Introduction to LONI Computing

Resources

Le Yan

HPC Consultant
User Services
Goals

- Learn how to manage software environment
- Learn how to compile programs
- Learn how to run and manage jobs
Outline

- Hardware overview
- Software environment
- Job management
Outline

- Hardware overview
- Software environment
- Job management
Architectures of LONI Clusters

- Two platforms
 - Linux clusters
 - Vendor: Dell
 - Operating System: Linux (Red hat)
 - Processor: Intel
 - AIX clusters
 - Vendor: IBM
 - Operating System: AIX
 - Processor: IBM
Current deployment status - Dell Linux clusters

<table>
<thead>
<tr>
<th>Name</th>
<th>Peak TeraFLOPS/s</th>
<th>Location</th>
<th>Status</th>
<th>Login</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queen Bee</td>
<td>50.7</td>
<td>ISB</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Eric</td>
<td>4.7</td>
<td>LSU</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Oliver</td>
<td>4.7</td>
<td>ULL</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Louie</td>
<td>4.7</td>
<td>Tulane</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Poseidon</td>
<td>4.7</td>
<td>UNO</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Painter</td>
<td>4.7</td>
<td>LaTech</td>
<td>Available</td>
<td>LONI</td>
</tr>
</tbody>
</table>
Current deployment status - IBM AIX clusters

<table>
<thead>
<tr>
<th>Name</th>
<th>Peak TeraFLOPS/s</th>
<th>Location</th>
<th>Status</th>
<th>Login</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluedawg</td>
<td>0.85</td>
<td>LaTech</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Ducky</td>
<td>0.85</td>
<td>Tulane</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Zeke</td>
<td>0.85</td>
<td>ULL</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Neptune</td>
<td>0.85</td>
<td>UNO</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Lacumba</td>
<td>0.85</td>
<td>Southern</td>
<td>Available</td>
<td>LONI</td>
</tr>
</tbody>
</table>
Cluster Architecture

- A cluster is a group of computers (nodes) that works together closely
- Most have high speed interconnect
- Type of nodes
 - Head node
 - Compute node
Hardware Specification

- Queen Bee
 - 668 nodes, each has 8 Intel Xeon cores @ 2.33 GHz, 8 GB RAM
 - 192 TB storage

- Other LONI Linux clusters
 - 128 nodes: each has 4 Intel Xeons cores @ 2.33 GHz, 4 GB RAM
 - 9 TB storage

- LONI AIX clusters
 - 14 nodes: each has 8 IBM Power5 processors @ 1.9 GHz, 16 GB RAM
 - 280 GB storage
Hardware Specification

- **Queen Bee**
 - **668 nodes**, each has 8 Intel Xeon cores @ 2.33 GHz, 8 GB RAM
 - **192 TB storage**

- **Other LONI Linux clusters**
 - **128 nodes**: each has 4 Intel Xeons cores @ 2.33 GHz, 4 GB RAM
 - **9 TB storage**

- **LONI AIX clusters**
 - **14 nodes**: each has 8 IBM Power5 processors @ 1.9 GHz, **16 GB RAM**
 - **280 GB storage**
How Much Memory Your Program Can Use

- The amount of installed memory less the amount that is used by the operating system and other utilities
- Max amount per node
 - Linux clusters: ~6 GB for Queen Bee, ~3 GB for others
 - AIX clusters: ~13 GB
Choose The Correct Architecture/Platform

- There are numerous different architectures in the HPC world
- You need to choose the correct one when installing or using software
 - Linux clusters
 - EM64T, AMD64, X86_64
 - AIX clusters:
 - PowerPC, Power5

Software Downloads

Download NAMD:
NAMD is a parallel, object-oriented molecular dynamics code designed for high-performance computing and documentation.

Selecting an archive below will lead to a user registration and login page. Your destination URL will change accordingly.

Version Nightly Build (2009-06-29) Platforms:
- Linux-x86_64 (Opteron, Athlon64, Intel EM64)
- Source Code

Version 2.7b1 (2009-03-23) Platforms:
- AIX-POWER (formerly AD-ZOS)
- AIX-POWER-MPI (also p6SO, formerly IBM-SP)
- BlueGene/L (Blue Gene/P)
- Linux-x86
- Linux-x86-TCP (TCP may be better on gigabit)
- Linux-x86_64 (Opteron, Athlon64, Intel EM64)
- Linux-x86_64-TCP (TCP may be better on gigabit)
- Linux-itanium (SGI Altix)
- MacOSX-x86 (Mac OS X for Intel processors)
- MacOSX-PPC (Mac OS X, 2.6b1 and newer need IBM libraries)
- Solaris_Sparc
- Solaris-x86_64
- Win32 (Windows XP, etc.)
- Source Code
Outline

- Hardware overview
- Software environment
- Job management
Accessing LONI Clusters

- Host name: <cluster name>.loni.org
 - Queen Bee: qb.loni.org
- Use ssh to connect
 - *nix and Mac: type “ssh <host name>” in a terminal
 - Windows: use Putty
- Only accessible via Internet 2 at the moment
- The default Login shell is bash
 - Supported shells: bash, tcsh, ksh, csh & sh
 - Change the login shell at the profile page
 - Log in at allocations.loni.org and click on “profile”
Exercise 1

- Log in any cluster of your choice
- Locate the directory `/home/lyan1/traininglab/environment`
 - There are files that you will need for following exercises
 - Copy them to your user space
File Systems

<table>
<thead>
<tr>
<th></th>
<th>Distributed file system</th>
<th>Throughput</th>
<th>File life time</th>
<th>Best used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Yes</td>
<td>Low</td>
<td>Unlimited</td>
<td>Code in development, compiled executables</td>
</tr>
<tr>
<td>Work</td>
<td>Yes</td>
<td>High</td>
<td>30 days</td>
<td>Job input/output</td>
</tr>
<tr>
<td>Local Scratch</td>
<td>No</td>
<td></td>
<td>Job duration</td>
<td>Temporary files needed by running jobs</td>
</tr>
</tbody>
</table>

- Never let your job write output to your home directory
- Nothing is backed up
- Do not write temporary files to `/tmp`
 - Write to the local scratch or work space
- The work space is not for long-term storage
 - Files are purged periodically
- Use "rm purge" to delete large amount of files
- Don't store over 10,000 files in one directory
Disk Quota

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Home Access point</th>
<th>Home Quota</th>
<th>Work Access point</th>
<th>Work Quota</th>
<th>Local scratch Access point</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONI Linux</td>
<td>/home/$USER</td>
<td>5 GB</td>
<td>/work/$USER</td>
<td>100 GB</td>
<td>/var/scratch</td>
</tr>
<tr>
<td>LONI AIX</td>
<td>/home/$USER</td>
<td>500 MB</td>
<td>/work/default/$USER</td>
<td>20 GB</td>
<td>/scratch/local</td>
</tr>
</tbody>
</table>

- No quota is enforced on the work space on Queen Bee
- On Linux clusters, the work directory is created within an hour after the first login
- Check current disk usage
 - **Linux:** `showquota`
 - **AIX:** `quota`
Transferring Files

- From Windows machines to clusters
 - Winscp
 - Filezilla

- Between clusters
 - `scp`: easiest for small transfers
 - `bbcp`: faster alternative to `scp`
 - `rsync`: synchronizes entire directory trees
 - `gridftp`: allows for parallel streams

https://docs.loni.org/wiki/Transferring_Files
Setting up Environment Variables

- Environment variables
 - **PATH**: where to look for executables
 - **LD_LIBRARY_PATH**: where to look for shared libraries
 - Other custom environment variables needed by various software packages
- **SOFTENV** is a software that can be used to set these environment variables
 - Manages a database of installed software packages
 - More convenient than using .bashrc or .cshrc
Listing All Packages

- **Command** "softenv" lists all packages that are managed by SOFTENV

[lyan1@tezpur2 ~]$ softenv
...

These are the macros available:
* @default
* @globus-4.0
* @intel-compilers

These are the keywords explicitly available:

- **+Mesa-6.4.2**
- **+R-2.8.0-gcc-3.4.6**
- **+ansys-1sdyna-11.0**

Softenv key

- globus client
 - A pointer to the latest installed intel compilers.

- No description yet for Mesa-6.4.2.
 - application: 'R', version 2.8.0

- application: 'ANSYS LS-DYNA', version: 11.0
 - ANSYS LS-DYNA is a premier software package for explicit nonlinear structural simulation with finite element pre- and post-processor. docs =>
 - http://www1.ansys.com/customer/
Searching A Specific Package

- Use "–k" option with "softenv"

[lyan1@tezpur2 ~]$ softenv -k fftw
SoftEnv version 1.6.4

Search Regexp: fftw

These are the macros available:

+fftw-3.1.2-gnu application: FFTW, version 3.1.2, binded with GNU compiler.

...
Setting up Environment via Softenv – one time change

- Set up the environment variables to use a certain software package \textbf{in the current login session only}
 - Add a package: \texttt{soft add <key>}
 - Remove a package: \texttt{soft delete <key>}

```
[lyan1@tezpur2 ~]$ which gcc
/usr/local/compilers/GNU/gcc-4.2.0/bin/gcc
[lyan1@tezpur2 ~]$ soft add +gcc-4.3.0
[lyan1@tezpur2 ~]$ which gcc
/usr/local/compilers/GNU/gcc-4.3.0/bin/gcc
[lyan1@tezpur2 ~]$ soft delete +gcc-4.3.0
[lyan1@tezpur2 ~]$ which gcc
/usr/local/compilers/GNU/gcc-4.2.0/bin/gcc
```
Setting up Environment via Softenv – permanent change

- Set up the environment variables to use a certain software package
 - First add the key to $HOME/.soft
 - Then execute `resoft` at the command line
 - The environment will be the same next time you log in

```bash
[lyan1@tezpur2 ~]$ cat .soft
#
# This is the .soft file.
...
+matlab-r2007b
@default
[lyan1@tezpur2 ~]$ resoft
```
Querying a Softenv key

- Command “soft-dbq” shows which variables are set by a SOFTENV key

[lyan1@tezpur2 ~]$ soft-dbq +gcc-4.3.0
This is all the information associated with the key or macro +gcc-4.3.0.

Name: +gcc-4.3.0
Description: GNU gcc compiler, version 4.3.0
Flags: none
Groups: none
Exists on: Linux

On the Linux architecture,
the following will be done to the environment:
The following environment changes will be made:
 LD_LIBRARY_PATH = ${LD_LIBRARY_PATH}:/usr/local/compilers/GNU/gcc-4.3.0/lib64
 PATH = ${PATH}:/usr/local/compilers/GNU/gcc-4.3.0/bin
Exercise 2: Use Softenv

- Find the key for VISIT (a visualization package)
- Check what variables are set through the key
- Set up your environment to use VISIT
- Check if the variables are correctly set by “which visit”
Exercise 2: Use Softenv

- Find the key for VISIT (a visualization package)
 - `Use softenv -k visit`
- Check what variables are set through the key
 - `Use soft-dbq +visit-1.12.1-gcc-4.3.2`
- Set up your environment to use VISIT
 - `Use soft add +visit-1.12.1-gcc-4.3.2`
 - Or add “+visit-1.12.1-gcc-4.3.2” to your .soft file and resoft
- Check if the variables are correctly set by “which visit”
 - The output should be the path to the executable visit
Compilers

<table>
<thead>
<tr>
<th>Language</th>
<th>Linux clusters</th>
<th>AIX clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intel</td>
<td>GNU</td>
</tr>
<tr>
<td>Fortran</td>
<td>ifort</td>
<td>g77</td>
</tr>
<tr>
<td>C</td>
<td>icc</td>
<td>gcc</td>
</tr>
<tr>
<td>C++</td>
<td>icpc</td>
<td>g++</td>
</tr>
</tbody>
</table>

- **Usage:** `<compiler> <options> <your_code>`
 - **Example:** `icc -O3 -o myexec mycode.c`

- Some compilers options are architecture specific
 - Linux: EM64T, AMD64 or X86_64
 - AIX: power5 or powerpc
MPI Compilers (1)

<table>
<thead>
<tr>
<th>Language</th>
<th>Linux clusters</th>
<th>AIX clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>mpif77,mpif90</td>
<td>mpxlf,mpxlf_r,mpxlf90,mpxlf90_r</td>
</tr>
<tr>
<td>C</td>
<td>mpicc</td>
<td>mpcc,mpcc_r</td>
</tr>
<tr>
<td>C++</td>
<td>mpiCC</td>
<td>mpCC,mpCC_r</td>
</tr>
</tbody>
</table>

- **Usage:** similar to what we have seen
 - **Example:** `mpif90 -O2 -o myexec mycode.f90`

- **On Linux clusters**
 - Only one compiler for each language
 - There is no `intel_mpicc` or `pg_mpicc`
MPI Compilers (2)

- These MPI compilers are actually **wrappers**
 - They still use the compilers we've seen on the previous slide
 - Intel, PGI or GNU
 - They take care of everything we need to build MPI codes
 - Head files, libraries etc.
 - What they actually do can be reveal by the `–show` option

```
[lyan1@tezpur2 ~]$ mpicc –show
icc –DUSE_STDARG –DHAVE_STDLIB_H=1 –DHAVE_STRING_H=1 –DHAVE_UNISTD_H=1
   –DHAVE_STDARG_H=1 –DUSE_STDARG=1 –DMALLOC_RET_VOID=1
   -L/usr/local/packages/mvapich-1.0-intel10.1/lib -lmpich
   -L/usr/local/ofed/lib64 -Wl,-rpath=/usr/local/ofed/lib64 -libverbs
   -libumad -lpthread -lpthread -lrt
```
MPI Compilers (3)

There are many different versions of MPI compilers on Linux clusters
Each of them is built around a specific compiler
• Intel, PGI or GNU

It is extremely important to compile and run your code with the same version!!!
Application Packages

- **Installed under** `/usr/local/packages`
- **Directory structure**
 - `<package name>/<version>/compiler-version(-mpi-version)`
- **Most of them are managed by SOFTENV**
 - Numeric and utility libraries
 - FFTW, HDF5, NetCDF, PETSc, MKL
 - Computational chemistry
 - Amber, Gaussian, CPMD, NWChem, NAMD, Gromacs
 - Profiling/debugging tools
 - TAU, Totalview
 - ...
Exercise 3: Compile a code

- **Serial code**
 - Copy `hello.f90` from `/home/lyan1/traininglab/environment`
 - Compile it with a compiler of your choice
 - Run the executable from the command line

- **MPI code**
 - Copy `hello_mpi.f90` from `/home/lyan1/traininglab/environment`
 - Compile it with a serial compiler and see what happens
 - Compile it with an MPI compiler
Exercise 3: Compile a code

Serial code

- Copy `hello.f90` from `/home/lyan1/traininglab/environment`
- Compile it with a compiler of your choice
- Run the executable from the command line

```bash
Linux

- cp /home/lyan1/traininglab/environment/* .f90
- icc -o hello_ser hello.f90
- ./hello_ser
- mpif90 -o hello hello_mpi.f90

AIX

- cp /home/lyan1/traininglab/environment/* .f90
- xlf90_r -o hello_ser hello.f90
- ./hello_ser
- mpxlf90_r -o hello hello_mpi.f90
```

MPI code

- Copy `hello_mpi.f90` from `/home/lyan1/traininglab/environment`
- Compile it with a serial compiler and see what happens
- Compile it with an MPI compiler
- We will run it later
Outline

- Hardware overview
- Software environment
- Job management
Cluster Environment

- Multiple compute nodes
- Multiple users
- Each user may have multiple jobs running simultaneously
Batch Queuing System

- A software that manages resources (CPU time, memory etc.) and schedules job execution
 - Linux clusters: Portable Batch System (PBS)
 - AIX clusters: Loadleveler
- What is a job
 - A user's request to use a certain amount of resources for a certain amount of time
- The batch queuing system determines
 - The order jobs are executed
 - On which node(s) jobs are executed
Job Scheduling

- Map jobs onto the node-time space
 - Assuming CPU time is the only resource
- Need to
 - Honor the order in which jobs are received
 - Maximize resource utilization
Backfilling

- A strategy to improve utilization
 - Allow a job to jump ahead of others when there are enough idle nodes
 - Must not affect the estimated start time of the job with the highest priority
- Enabled on all LONI clusters
How Much Time Should I Ask for?

- Ask for an amount of time that is
 - Long enough for your job to complete
 - As short as possible to increase the chance of backfilling
Job Queues

- There are more than one job queue
- Each job queue differs in
 - Type of jobs (single processor vs. parallel)
 - Number of available nodes
 - Max run time
 - Max running jobs per user
 - ...
- The main purpose is to maximize utilization
Queue Characteristics – Queen Bee

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workq</td>
<td>2 days</td>
<td>530</td>
<td>8</td>
<td>128</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td>2 days</td>
<td>668</td>
<td>8</td>
<td>256</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td></td>
<td>668</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
<tr>
<td>Priority</td>
<td></td>
<td>668</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Queue Characteristics – Other LONI Linux Clusters

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>14 days</td>
<td>16</td>
<td>64</td>
<td>1</td>
<td>Single processor jobs</td>
</tr>
<tr>
<td>Workq</td>
<td>3 days</td>
<td>96</td>
<td>8</td>
<td>40</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td>3 days</td>
<td>128</td>
<td>8</td>
<td>64</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td></td>
<td>64</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
<tr>
<td>Priority</td>
<td></td>
<td>64</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Queue Characteristics – LONI AIX Clusters

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>14 days</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>Single processor jobs</td>
</tr>
<tr>
<td>Workq</td>
<td>5 days</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td>5 days</td>
<td>14</td>
<td>NA</td>
<td>14</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td>6</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
<tr>
<td>Priority</td>
<td>6</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Basic Commands

- Queue querying
 - Check how busy the cluster is
- Job submission
- Job monitoring
 - Check job status (estimated start time, remaining run time etc.)
- Job manipulation
 - Cancel/hold jobs
Queue Querying – Linux Clusters

- **Command**: `qfree`
 - Show the number of free, busy and queued nodes
- **Command**: `qfreeloni`
 - Equivalent to run `qfree` on all LONI Linux clusters

```
[lyan1@louie2 ~]$ qfree
PBS total nodes: 128, free: 81, busy: 44, down: 3, use: 34%
PBS checkpt nodes: 128, free: 81, busy: 28
PBS workq nodes: 32, free: 16, busy: 16
```
Queue Querying – AIX Clusters

- **Command:** `llclass`

```
lyan@2f1n03$ llclass
Name  MaxJobCPU  MaxProcCPU  Free  Max    Description
      d+hh:mm:ss  d+hh:mm:ss  Slots  Slots
----------------- ----------------- ------- ------- --------------------------------
interactive       undefined  undefined  8      8     Interactive Parallel jobs running on interactive node
single            unlimited  unlimited  4      8     One node queue (14 days) for serial and up to 8-
                processor parallel jobs
workq              unlimited  unlimited  51     56    Default queue (5 days), up to 56 processors
days), up to 48 processors
priority           unlimited  unlimited  40     40    priority queue reserved for on-demand jobs (5
days), up to 48 processors
preempt           unlimited  unlimited  40     40    preemption queue reserved for on-demand jobs (5
days), up to 48 processors
checkpt           unlimited  unlimited  91     96    queue for checkpointing jobs (5 days), up to 104
processors, Job running on this queue can be preempted for on-demand job
```

Checking Loads on All LONI Clusters

- Check Loads on all LONI clusters at docs.loni.org
- Updated every 15 minutes

Dell Linux Clusters

<table>
<thead>
<tr>
<th>System Name</th>
<th>Nodes</th>
<th>SMP Size</th>
<th>Total CPUs</th>
<th>Memory/Node</th>
<th>TFLOPS</th>
<th>Work Disk</th>
<th>Location</th>
<th>Load</th>
<th>Running jobs</th>
<th>Queued jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queen Bee</td>
<td>680</td>
<td>8</td>
<td>6440</td>
<td>8 GB</td>
<td>50.7</td>
<td>58 TB</td>
<td>LSU</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Eric</td>
<td>128</td>
<td>4</td>
<td>512</td>
<td>4 GB</td>
<td>4.772</td>
<td>9 TB</td>
<td>LSU</td>
<td>70</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>Oliver</td>
<td>128</td>
<td>4</td>
<td>512</td>
<td>4 GB</td>
<td>4.772</td>
<td>9 TB</td>
<td>ULL</td>
<td>16</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Louie</td>
<td>128</td>
<td>4</td>
<td>512</td>
<td>4 GB</td>
<td>4.772</td>
<td>9 TB</td>
<td>Tulane</td>
<td>27</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Poseidon</td>
<td>128</td>
<td>4</td>
<td>512</td>
<td>4 GB</td>
<td>4.772</td>
<td>9 TB</td>
<td>UNO</td>
<td>17</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Painter</td>
<td>128</td>
<td>4</td>
<td>512</td>
<td>4 GB</td>
<td>4.772</td>
<td>9 TB</td>
<td>LaTech</td>
<td>23</td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

IBM P5 Clusters

<table>
<thead>
<tr>
<th>System Name</th>
<th>Nodes</th>
<th>SMP Size</th>
<th>Total CPUs</th>
<th>Memory/Node</th>
<th>TFLOPS</th>
<th>Work Disk</th>
<th>Location</th>
<th>Load</th>
<th>Running jobs</th>
<th>Queued jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluedawg</td>
<td>14</td>
<td>8</td>
<td>104</td>
<td>16 GB</td>
<td>0.85L</td>
<td>270 GB</td>
<td>LaTech</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Ducky</td>
<td>14</td>
<td>8</td>
<td>104</td>
<td>16 GB</td>
<td>0.85L</td>
<td>270 GB</td>
<td>Tulane</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Zeke</td>
<td>14</td>
<td>8</td>
<td>104</td>
<td>16 GB</td>
<td>0.85L</td>
<td>270 GB</td>
<td>ULL</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Neptune</td>
<td>14</td>
<td>8</td>
<td>104</td>
<td>16 GB</td>
<td>0.85L</td>
<td>270 GB</td>
<td>UNO</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>LaCumba</td>
<td>14</td>
<td>8</td>
<td>104</td>
<td>16 GB</td>
<td>0.85L</td>
<td>270 GB</td>
<td>SU</td>
<td></td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Job Types

- **Interactive job**
 - Set up an interactive environment on compute nodes for users
 - Advantage: can run programs interactively
 - Disadvantage: must be present when the job starts
 - Purpose: testing and debugging
 - Disabled on AIX clusters because of limited number of nodes

- **Batch job**
 - Executed without user intervention using a job script
 - Advantage: the system takes care of everything
 - Disadvantage: can only execute one sequence of commands which cannot changed after submission
 - Purpose: production run
Submitting Jobs – Linux Clusters

- **Interactive job**
 - `qsub -I -V -l walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=4 -A <your allocation> -q <queue name>`

- **Batch job**
 - `qsub <job script>`

- **ppn** must be either 4 (all Linux clusters except Queen Bee) or 8 (Queen Bee) except for serial jobs
PBS Job Script – Parallel Jobs

#!/bin/bash
#PBS -l nodes=4:ppn=4 Number of nodes and processor
#PBS -l walltime=24:00:00 Maximum wall time
#PBS -N myjob Job name
#PBS -o <file name> File name for standard output
#PBS -e <file name> File name for standard error
#PBS -q checkpt Queue name
#PBS -A <loni_allocation> Allocation name
#PBS -m e Send mail when job ends
#PBS -M <email address> Send mail to this address

<shell commands>
mpirun -machinefile $PBS_NODEFILE -np 16 <path_to_executable> <options>
<shell commands>
PBS Job Script – Serial Jobs

#!/bin/bash
#PBS -l nodes=1:ppn=1
#PBS -l walltime=24:00:00
#PBS -N myjob
#PBS -o <file name>
#PBS -e <file name>
#PBS -q single
#PBS -A <loni_allocation>
#PBS -m e
#PBS -M <email address>

<shell commands>
<path_to_executable> <options>
<shell commands>

Number of nodes and processor
Maximum wall time
Job name
File name for standard output
File name for standard error
The only queue that accepts serial jobs
Allocation name
Send mail when job ends
Send mail to this address
Submitting Jobs - AIX Clusters

- Batch job
 - `llsubmit <job script>`

```bash
#!/bin/sh
#@ job_type = parallel
#@ output = /work/default/username/$(jobid).out
#@ error = /work/default/username/$(jobid).err
#@ notify_user = youremail@domain
#@ notification = error
#@ class = checkpt
#@ wall_clock_limit = 24:00:00
#@ node_usage = shared
#@ node = 2,2
#@ total_tasks = 16
#@ initialdir = /work/default/username
#@ environment = COPY_ALL
#@ queue

<shell commands>
poe <path_to_executable> <options>
<shell commands>
```
Loadleveler Job Script – Serial Jobs

```bash
#!/bin/sh
#@ job_type = serial
#@ output = /work/default/username/$(jobid).out
#@ error = /work/default/username/$(jobid).err
#@ notify_user = youremail@domain
#@ notification = error
#@ class = checkpoint
#@ wall_clock_limit = 24:00:00
#@ initialdir = /work/default/username
#@ environment = COPY_ALL
#@ queue

<shell commands>
<path_to_executable> <options>
<shell commands>
```
Job Monitoring – Linux Clusters

- **Command:** `showstart <job_id>`
 - Check when a job is estimated to start
- Things that can change the estimated start time
 - Higher priority job gets submitted
 - Other jobs terminate earlier than the system expects
 - The system has trouble starting your job
Job Monitoring – Linux Clusters cont'd

- **Command:** `qstat <options> <job_id>`
 - Show information on job status
 - All jobs are displayed if `<job_id>` is omitted
 - Show jobs submitted by a specific user: `qstat -u <username>`
 - Display in the alternative format: `qstat -a <job_id>`

- **Command:** `qshow <job_id>`
 - Show information on a running job
 - On which node(s) the job is running
 - CPU load
 - Memory usage
Job Monitoring – AIX Clusters

- **Command:** `llq <options> <job_id>`
 - All jobs are displayed if `<job_id>` is omitted
 - Display detailed information: `llq -l <job_id>`
 - Check the estimated start time: `llq -s <job_id>`
 - Show jobs from a specific user: `llq -u <username>`

```bash
lyan1@l2f1n03$ llq
Id          Owner       Submitted    ST PRI Class        Running On
------------- -------- ----------- ------- ------- -------- ------------
12f1n03.3697.0 collin  1/22 16:59  R  50   single  12f1n14
12f1n03.3730.0 jheiko  1/28 13:30  R  50 workq  12f1n10
12f1n03.3726.0 collin  1/26 08:21  R  50   single  12f1n14
12f1n03.3698.0 collin  1/22 17:00  R  50   single  12f1n14
12f1n03.3727.0 collin  1/26 08:21  R  50   single  12f1n14

5 job step(s) in queue, 0 waiting, 0 pending, 5 running, 0 held, 0 preempted
```
Job Monitoring – AIX Clusters

- **Command:** `showllstatus.py`
- **Show job status as well as node status**

```bash
lyan1@peg304$ showllstatus.py

<table>
<thead>
<tr>
<th>Node</th>
<th>Status</th>
<th>Load</th>
<th>Arch</th>
<th>Node</th>
<th>Status</th>
<th>Load</th>
<th>Arch</th>
</tr>
</thead>
<tbody>
<tr>
<td>ben2</td>
<td>Idle</td>
<td>0.05</td>
<td>Power4</td>
<td>pen15</td>
<td>Run</td>
<td>8.04</td>
<td>Power5</td>
</tr>
<tr>
<td>ben3</td>
<td>Run</td>
<td>0.27</td>
<td>Power4</td>
<td>pen16</td>
<td>Idle</td>
<td>2.07</td>
<td>Power5</td>
</tr>
<tr>
<td>ian1</td>
<td>Idle</td>
<td>0.40</td>
<td>Power4</td>
<td>pen17</td>
<td>Down</td>
<td>0.01</td>
<td>Power5</td>
</tr>
<tr>
<td>pen01</td>
<td>Run</td>
<td>8.00</td>
<td>Power5</td>
<td>pen18</td>
<td>Idle</td>
<td>0.00</td>
<td>Power5</td>
</tr>
<tr>
<td>pen02</td>
<td>Busy</td>
<td>16.06</td>
<td>Power5</td>
<td>pen19</td>
<td>Busy</td>
<td>5.74</td>
<td>Power5</td>
</tr>
<tr>
<td>pen03</td>
<td>Busy</td>
<td>15.99</td>
<td>Power5</td>
<td>pen20</td>
<td>Idle</td>
<td>0.00</td>
<td>Power5</td>
</tr>
</tbody>
</table>

... 

<table>
<thead>
<tr>
<th>Step ID</th>
<th>Owner</th>
<th>Status</th>
<th>Class</th>
<th>Hosts</th>
<th>Queue</th>
<th>Date</th>
<th>Disp. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ian1.77438.0</td>
<td>hypoxia</td>
<td>R</td>
<td>MP5L</td>
<td>4</td>
<td>02/10</td>
<td>10:26</td>
<td>02/10 10:26</td>
</tr>
<tr>
<td>ian1.77437.0</td>
<td>pradeep</td>
<td>R</td>
<td>SB4L</td>
<td>1</td>
<td>02/10</td>
<td>10:25</td>
<td>02/10 10:25</td>
</tr>
<tr>
<td>ian1.77431.0</td>
<td>eshi1362</td>
<td>R</td>
<td>MP5L</td>
<td>2</td>
<td>02/10</td>
<td>09:13</td>
<td>02/10 09:13</td>
</tr>
<tr>
<td>ian1.77419.0</td>
<td>jovi</td>
<td>R</td>
<td>MP5L</td>
<td>1</td>
<td>02/09</td>
<td>22:22</td>
<td>02/10 08:28</td>
</tr>
<tr>
<td>ian1.77418.0</td>
<td>jovi</td>
<td>R</td>
<td>MP5L</td>
<td>1</td>
<td>02/09</td>
<td>22:22</td>
<td>02/10 07:32</td>
</tr>
<tr>
<td>ian1.77417.0</td>
<td>jovi</td>
<td>R</td>
<td>MP5L</td>
<td>1</td>
<td>02/09</td>
<td>22:22</td>
<td>02/10 06:37</td>
</tr>
</tbody>
</table>
... 

---
Job Manipulation –
Linux Clusters

- **Command**: `qdel <job_id>`
  - Cancel a running or queued job
  - May take some time depending on the size of the job

- **Command**: `qhold <job_id>`
  - Put a queued job on hold

- **Command**: `qrls <job_id>`
  - Resume a held job
Job Manipulation – AIX Clusters

- **Command:** `llcancel <job_id>`
  - Cancel a running or queued job
- **Command:** `llhold <job_id>`
  - Put a queued job on hold
- **Command:** `llhold -r <job_id>`
  - Resume a held job
Exercise 4

- Compile the parallel program `hello_mpi.f90`
  - Located under `/home/lyan1/traininglab/environment`
  - To compile
    - Linux clusters: `mpif90 -o <name of executable> hello_mpi.f90`
    - AIX clusters: `mpxlf90 -o <name of executable> hello_mpi.f90`
- Run it within an interactive job session
  - Submit an interactive job
  - Run on the command line
    - Linux clusters: `mpirun -np <# of cpus> <name of executable>`
Exercise 5

- Run the same program as a batch job
  - Sample submission scripts can be found under the same directory
    - Linux clusters: submit.aix
    - AIX clusters: submit.linux