Lecture	Topic	Chapter(s)
1	Introduction Basics of C++ Strings Looping	1 & 2
2	Monte Carlo methods Random numbers Containers Functions	3 & 4
3	Iterators Lists library algorithms	5 & 6
4	N-body simulations Structs Generic functions	8
5	Classes Operator overloading Introduction to CMake	9
6	Shared memory parallelism execution policies	_
7	Asynchronous programming	_
8	Bond-based peridynamics (Course project)	_
9	Linear Algebra using Blaze	_
10	Solvers Conjugate gradient method	_
G1	Introduction to parallel programming I (Dr. Kaiser)	_
11	Introduction to HPX	_
Q1	Time for questions and discussion	_
	Midterm exam	_
G3	Tricks with notebooks (Dr. Brandt)	_
12	One-dimensional heat equation	_
13	Futurization of the heat equation	_
14	Serial partition-based 1D heat equation	_
15	Parallel partition-based 1D heat equation	_
16	Preparation for distributed computing	_
17	Distributed implementation of the 1D heat equation	_
18	Distributed implementation of the heat equation I	_
19	Distributed implementation of the heat equation II	_
20	Managing memory and low-level data structures	10

This work is licensed under a Creative Commons "Attribution-NonCommercial-NoDerivatives 4.0 International" license.

