Math 4997-1

Lecture 12: One-dimensional heat equation

 \blacktriangleright Shared memory parallelism using HPX

	https://www.cct.lsu.edu/-pdiehl/teaching/2020/4997/		
This work is NoDerivatives 4	licensed under a Creative Commons "Attribution-NonCommercial- .0 International" license.	CC S C NC NC NC	
			Notes
Reminder	r		
Heat equ	ation		
Serial im	plementation		
Summary	'		
Reference	es		
			M .
			Notes
	Reminder		
Lecture 12			Notes
What wa	u should know from last lecture		
► Wha	u should know from last lecture at is HPX achronous programming using HPX		

Notes

Heat equation

Heat equation

Statement of the heat equation

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

where alpha is the diffusivity of the material.

Compact form

$$\dot{u} = \alpha \nabla u$$

The heat equation computes the flow of heat in a homogeneous and isotropic medium.

More details [1].

Easiest case

1D heat equation

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}, \quad 0 \le x \le L, t > 0$$

Boundary conditions

The solution of the heat equation requires boundary conditions

- $u(0,t) = u_0$
- $\triangleright u(L,t) = u_L$
- $u(x,0) = f_0(x)$

Discretization

Discrete mesh

$$x_i = (i-1)h, \quad i = 1, 2, \dots, N$$

where N is the total number of nodes and h is given by h = L/N - 1.

Notes	
Notes	
Notes	

Notes

Finite difference method

Approximation of the first derivative

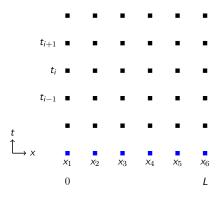
$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_i}{2h}$$

Approximation of the second derivative

$$\frac{\partial u}{\partial x^2} \approx \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2}$$

Note that a second-order central difference scheme is applied. More details $[3,\ 2].$

Discretization in space and time



Serial implementation

Time measurement and system information

Time measurement

Accessing system information

Notes			

Notes

-	

Notes			
-			

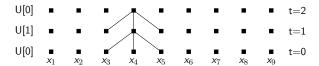
Notes

Discretization scheme

Notes

Approximation of the heat equation

Swapping the data



Swapping function

```
space do_work(std::size_t nx, std::size_t nt)
{
    // U[t][i] is the state of position i at time t.
    std::vector<space> U(2);
    for (space& s : U)
        s.resize(nx);

    // Return the solution at time-step 'nt'.
    return U[nt % 2];
}
```

Do the actual work

```
// Actual time step loop
for (std::size_t t = 0; t != nt; ++t)
{
    space const& current = U[t % 2];
    space& next = U[(t + 1) % 2];

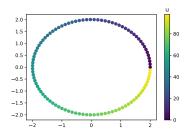
    next[0] =
        heat(current[nx-1], current[0], current[1]);

    for (std::size_t i = 1; i != nx-1; ++i)
        next[i] =
        heat(current[i-1], current[i], current[i+1]);

    next[nx-1] =
        heat(current[nx-2], current[nx-1], current[0]);
}
```

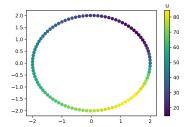
Initial conditions

$$\textit{u}(\textit{x},0) = \textit{f}(\textit{i},0), \text{ with } \textit{f}(0,\textit{i}) = \textit{i} \text{ for } \textit{i} = 1,2,\ldots,\textit{N}$$



Notes			
Notes			
Notes			
Notes			
	 	 	-

Solution



Parameters

- ightharpoonup heat transfer coefficient k=0.5
- ▶ time step size dt = 1.;
- ▶ grid spacing h = 1.;
- ▶ time steps nt = 45;

Summary

Summary

After this lecture, you should know

- ▶ One-dimensional heat equation
- ► Serial implementation

References

Notes Notes	Notes			
Notes				
	Notes			
Notes	INotes			
Notes				
	Notes			
	·			

References I

[1] John Rozier Cannon.

The one-dimensional heat equation. Number 23. Cambridge University Press, 1984.

[2] Randall J LeVeque.

Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, volume 98.

Siam, 2007.

[3] John C Strikwerda.

Finite difference schemes and partial differential equations, volume 88.

Siam, 2004.

Notes	
Notes	
Notes	
_	
Notes	