User Environment on LONI Clusters

Le Yan
Scientific computing consultant
User services group
Louisiana Optical Network Initiative
Outline

- Accounts and allocations
- Hardware overview
- Software overview
- Job management
Outline

- Accounts and allocations
- Hardware overview
- Software overview
- Job management
Account and Allocation Web Interface

- **LONI**: allocations.loni.org
- This is where you
 - Request accounts
 - Request and manage allocations
 - Update contact information
 - Reset password
Who Is Eligible for A LONI account

- Faculty or research staff members from one of the LONI's member institutions
- Students working with a faculty or research staff member from one of the LONI's member institutions
- Researchers who collaborate with a faculty or research staff member from one of the LONI's member institutions
- Faculty members from other Louisiana universities may apply for an account as well
 - Needs approval from the LONI executive director
Account Application Procedure

- Go to the allocation web site and click on “request login”
- Type in your email address and the image code
 - The email needs to be an institutional one
 - The likes of hotmail and gmail will not be accepted
- You will receive an email with a link to the real form
- Fill out the form and submit
 - “LONI Contact/Collaborator”: this is your adviser if you are a student, or yourself if you are a faculty member
- Your account will be activated after your information is confirmed
 - May take up to a week
Account Policy

• No account sharing is allowed
 – An account is for one user only
 – Every person who will use the cluster needs to apply for their own account
• Your account is subject to deletion once your affiliation with LONI member institutions terminates
• Penalties
 – Account suspension
 – Loss of allocation
Password Reset Procedure

- Go to the allocation website and click on “forgot your password?”
- Type in the image code and your email address
 - The email address must be the one you used to apply for the account
- You will receive an email with a link to the reset form
- Type the new password and submit
- A system administrator will approve your password reset
 - May take a short while
Changing Login Shell

- “Profile” menu item
- Supported shells
 - bash
 - tcsh
 - csh
 - ksh
 - sh
- “chsh” and “ypchsh” do not work
Allocation

- An allocation is some finite number of service unit (SUs) that allow you to run jobs on a cluster
 - One SU is one cpu-hour
 - Example
 - 40 SUs will be charged for a job that runs 10 hours on 4 cores
- Enforced on all LONI clusters
Types of Allocations

- **Startup**
 - Less than or equal to 50k SUs
 - Applications reviewed by local allocation committee member
 - Decision will be made within a few weeks after submission
 - Good for one year

- **Large**
 - Greater than 50k SUs
 - Applications reviewed by LONI allocation committee during the quarterly meeting
 - Decision will be made on January 1, April 1, July 1 and October 1 of each year
 - Good for one year
Requesting A New Allocation

- The principal investigator must be a faculty or research staff member from one of the LONI member institutes
- Procedure
 - Click on “request allocation”
 - Click on “new allocation”
 - Fill out the form and submit
 - You must submit a proposal along with a large allocation request
 - Need to specify how many SUs are needed on each platform
 - IBM AIX clusters
 - Dell Linux clusters
Joining An Existing Allocation

- Any user can join an existing allocation
- Procedure
 - Click on “request allocation”
 - Click on “join allocation”
 - Enter the name, email address or username of the allocation PI to search for the allocation you want to join
 - Click on the "Join Projects" button
 - The allocation PI will receive an email regarding to your request and you can use the allocation after the PI approves the request
Manage An Allocation

- “Manage membership” menu item
 - Add a user to allocation
 - Remove a member from allocation
 - Make a current member allocation administrator
- “Manage donation” menu item
 - Donate the remaining time on any allocation you administer to any other allocation that you are currently able to use
When An Allocation Expires

- Allocations are NOT extensible
- When submitting a new allocation request
 - The content can be copied from the previous requests
 - “My allocations” -> “Clone/edit”
 - The committee is likely to ask for a brief report, especially if it is not the first request for the project
 - “My allocations” -> “Report”
 - If you use up a couple of startup allocations in a short period of time, be prepared to apply for a large one
 - Plan ahead as large allocations are reviewed quarterly
Checking Allocation Balance

- Use the allocation web interface
 - The “Balances” menu item lists the balances of all allocations of which you are currently a member
- Use the “balance” command on a cluster

```
[lyan1@painter2 packages]$ balance
================================= Allocation information for lyan1 ===============================
 Proj. Name| Alloc| Balance| Deposited| %Used| Days Left| End
---------------------------------------------------------------
 loni_loniadmin1|loni_loniadmin1| 37320.35| 100000.00| 62.68| 21|2009-10-01
 loni_train09|loni_train09 on @Dell_Cluster| 39658.21| 40000.00| 0.85| 113| 2010-01-01

Note: Balance and Deposit are measured in CPU-hours
```
Outline

- Accounts and allocations
- Hardware overview
- Software overview
- Job management
Architectures of LONI Clusters

- Two architectures
 - Linux clusters
 - Vendor: Dell
 - Operating System: Linux (Red hat)
 - Processor: Intel
 - AIX clusters
 - Vendor: IBM
 - Operating System: AIX
 - Processor: IBM
Current deployment status - Dell Linux clusters

<table>
<thead>
<tr>
<th>Name</th>
<th>Peak TeraFLOPS/s</th>
<th>Location</th>
<th>Status</th>
<th>Login</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queen Bee</td>
<td>50.7</td>
<td>ISB</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Eric</td>
<td>4.7</td>
<td>LSU</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Oliver</td>
<td>4.7</td>
<td>ULL</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Louie</td>
<td>4.7</td>
<td>Tulane</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Poseidon</td>
<td>4.7</td>
<td>UNO</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Painter</td>
<td>4.7</td>
<td>LaTech</td>
<td>Available</td>
<td>LONI</td>
</tr>
</tbody>
</table>

LONI

Information Technology Services

High Performance Computing @ Louisiana State University - http://www.hpc.lsu.edu

LONI High Performance Computing Workshop – University of Louisiana at Lafayette
November 1, 2010

http://www.loni.org
Current deployment status - IBM AIX clusters

<table>
<thead>
<tr>
<th>Name</th>
<th>Peak TeraFLOPS/s</th>
<th>Location</th>
<th>Status</th>
<th>Login</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluedawg</td>
<td>0.85</td>
<td>LaTech</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Ducky</td>
<td>0.85</td>
<td>Tulane</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Zeke</td>
<td>0.85</td>
<td>ULL</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Neptune</td>
<td>0.85</td>
<td>UNO</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Lacumba</td>
<td>0.85</td>
<td>Southern</td>
<td>Available</td>
<td>LONI</td>
</tr>
</tbody>
</table>
Cluster Architecture

- A cluster is a group of computers (nodes) that works together closely
- Type of nodes
 - Head node
 - Compute node
Hardware Specification

• Queen Bee
 – 668 nodes
 • 8 Intel Xeon cores @ 2.33 GHz, 8 GB RAM, 36 GB HD
 – 192 TB storage

• Other LONI Linux clusters
 – 128 nodes
 • 4 Intel “Woodcrest” Xeons cores @ 2.33 Ghz, 4 GB RAM, 80 GB HD
 – 9 TB storage

• LONI AIX clusters
 – 14 power5 nodes with each node having: 8 IBM Power5 processors @ 1.9 GHz, 16 GB RAM
 – 280 GB storage
How Much Memory Your Program Can Use

- The amount of installed memory less the amount that is used by the operating system and other utilities
- Max amount per node
 - Linux clusters: ~6 GB for Queen Bee, ~3 GB for others
 - AIX clusters: ~13 GB
Choose The Correct Architecture/Platform

- There are numerous different architectures in the HPC world
- You need to choose the correct one when installing or using software
 - Linux clusters
 - EM64T, AMD64, X86_64
 - AIX clusters:
 - PowerPC, Power5

Software Downloads

Download NAMD:
NAMD is a parallel, object-oriented molecular dynamics code designed for high-performance computing and scientific simulation.

Selecting an archive below will lead to a user registration and login page. Your default web browser may ask you to confirm the file download.

Version Nightly Build (2009-06-29) Platforms:
- Linux-x86_64 (Opteron, Athlon64, Intel EM64)
- Source Code

Version 2.7b1 (2009-03-23) Platforms:
- AIX-POWER (formerly AD-A866000)
- AIX-POWER-64 (also p650, formerly IBM-SP)
- BlueGene/P (Blue Gene/P)
- Linux-x86
- Linux-x86-TCP (TCP may be better on gigabit)
- Linux-x86_64 (Opteron, Athlon64, Intel EM64)
- Linux-x86_64-TCP (TCP may be better on gigabit)
- Linux-Itanium-Altix (SGI Altix)
- MacOSX-x86 (Mac OS X for Intel processors)
- MacOSX-PPC (Mac OS X, 2.6b1 and newer with IBM libraries)
- Solaris.Sparc
- Solaris.x86_64
- Win32 (Windows XP, etc.)
- Source Code
File Systems

<table>
<thead>
<tr>
<th></th>
<th>Distributed file system</th>
<th>Throughput</th>
<th>File life time</th>
<th>Best used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Yes</td>
<td>Low</td>
<td>Unlimited</td>
<td>Code in development, compiled executables</td>
</tr>
<tr>
<td>Work</td>
<td>Yes</td>
<td>High</td>
<td>30 days</td>
<td>Job input/output</td>
</tr>
<tr>
<td>Local Scratch</td>
<td>No</td>
<td></td>
<td>Job duration</td>
<td>Temporary files needed by running jobs</td>
</tr>
</tbody>
</table>

- **Tips**
 - Never let you job write output to your home directory
 - Do not write temporary files to /tmp
 - Write to the local scratch or work space
 - The work space is not for long-term storage
 - Files are purged periodically
 - Use “rmpurge” to delete large amount of files
Disk Quota

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Home Access point</th>
<th>Home Quota</th>
<th>Work Access point</th>
<th>Work Quota</th>
<th>Local scratch</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONI Linux</td>
<td>/home/$USER</td>
<td>5 GB</td>
<td>/work/$USER</td>
<td>100 GB</td>
<td>/var/scratch</td>
</tr>
<tr>
<td>LONI AIX</td>
<td>/home/$USER</td>
<td>500 MB</td>
<td>/work/default/$USER</td>
<td>20 GB</td>
<td>/scratch/local</td>
</tr>
</tbody>
</table>

- No quota is enforced on the work space on Queen Bee
- On Linux clusters, the work directory is created within an hour after the first login
- Check current disk usage
 - Linux: showquota
 - AIX: quota
Accessing LONI Clusters

- Host name: <cluster name>.loni.org
 - Queen Bee: qb.loni.org

- Use ssh to connect
 - *nix and Mac: type “ssh <host name>” in a terminal
 - Windows: use Putty

- Only accessible via Internet 2 at the moment

- The default Login shell is bash
 - Supported shells: bash, tcsh, ksh, csh & sh
 - Change the login shell at the profile page
 - Log in at allocations.loni.org and click on “profile”
Exercise 1: Now it's time to log in

- Log in any cluster
- Check your disk quota
 - Linux clusters: use “showquota” command
 - Your scratch directory will be created within an hour of the first login
 - AIX clusters: use “quota” command
- Locate the directory /home/lyan1/traininglab/environment
 - There are files that you will need for following exercises
Outline

- Accounts and allocations
- Hardware overview
- Software overview
- Job management
Software Available on LONI Clusters

- Installed Software
 - Compilers
 - Mathematical and utility libraries
 - FFTW, HDF5, NetCDF, PETSc...
 - Applications
 - Amber, CPMD, NWChem, NAMD, Gromacs, R, LAMMPS...
 - Programming Tools
 - Totalview, TAU...

- List of software
 - Linux clusters: https://docs.loni.org/wiki/Linux_Software
 - AIX clusters: https://docs.loni.org/wiki/AIX_Software

- Installed under /usr/local/packages
Using SOFTENV

- **Environment variables**
 - **PATH**: where to look for executables
 - **LD_LIBRARY_PATH**: where to look for shared libraries
 - Other custom environment variables needed by various software

- **SOFTENV**
 - Is a software that helps users set up environment variables properly to use other software packages
 - More convenient than setting environment variables in .bashrc or .cshrc
Listing All Packages

- Command “`softenv`” lists all packages that are managed by `SOFTENV`

 [lyan1@tezpur2 ~]$ softenv

 ...
 These are the macros available:
 * `@default`
 * `@globus-4.0`
 * `@intel-compilers`

 * globus client
 compiler: 'Intel Compilers', version: Latest.
 A pointer to the latest installed intel compilers.

 These are the keywords explicitly available:

 +Mesa-6.4.2
 +R-2.8.0-gcc-3.4.6
 +ansys-1sdyina-11.0

 No description yet for Mesa-6.4.2.
 application: 'R', version 2.8.0
 application: 'ANSYS LS-DYNA', version: 11.0

 ANSYS LS-DYNA is a premier software package for explicit nonlinear structural simulation with finite element pre- and post-processor. docs =>
 http://www1.ansys.com/customer/
Searching A Specific Package

• Use “-k” option with “softenv”

[lyan1@tezpur2 ~]$ softenv -k fftw
SoftEnv version 1.6.4

...

Search Regexp: fftw

These are the macros available:

These are the keywords explicitly available:

+fftw-3.1.2-gnu application: FFTW, version 3.1.2, binded with GNU compiler.

...
Setting up Environment via Softenv – permanent change

- Set up the environment variables to use a certain software package
 - First add the key to $HOME/.soft
 - Then execute resoft at the command line
 - The environment will be the same next time you log in

```bash
[lyan1@tezpur2 ~]$ cat .soft
#
# This is the .soft file.
...
+matlab-r2007b
@default
[lyan1@tezpur2 ~]$ resoft
```
Setting up Environment via Softenv – one time change

• Set up the environment variables to use a certain software package in the current login session only
 – Add a package: soft add <key>
 – Remove a package: soft delete <key>

[lyan1@tezpur2 ~]$ which gcc
/usr/local/compilers/GNU/gcc-4.2.0/bin/gcc
[lyan1@tezpur2 ~]$ soft add +gcc-4.3.0
[lyan1@tezpur2 ~]$ which gcc
/usr/local/compilers/GNU/gcc-4.3.0/bin/gcc
[lyan1@tezpur2 ~]$ soft delete +gcc-4.3.0
[lyan1@tezpur2 ~]$ which gcc
/usr/local/compilers/GNU/gcc-4.2.0/bin/gcc
Querying a Softenv key

- **Command** “`soft-dbq`” shows which variables are set by a SOFTENV key

```
[lyan1@tezpur2 ~]$ soft-dbq +gcc-4.3.0
This is all the information associated with
the key or macro +gcc-4.3.0.

Name: +gcc-4.3.0
Description: GNU gcc compiler, version 4.3.0
Flags: none
Groups: none
Exists on: Linux
```

On the Linux architecture,
the following will be done to the environment:

- The following environment changes will be made:
 - `LD_LIBRARY_PATH = ${LD_LIBRARY_PATH}:/usr/local/compilers/GNU/gcc-4.3.0/lib64`
 - `PATH = ${PATH}:/usr/local/compilers/GNU/gcc-4.3.0/bin`
Exercise 2: Use Softenv

- Find the key for VISIT (a visualization package)
- Check what variables are set through the key
- Set up your environment to use VISIT
- Check if the variables are correctly set by “which visit”
Exercise 2: Use Softenv

- Find the key for VISIT (a visualization package)
 - Use `softenv -k visit`

- Check what variables are set through the key
 - Use `soft-dbq +visit`

- Set up your environment to use VISIT
 - Use `soft add +visit`
 - Or add “+visit” to your .soft file and `resoft`

- Check if the variables are correctly set by “`which visit`”
 - The output should be the path to the executable `visit`
Compilers

<table>
<thead>
<tr>
<th>Language</th>
<th>Linux clusters</th>
<th>AIX clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intel</td>
<td>GNU</td>
</tr>
<tr>
<td>Fortran</td>
<td>ifort</td>
<td>g77</td>
</tr>
<tr>
<td>C</td>
<td>icc</td>
<td>gcc</td>
</tr>
<tr>
<td>C++</td>
<td>icpc</td>
<td>g++</td>
</tr>
</tbody>
</table>

- **Usage:** `<compiler> <options> <your_code>`

 - **Example:** `icc -O3 -o myexec mycode.c`

- **Some compilers options are architecture specific**

 - Linux: EM64T, AMD64 or X86_64
 - AIX: power5 or powerpc
MPI Compilers (1)

<table>
<thead>
<tr>
<th>Language</th>
<th>Linux clusters</th>
<th>AIX clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>mpif77, mpif90</td>
<td>mpxlf, mpxlf_r, mpxlf90, mpxlf90_r</td>
</tr>
<tr>
<td>C</td>
<td>mpicc</td>
<td>mpcc, mpcc_r</td>
</tr>
<tr>
<td>C++</td>
<td>mpiCC</td>
<td>mpCC, mpCC_r</td>
</tr>
</tbody>
</table>

- **Usage:** similar to what we have seen
 - **Example:** `mpif90 -O2 -o myexec mycode.f90`
- **On Linux clusters**
 - Only one compiler for each language
 - There is no `intel_mpicc` or `pg_mpicc`
MPI Compilers (2)

- These MPI compilers are actually **wrappers**
 - They still use the compilers we've seen on the previous slide
 - Intel, PGI or GNU
 - They take care of everything we need to build MPI codes
 - Head files, libraries etc.
 - What they actually do can be reveal by the `-show` option

```
[lyan1@tezpur2 ~]$ mpicc -show
icc    -DUSE_STDARG    -DHAVE_STDLIB_H=1   -DHAVE_STRING_H=1   -DHAVE_UNISTD_H=1
       -DHAVE_STDARG_H=1  -DUSE_STDARG=1  -DMALLOC_RET_VOID=1
       -L/usr/local/packages/mvapich-1.0-intel10.1/lib -lmpich
       -L/usr/local/ofed/lib64 -Wl,-rpath=/usr/local/ofed/lib64 -libverbs
       -libumad -lpthread -lpthread -lrt
```
MPI Compilers (3)

```
[lyan1@qb2 ~]$ ls -ld /usr/local/packages/mvapich*
```

```
drwxr-xr-x 12 root root 4096 Oct 18 13:25 /usr/local/packages/mvapich-0.98-gcc
```

```
drwxr-xr-x 12 root root 4096 Jan 23 11:35 /usr/local/packages/mvapich-0.98-intel10.1
```

```
drwxr-xr-x 12 root root 4096 Oct 18 13:25 /usr/local/packages/mvapich-0.98-intel19.1
```

```
```

```
drwxr-xr-x 12 root root 4096 Feb 12 10:27 /usr/local/packages/mvapich-0.98-pgi6.1
```

```
```

```
drwxr-xr-x 10 root root 4096 Oct 18 13:25 /usr/local/packages/mvapich2-0.98-intel19.1
```

```
drwxr-xr-x 11 root root 4096 Nov 9 16:31 /usr/local/packages/mvapich2-1.01-intel10.0
```

```
drwxr-xr-x 9 root root 4096 Jan 25 09:54 /usr/local/packages/mvapich2-1.0.1-intel10.1
```

```
drwxr-xr-x 11 root root 4096 Nov 8 13:10 /usr/local/packages/mvapich2-1.0.1-intel19.1
```

- There are many different versions of MPI compilers on Linux clusters
- Each of them is built around a specific compiler
 - Intel, PGI or GNU
- It is extremely important to compile and run you code with the same version!!!
Exercise 3: Compile a program

• Serial code
 - Copy hello.f90
 from /home/lyan1/traininglab/environment
 - Compile it with a compiler of your choice
 - Run the executable from the command line

• MPI code
 - Copy hello_mpi.f90
 from /home/lyan1/traininglab/environment
 - Compile it with a serial compiler and see what happens
 - Compile it with an MPI compiler
Exercise 3: Compile a code

- **Linux**

 cp /home/lyan1/traininglab/environment/* .
 icc -o hello_ser hello.f90
 ./hello_ser
 mpif90 -o hello hello_mpi.f90

- **AIX**

 cp /home/lyan1/traininglab/environment/* .
 xlf90_r -o hello_ser hello.f90
 ./hello_ser
 mpxlf90_r -o hello hello_mpi.f90
Outline

- Accounts and allocations
- Hardware overview
- Software overview
- Job management
Cluster Environment

- Multiple compute nodes
- Multiple users
- Each user may have multiple jobs running simultaneously
Batch Queuing System

- A software that manages resources (CPU time, memory etc.) and schedules job execution
 - Linux clusters: Portable Batch System (PBS)
 - AIX clusters: Loadleveler

- What is a job
 - A user's request to use a certain amount of resources for a certain amount of time

- The batch queuing system determines
 - The order jobs are executed
 - On which node(s) jobs are executed
A Simplified View of Job Scheduling

- Map jobs onto the node-time space
 - Assuming CPU time is the only resource

- Need to
 - Honor the order in which jobs are received
 - Maximize resource utilization
Backfilling

- A strategy to improve utilization
 - Allow a job to jump ahead of others when there are enough idle nodes
 - Must not affect the estimated start time of the job with the highest priority
- Enabled on all LONI clusters
How Much Time Should I Ask for?

- Ask for an amount of time that is
 - Long enough for your job to complete
 - As short as possible to increase the chance of backfilling
Job Queues

- There are more than one job queue
- Each job queue differs in
 - Number of available nodes
 - Max run time
 - Max running jobs per user
 - ...
- The main purpose is to maximize utilization
Queue Characteristics – Queen Bee

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workq</td>
<td>2 days</td>
<td>530</td>
<td>8</td>
<td>128</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td></td>
<td>668</td>
<td></td>
<td>256</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td></td>
<td>668</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
<tr>
<td>Priority</td>
<td></td>
<td>668</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Queue Characteristics – Other LONI Linux Clusters

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>14 days</td>
<td>16</td>
<td>64</td>
<td>1</td>
<td>Single processor jobs</td>
</tr>
<tr>
<td>Workq</td>
<td>3 days</td>
<td>96</td>
<td>8</td>
<td>40</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td>3 days</td>
<td>128</td>
<td>8</td>
<td>64</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td>3 days</td>
<td>64</td>
<td>NA</td>
<td>NA</td>
<td>Require permission</td>
</tr>
<tr>
<td>Priority</td>
<td>3 days</td>
<td>64</td>
<td>NA</td>
<td>NA</td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Queue Characteristics – LONI AIX Clusters

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>14 days</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>Single processor jobs</td>
</tr>
<tr>
<td>Workq</td>
<td>5 days</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td>5 days</td>
<td>14</td>
<td>NA</td>
<td>14</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td>6</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
<tr>
<td>Priority</td>
<td>6</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Basic Commands

- Queue querying
 - Check how busy the cluster is
- Job submission
 - Submit a job to run
- Job monitoring
 - Check job status (estimated start time, remaining run time etc.)
- Job manipulation
 - Cancel/hold jobs
Queue Querying – Linux Clusters

- **Command:** `qfree`
 - Show the number of free, busy and queued nodes

- **Command:** `qfreeloni`
 - Equivalent to run `qfree` on all LONI Linux clusters

```bash
[lyan1@louie2 ~]$ qfree
PBS total nodes: 128, free: 81, busy: 44, down: 3, use: 34%
PBS checkpt nodes: 128, free: 81, busy: 28
PBS workq nodes: 32, free: 16, busy: 16
```
Queue Querying – AIX Clusters

- **Command:** `llclass`

<table>
<thead>
<tr>
<th>Name</th>
<th>MaxJobCPU</th>
<th>MaxProcCPU</th>
<th>Free</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interactive</td>
<td>undefined</td>
<td>undefined</td>
<td>8</td>
<td>8</td>
<td>Interactive Parallel jobs running on interactive node</td>
</tr>
<tr>
<td>single</td>
<td>unlimited</td>
<td>unlimited</td>
<td>4</td>
<td>8</td>
<td>One node queue (14 days) for serial and up to 8-processor parallel jobs</td>
</tr>
<tr>
<td>workq</td>
<td>unlimited</td>
<td>unlimited</td>
<td>51</td>
<td>56</td>
<td>Default queue (5 days), up to 56 processors</td>
</tr>
<tr>
<td>priority</td>
<td>unlimited</td>
<td>unlimited</td>
<td>40</td>
<td>40</td>
<td>priority queue reserved for on-demand jobs (5 days), up to 48 processors</td>
</tr>
<tr>
<td>preempt</td>
<td>unlimited</td>
<td>unlimited</td>
<td>40</td>
<td>40</td>
<td>preemption queue reserved for on-demand jobs (5 days), up to 48 processors</td>
</tr>
<tr>
<td>checkpt</td>
<td>unlimited</td>
<td>unlimited</td>
<td>91</td>
<td>96</td>
<td>queue for checkpointing jobs (5 days), up to 104 processors, Job running on this queue can be preempted for on-demand job</td>
</tr>
</tbody>
</table>
Checking Loads on All LONI Clusters

- Check Loads on all LONI clusters at docs.loni.org
- Updated every 15 minutes

Dell Linux Clusters

<table>
<thead>
<tr>
<th>System Name</th>
<th>Nodes</th>
<th>SMP Size</th>
<th>Total CPUs</th>
<th>Memory/Node</th>
<th>TFLOPS</th>
<th>Work Disk</th>
<th>Location</th>
<th>Load</th>
<th>Running jobs</th>
<th>Queued jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queen Bee</td>
<td>680</td>
<td>8</td>
<td>5440</td>
<td>8 GB</td>
<td>50.7</td>
<td>58 TB</td>
<td>LSU</td>
<td>0</td>
<td>0</td>
<td>422</td>
</tr>
<tr>
<td>Erc</td>
<td>128</td>
<td>4</td>
<td>512</td>
<td>4 GB</td>
<td>4.772</td>
<td>9 TB</td>
<td>LSU</td>
<td>70</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Oliver</td>
<td>128</td>
<td>4</td>
<td>512</td>
<td>4 GB</td>
<td>4.772</td>
<td>9 TB</td>
<td>ULL</td>
<td>16</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Louie</td>
<td>128</td>
<td>4</td>
<td>512</td>
<td>4 GB</td>
<td>4.772</td>
<td>9 TB</td>
<td>Tulane</td>
<td>27</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Poseidon</td>
<td>128</td>
<td>4</td>
<td>512</td>
<td>4 GB</td>
<td>4.772</td>
<td>9 TB</td>
<td>UNO</td>
<td>17</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Painter</td>
<td>128</td>
<td>4</td>
<td>512</td>
<td>4 GB</td>
<td>4.772</td>
<td>9 TB</td>
<td>LaTech</td>
<td>23</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

IBM P5 Clusters

<table>
<thead>
<tr>
<th>System Name</th>
<th>Nodes</th>
<th>SMP Size</th>
<th>Total CPUs</th>
<th>Memory/Node</th>
<th>TFLOPS</th>
<th>Work Disk</th>
<th>Location</th>
<th>Load</th>
<th>Running jobs</th>
<th>Queued jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluedawg</td>
<td>14</td>
<td>8</td>
<td>104</td>
<td>16 GB</td>
<td>0.85L</td>
<td>270 GB</td>
<td>LaTech</td>
<td>16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ducky</td>
<td>14</td>
<td>8</td>
<td>104</td>
<td>16 GB</td>
<td>0.85L</td>
<td>270 GB</td>
<td>Tulane</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Zeke</td>
<td>14</td>
<td>8</td>
<td>104</td>
<td>16 GB</td>
<td>0.85L</td>
<td>270 GB</td>
<td>ULL</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Neptune</td>
<td>14</td>
<td>8</td>
<td>104</td>
<td>16 GB</td>
<td>0.85L</td>
<td>270 GB</td>
<td>UNO</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>LaCumba</td>
<td>14</td>
<td>8</td>
<td>104</td>
<td>16 GB</td>
<td>0.85L</td>
<td>270 GB</td>
<td>SU</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Job Types

- Interactive job
 - Set up an interactive environment on compute nodes for users
 - Advantage: can run programs interactively
 - Disadvantage: must be present when the job starts
 - Purpose: testing and debugging
 - Disabled on AIX clusters because of limited number of nodes

- Batch job
 - Executed without user intervention using a job script
 - Advantage: the system takes care of everything
 - Disadvantage: can only execute one sequence of commands which cannot changed after submission
 - Purpose: production run
Submitting Jobs – Linux Clusters

- **Interactive job**
 - `qsub -I -V -l walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=4 -A <your allocation> -q <queue name>

- **Batch job**
 - `qsub <job script>

- **ppn must be either 4 (all Linux clusters except Queen Bee) or 8 (Queen Bee) except for serial jobs**
PBS Job Script – Parallel Jobs

```bash
#!/bin/bash

#PBS -l nodes=4:ppn=4
Number of nodes and processor
#PBS -l walltime=24:00:00
Maximum wall time
#PBS -N myjob
Job name
#PBS -o <file name>
File name for standard output
#PBS -e <file name>
File name for standard error
#PBS -q checkpt
Queue name
#PBS -A <loni_allocation>
Allocation name
#PBS -m e
Send mail when job ends
#PBS -M <email address>
Send mail to this address

<shell commands>
mpirun -machinefile $PBS_NODEFILE -np 16 <path_to_executable> <options>
<shell commands>
```
PBS Job Script – Serial Jobs

#!/bin/bash
#PBS -l nodes=1:ppn=1 Number of nodes and processor
#PBS -l walltime=24:00:00 Maximum wall time
#PBS -N myjob Job name
#PBS -o <file name> File name for standard output
#PBS -e <file name> File name for standard error
#PBS -q single The only queue that accepts serial jobs
#PBS -A <loni_allocation> Allocation name
#PBS -m e Send mail when job ends
#PBS -M <email address> Send mail to this address

<shell commands>
<path_to_executable> <options>
<shell commands>
Submitting Batch Jobs - AIX Clusters

• Batch job
 - `llsubmit <job script>`

```bash
#!/bin/sh
#@ job_type = parallel
#@ output = /work/default/username/$(jobid).out
#@ error = /work/default/username/$(jobid).err
#@ notify_user = youremail@domain
#@ notification = error
#@ class = checkpt
#@ wall_clock_limit = 24:00:00
#@ node_usage = shared
#@ node = 2,2
#@ total_tasks = 16
#@ initialdir = /work/default/username
#@ environment = COPY_ALL
#@ queue

<shell commands>

poe <path_to_executable> <options>
<shell commands>
```
Loadleveler Job Script – Serial Jobs

#!/bin/sh
#@ job_type = serial
#@ output = /work/default/username/$(jobid).out
#@ error = /work/default/username/$(jobid).err
#@ notify_user = youremail@domain
#@ notification = error
#@ class = checkpt
#@ wall_clock_limit = 24:00:00
#@ initialdir = /work/default/username
#@ environment = COPY_ALL
#@ queue

<shell commands>
<path_to_executable> <options>
<shell commands>
Job Monitoring – Linux Clusters

- **Command:** `showstart <job_id>`
 - Check when a job is estimated to start
- **Things that can change the estimated start time**
 - Higher priority job gets submitted
 - Other jobs terminate earlier than the system expects
 - The system has trouble starting your job
Job Monitoring – Linux Clusters cont'd

- **Command**: `qstat <options> <job_id>`
 - Show information on job status
 - All jobs are displayed if `<job_id>` is omitted
 - Show jobs submitted by a specific user: `qstat -u <username>`
 - Display in the alternative format: `qstat -a <job_id>`

- **Command**: `qshow <job_id>`
 - Show information on a running job
 - On which node(s) the job is running
 - CPU load
Job Monitoring – AIX Clusters

- **Command:** `llq <options> <job_id>`
 - All jobs are displayed if `<job_id>` is omitted
 - Display detailed information: `llq -l <job_id>`
 - Check the estimated start time: `llq -s <job_id>`
 - Show jobs from a specific user: `llq -u <username>`

```
lyanl@l2f1n03$ llq
Id           Owner     Submitted    ST   PRI   Class     Running On
------------- ---------- ---------- ----- ---- ---- -------- ------------
12f1n03.3697.0 collin  1/22 16:59 R   50    single   12f1n14
12f1n03.3730.0 jheiko  1/28 13:30 R   50  workq   12f1n10
12f1n03.3726.0 collin  1/26 08:21 R   50    single   12f1n14
12f1n03.3698.0 collin  1/22 17:00 R   50    single   12f1n14
12f1n03.3727.0 collin  1/26 08:21 R   50    single   12f1n14
```

5 job step(s) in queue, 0 waiting, 0 pending, 5 running, 0 held, 0 preempted
Job Manipulation – Linux Clusters

- **Command:** `qdel <job_id>`
 - Cancel a running or queued job
 - May take some time depending on the size of the job
- **Command:** `qhold <job_id>`
 - Put a queued job on hold
- **Command:** `qrls <job_id>`
 - Resume a held job
Job Manipulation – AIX Clusters

- **Command:** `llcancel <job_id>`
 - Cancel a running or queued job
- **Command:** `llhold <job_id>`
 - Put a queued job on hold
- **Command:** `llhold -r <job_id>`
 - Resume a held job
Exercise 4

- Compile the parallel program hello_mpi.f90
 - Located under /home/lyan1/traininglab/environment
 - To compile
 - Linux clusters: mpif90 -o <name of executable> hello_mpi.f90
 - AIX clusters: mpxlf90 -o <name of executable> hello_mpi.f90

- Run it within an interactive job session
 - Submit an interactive job
 - Run on the command line
 - Linux clusters: mpirun -np <# of cpus> <name of executable>
Exercise 5

- Run the same program as a batch job
 - Sample submission scripts can be found under the same directory
 - Linux clusters: `submit.aix`
 - AIX clusters: `submit.linux`