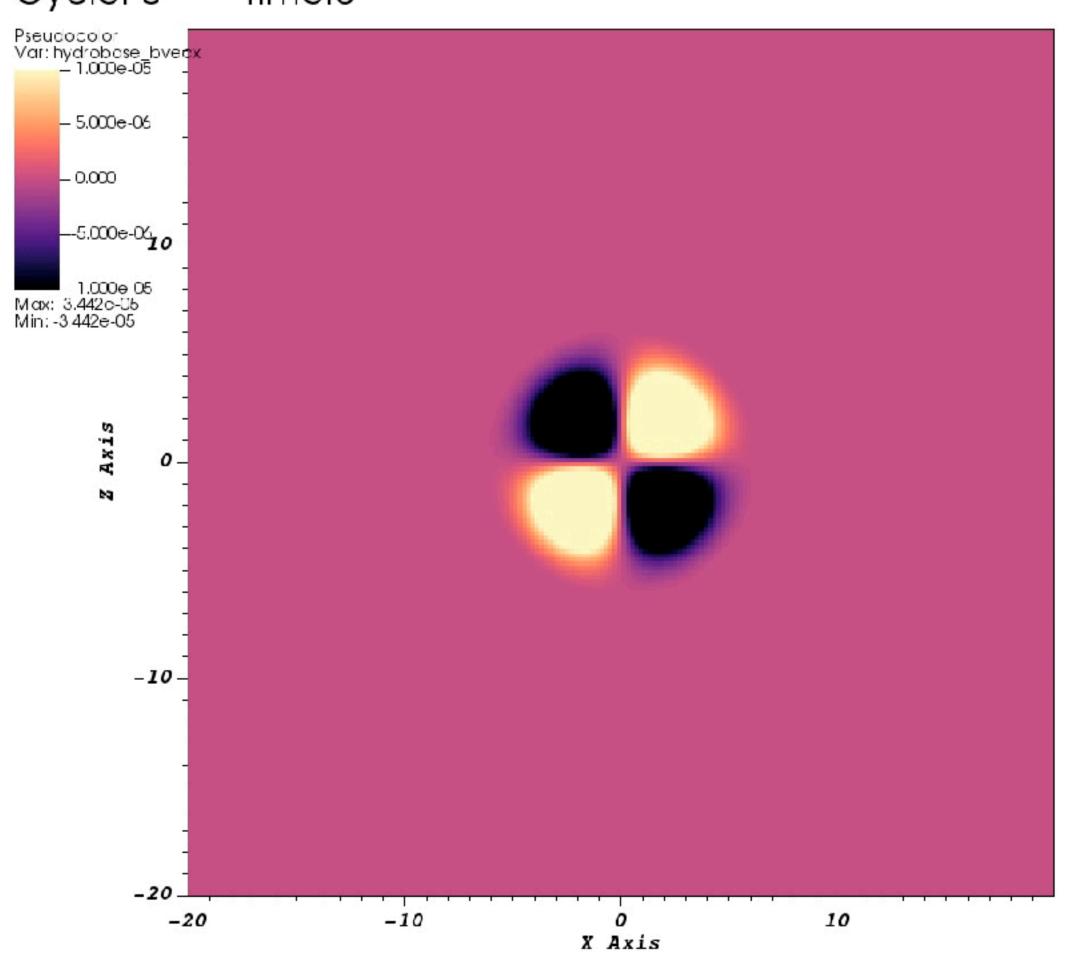
Rest-mass density

DB: magTOV_Cowling.it00000000.silo Cycle: 0 Time:0

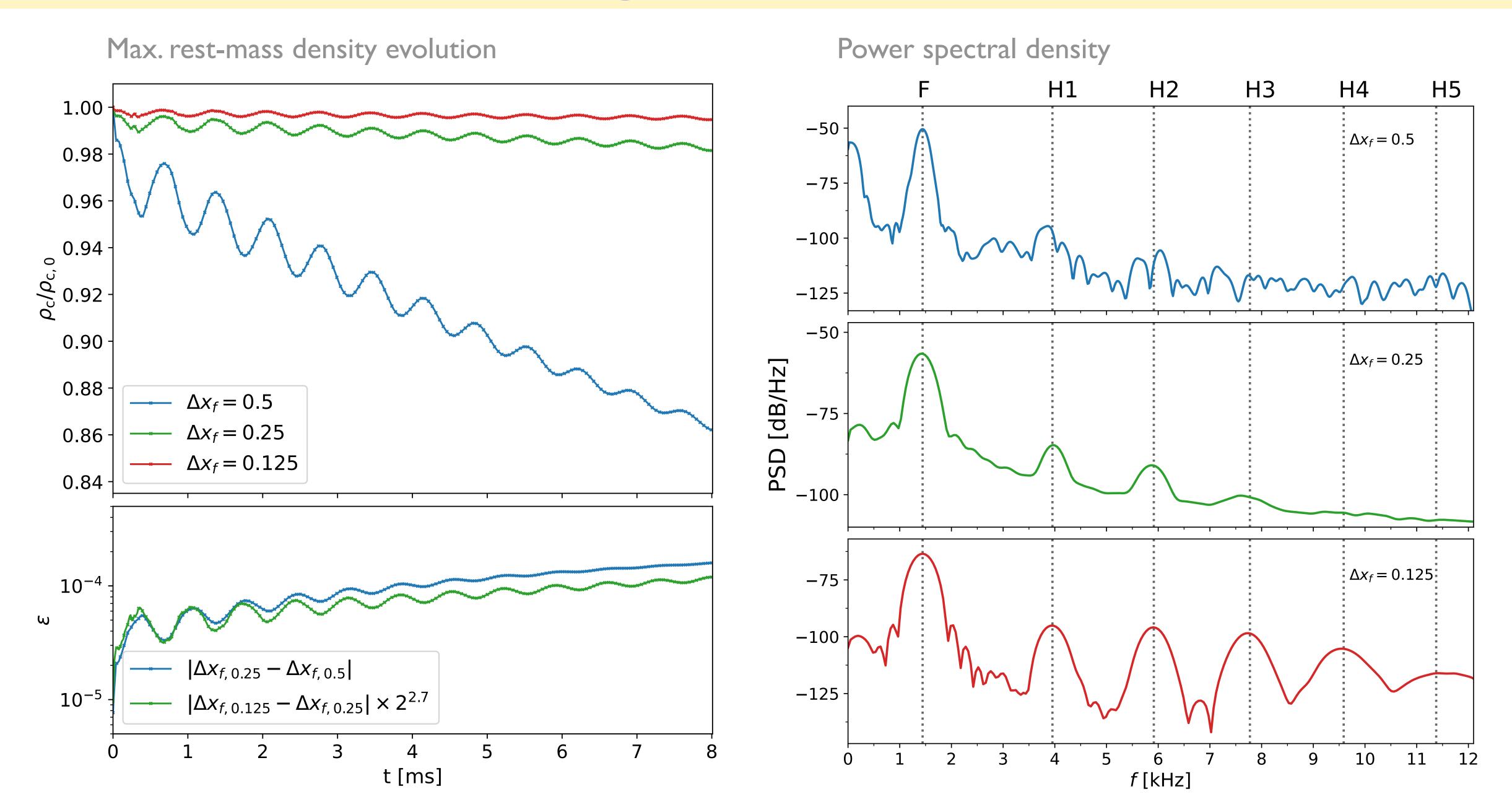


Magnetic field: Bx

DB: magTOV_Cowling.it00000000.silo Cycle: 0 Time:0

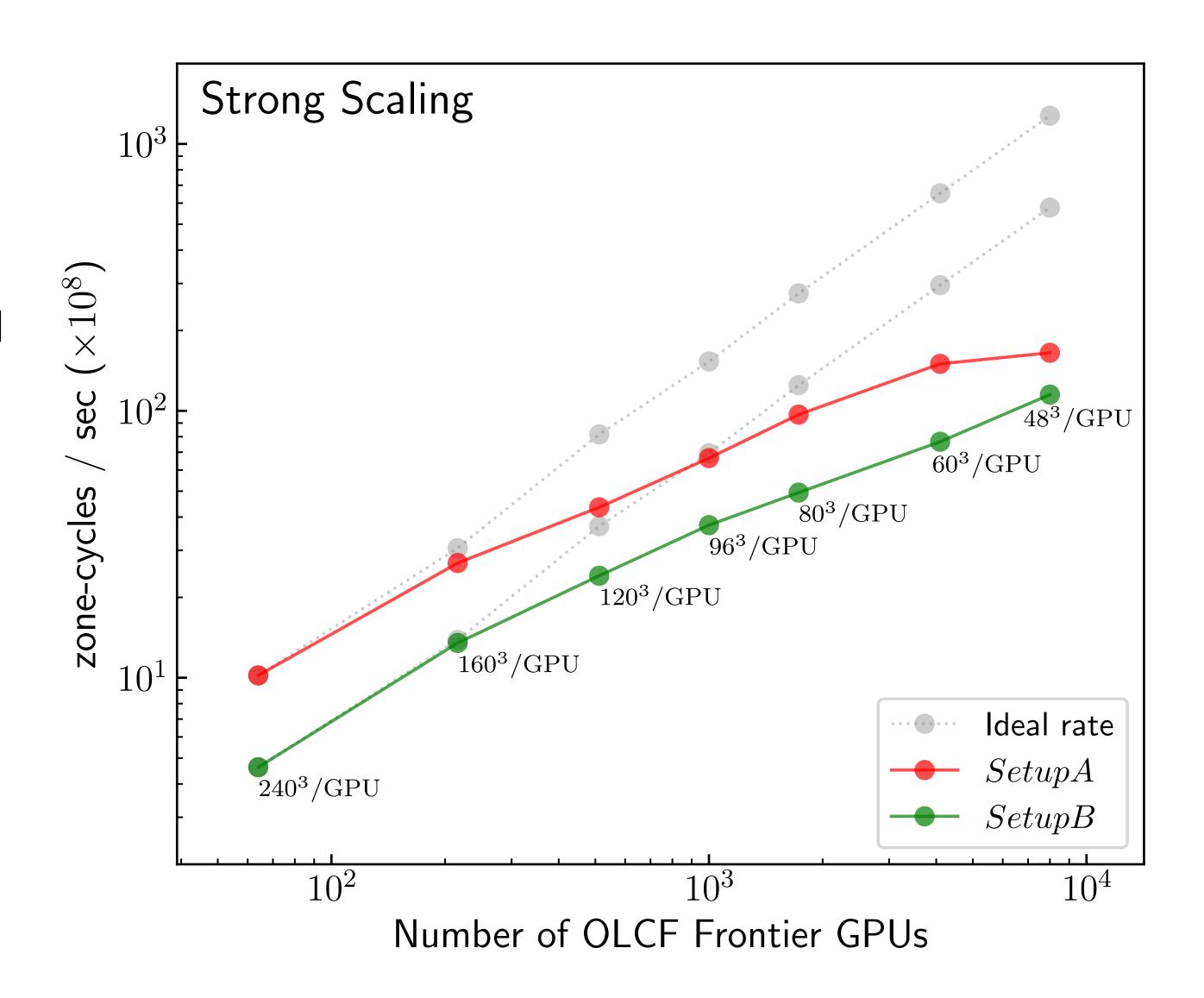


Magnetized TOV

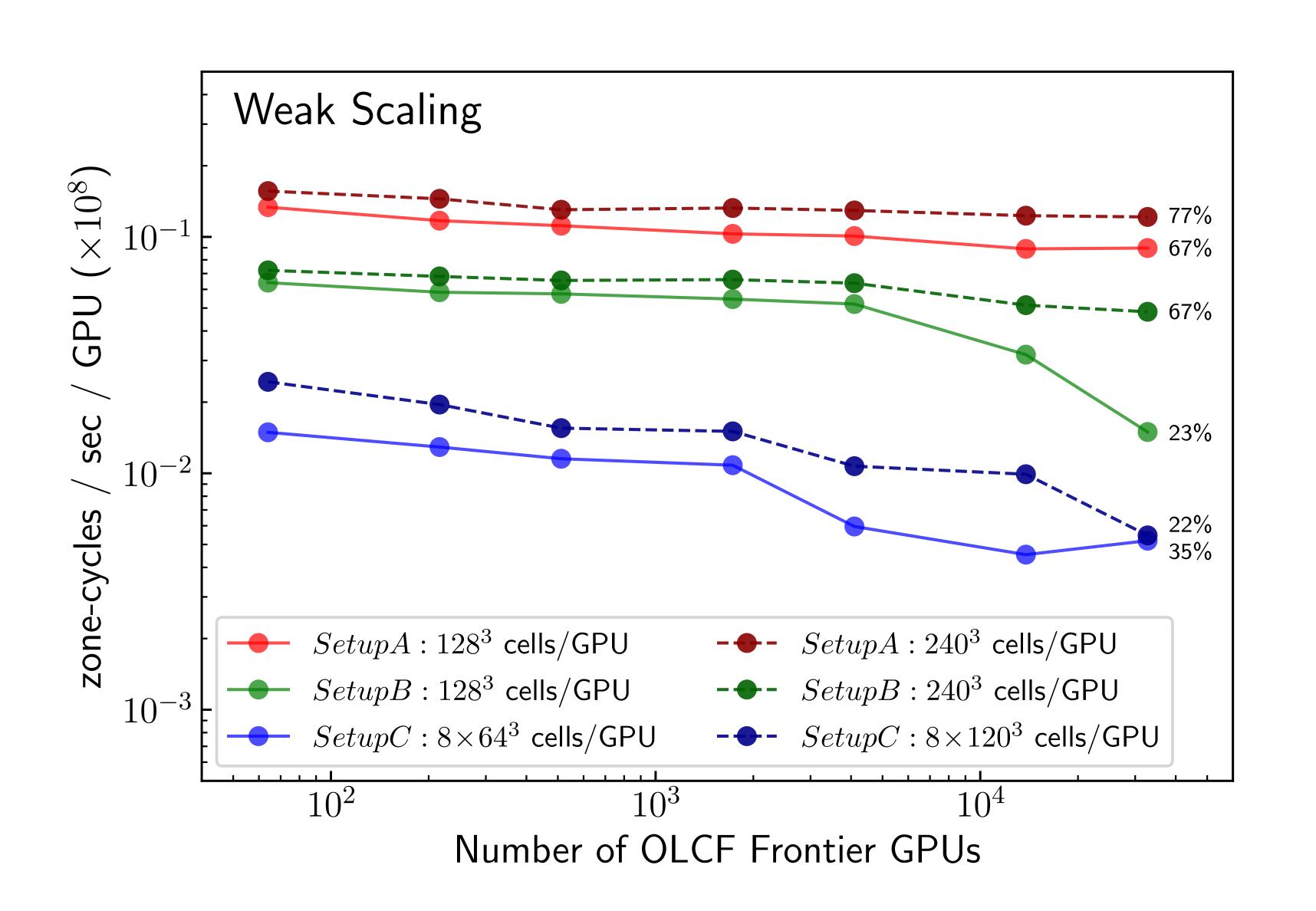


GPU Scaling Tests: Frontier

- Setup A: static (Cowling) spacetime + uniform grid
- Setup B: dynamic (Z4c) spacetime + uniform grid
- Setup C: dynamic (Z4c) spacetime + 8-level AMR

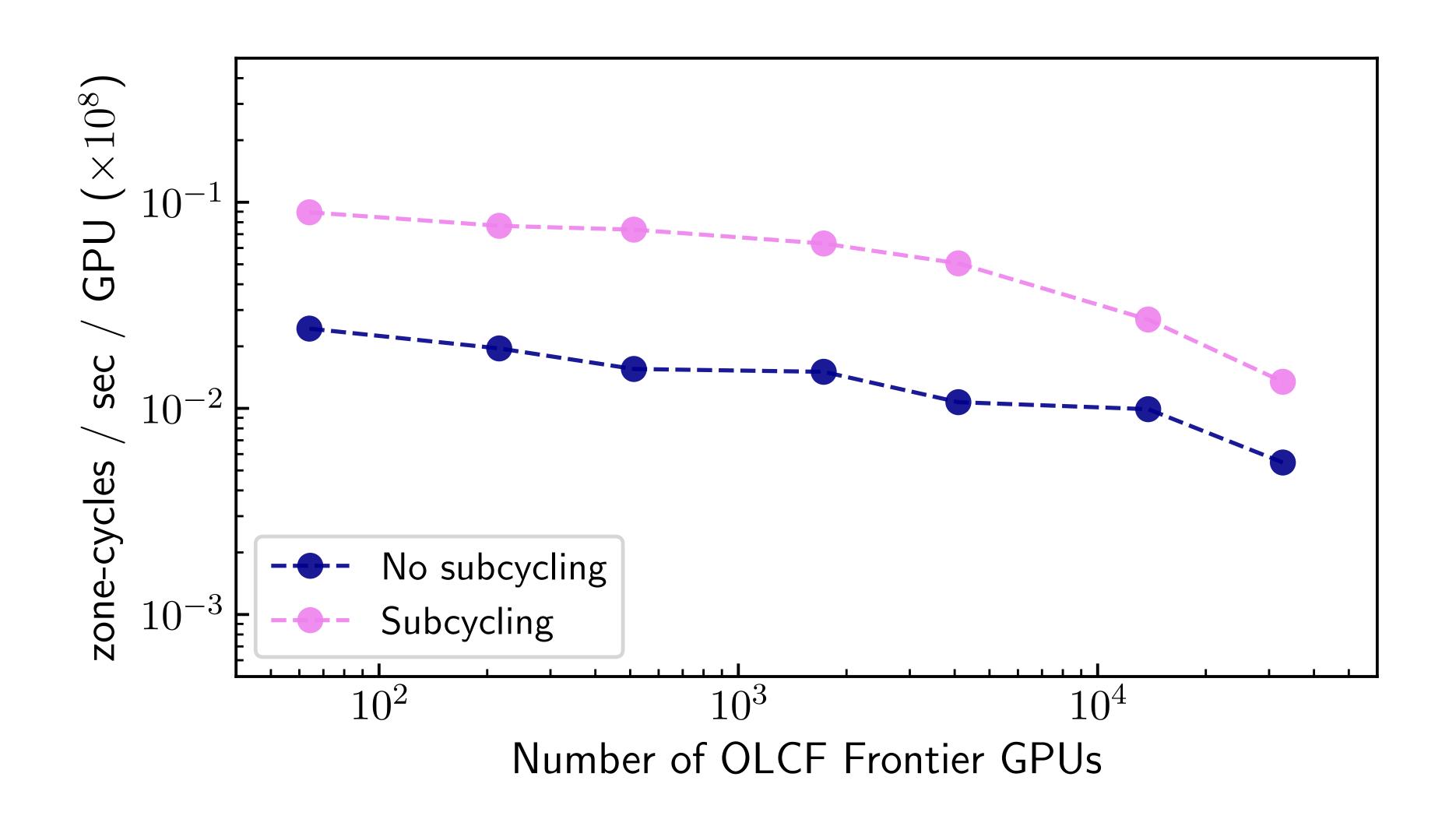


GPU Scaling Tests: Frontier

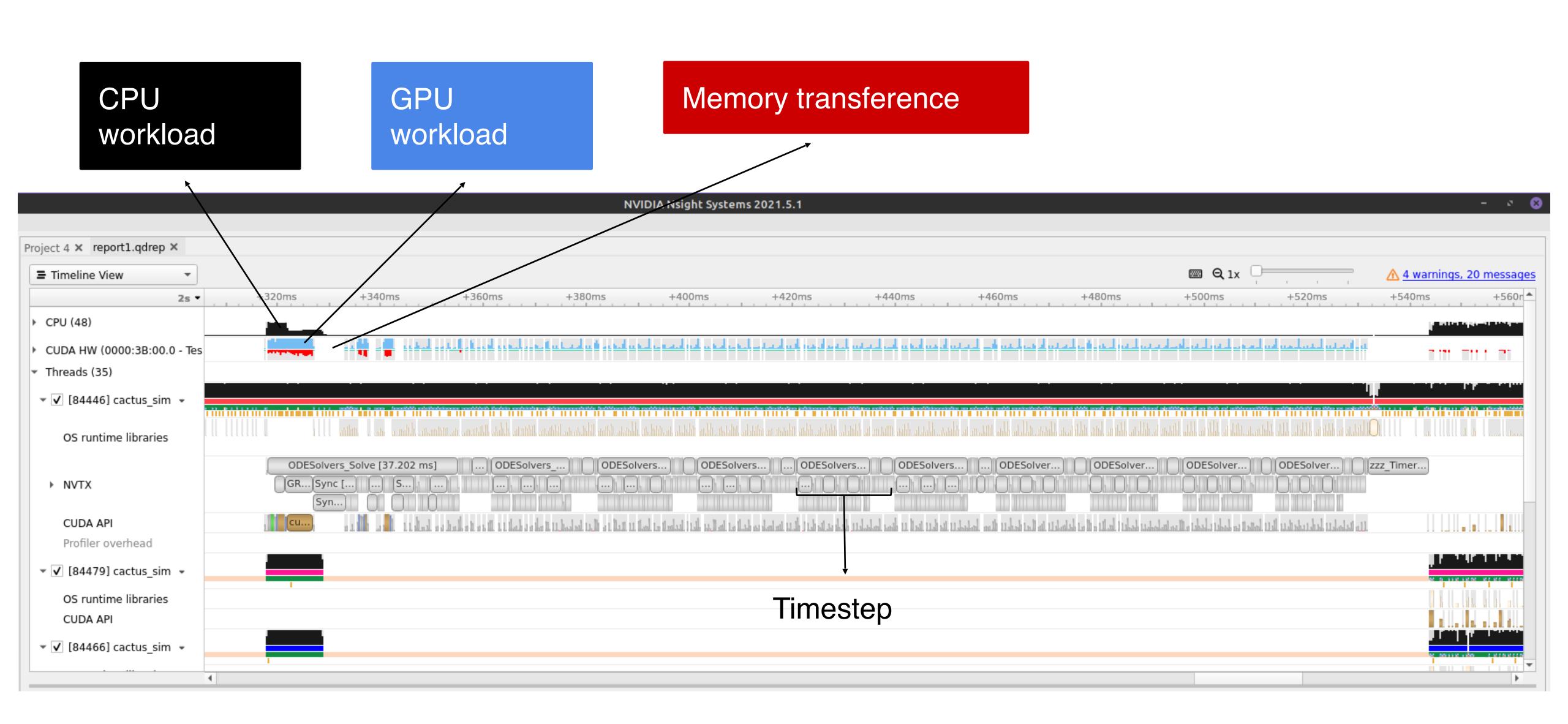


GPU Scaling Tests: Frontier

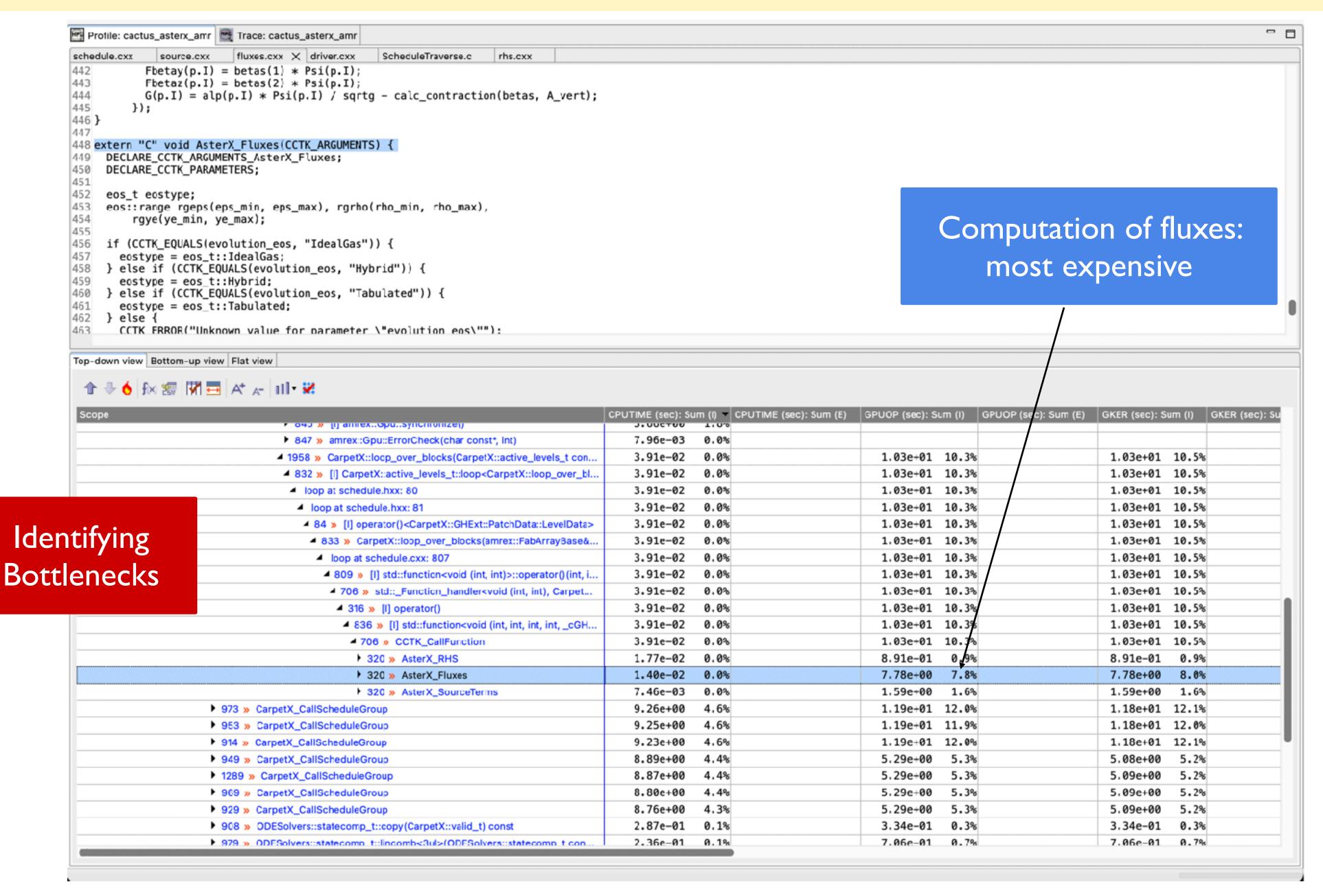
Subcycling in time: Liwei Ji's talk on Tuesday!



Profiling: Nvidia Nsight Systems



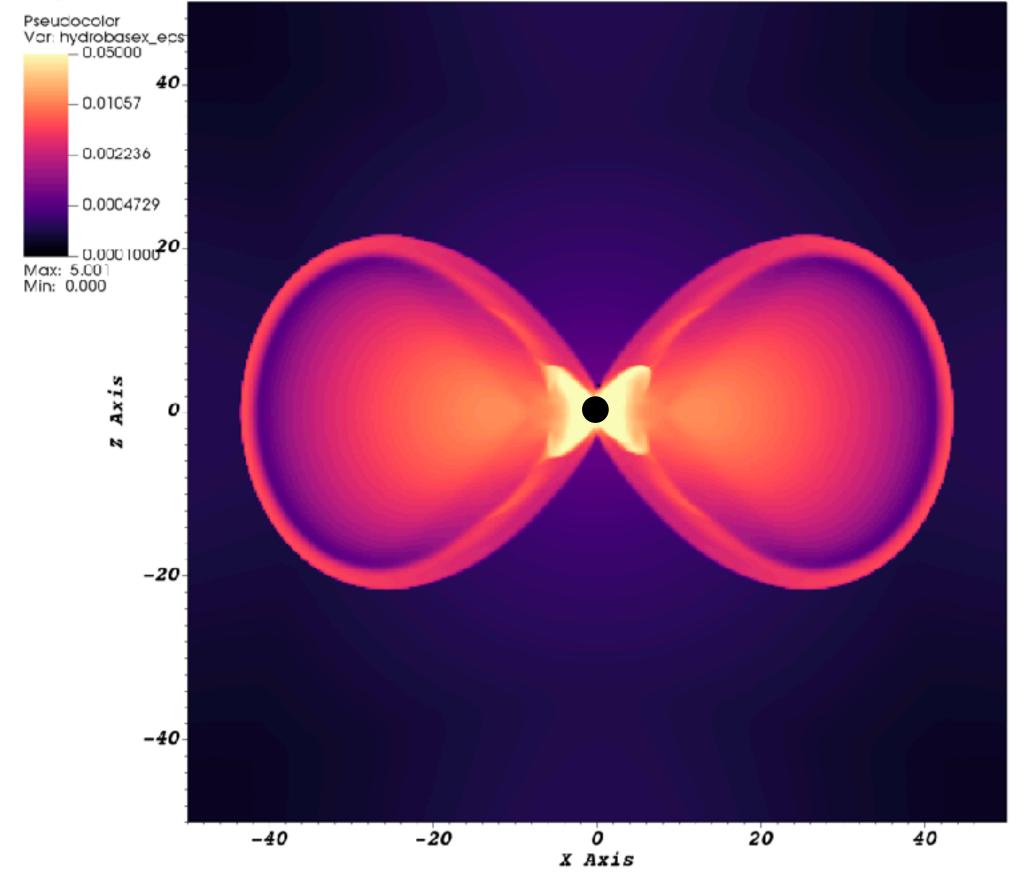
Profiling: HPCToolkit



Ongoing developments

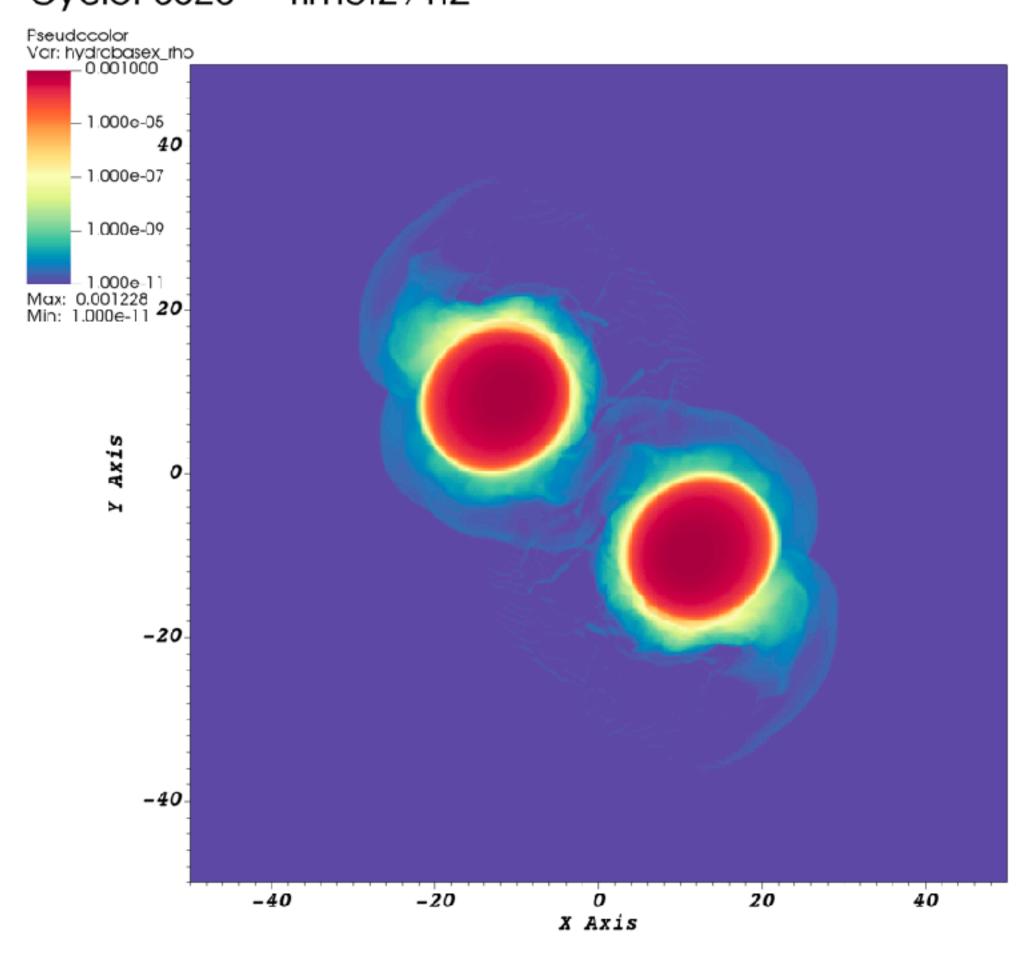
Photon leakage + FM disk simulations Michail Chabanov

DB: parfile.it00001190.silo Cycle: 1190 Time:185.938



BNS simulations FUKA ID + Importer Samuel Tootle

DB: AsterX_BNS.it00003328.silo Cycle: 3328 Time:291.2



Work in Progress

- Extension of EOSX and Con2PrimFactory
- Code optimization
- MI neutrino transport
- BNS & SMBBH merger simulations!

Thank you for your attention!

