Programming Environment on LONI HPC Clusters

Le Yan
Scientific computing consultant
User services group
Louisiana Optical Network Initiative
Goal of Training

• Learn how to manage software environment on LONI clusters
• Learn how to compile serial and parallel programs
• Learn to manage jobs through the queuing system
Outline

• Overview
• Hardware
• Software
 – User environment
 – Compilers
 – Application software
• Job management
Outline

• Overview

• Hardware

• Software
 – User environment
 – Compilers
 – Application software

• Job management
Two Major Types of Clusters

- Linux clusters
 - Vendor: Dell
 - OS: Linux (Red hat)
 - Processor: Intel

- AIX clusters
 - Vendor: IBM
 - OS: AIX
 - Processor: IBM
Current deployment status - Dell Linux clusters

<table>
<thead>
<tr>
<th>Name</th>
<th>Peak TeraFLOPS/s</th>
<th>Location</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queen Bee</td>
<td>50.7</td>
<td>ISB</td>
<td>Available</td>
</tr>
<tr>
<td>Eric</td>
<td>4.7</td>
<td>LSU</td>
<td>Available</td>
</tr>
<tr>
<td>Oliver</td>
<td>4.7</td>
<td>ULL</td>
<td>Available</td>
</tr>
<tr>
<td>Louie</td>
<td>4.7</td>
<td>Tulane</td>
<td>Available</td>
</tr>
<tr>
<td>Poseidon</td>
<td>4.7</td>
<td>UNO</td>
<td>Available</td>
</tr>
<tr>
<td>Painter</td>
<td>4.7</td>
<td>LaTech</td>
<td>To be deployed</td>
</tr>
<tr>
<td>??</td>
<td>4.7</td>
<td>Southern</td>
<td>To be deployed</td>
</tr>
</tbody>
</table>

Manage your account:
https://allocations.loni.org/balances.php
Current deployment status - IBM AIX clusters

<table>
<thead>
<tr>
<th>Name</th>
<th>Peak TeraFLOPS/s</th>
<th>Location</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluedawg</td>
<td>0.85</td>
<td>LaTech</td>
<td>Available</td>
</tr>
<tr>
<td>Ducky</td>
<td>0.85</td>
<td>Tulane</td>
<td>Available</td>
</tr>
<tr>
<td>Zeke</td>
<td>0.85</td>
<td>ULL</td>
<td>Available</td>
</tr>
<tr>
<td>Neptune</td>
<td>0.85</td>
<td>UNO</td>
<td>Available</td>
</tr>
<tr>
<td>Lacumba</td>
<td>0.85</td>
<td>Southern</td>
<td>Available</td>
</tr>
</tbody>
</table>

Manage your account:
https://allocations.loni.org/balances.php
Outline

• Overview

• Hardware

• Software
 – User environment
 – Compilers
 – Application software

• Job management
Definition of **Cluster** (from Wikipedia): A group of linked computers working together closely.
Hardware (Linux)

- **Queen Bee**
 - 668 nodes with each node having: 8 Intel “Cloverton” Xeons cores @ 2.33 GHz, 8 GB RAM, 36 GB HD
 - 192 TB storage

- **Other LONI Linux clusters**
 - 128 nodes with each node having: 4 Intel “Woodcrest” Xeons cores @ 2.33 Ghz, 4 GB RAM, 80 GB HD
 - 9 TB storage
Hardware (AIX)

- LONI AIX clusters
 - 14 power5 nodes with each node having: 8 IBM Power5 processors @ 1.9 GHz, 16 GB RAM
 - 280 GB storage
More on Hardware

- Technical details are usually not of interest to normal users
- A couple of things to keep in mind
 - Max usable amount of memory per node
 - Linux clusters: \(~6\) GB for Queen Bee, \(~3\) GB for others
 - AIX clusters: \(~26\) GB for Power5+ nodes (Pelican), \(~13\) GB for others
 - Which ARCHITECTURE to choose when trying to download/install/use software
 - Linux clusters: EM64T, AMD64, X86_64
 - AIX clusters: PowerPC, Power5
Outline

• Overview
• Hardware
• Software
 – User environment
 – Compilers
 – Application software
• Job management
Initial Login

- Log in via ssh
 - example: ssh <your_user_name>@oliver.loni.org

- Linux clusters

 - When you first login you'll see something like this:
 Generating public/private dsa key pair.
 Enter file in which to save the key (/home1/me/.ssh/id_dsa):
 Enter passphrase (empty for no passphrase):
 Enter same passphrase again:
 Your identification has been saved in /home1/me/.ssh/id_dsa.
 Your public key has been saved in /home1/me/.ssh/id_dsa.pub.
 The key fingerprint is:

 - What you need to do: press <enter> all the way down

 - Do not enter a phassphrase !!!!!!!!
Login Shell

- The default Login shell is bash
- Supported shells: bash, tcsh, ksh, csh & sh
- View your shell by "echo $SHELL"
- Change your shell at the profile page
 - LONI: allocations.loni.org
File Systems

<table>
<thead>
<tr>
<th></th>
<th>Distributed file system</th>
<th>Throughput</th>
<th>File life time</th>
<th>Typically used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Yes</td>
<td>Low</td>
<td>Unlimited</td>
<td>Code in development, compiled executables</td>
</tr>
<tr>
<td>Scratch</td>
<td>Yes</td>
<td>High</td>
<td>30 days</td>
<td>Job input/output</td>
</tr>
<tr>
<td>Local Scratch</td>
<td>No</td>
<td></td>
<td>Job duration</td>
<td>Temporary files needed by running jobs</td>
</tr>
</tbody>
</table>

- Never ever let your job write output to your home directory
- The “scratch” space is not for long-term storage
Disk Quota

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Home Access point</th>
<th>Home Quota</th>
<th>Scratch Access point</th>
<th>Scratch Quota</th>
<th>Local scratch Access point</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONI Linux</td>
<td>/home/$USER</td>
<td>5 GB</td>
<td>/scratch/$USER</td>
<td>100 GB</td>
<td>/var/scratch</td>
</tr>
<tr>
<td>LONI AIX</td>
<td>/home/$USER</td>
<td>5 GB</td>
<td>/work/default/$USER</td>
<td>20 GB</td>
<td>/scratch/local</td>
</tr>
</tbody>
</table>
Exercise 1: Now it's time to log in

• Log in any cluster

• Check your disk quota
 – Linux clusters: use “showquota” command
 ▪ Your scratch directory will be created within an hour of the first login
 – AIX clusters: use “quota” command

• Locate the directory /home/lyan1/traininglab/environment
 – There are files that you will need for following exercises
Manage the environment

• Environment variables
 – PATH: where to look for executables
 – LD_LIBRARY_PATH: where to look for shared libraries
 – Other custom environment variables needed by various software

• SOFTENV is a software that is used to set up these environment variables on all the clusters
 – More convenient than setting numerous environment variables in .bashrc or .cshrc
SOFTENV

- Command “softenv” lists all packages that are managed by SOFTENV

```
[lyan1@tezpur2 ~]$ softenv
...
These are the macros available:
*   @default
*   @globus-4.0
*   @intel-compilers

These are the keywords explicitly available:
+Mesa-6.4.2
+R-2.8.0-gcc-3.4.6
+ansys-1sdyana-11.0

Softenv key
```

globus client
compiler: 'Intel Compilers', version: Latest.
A pointer to the latest installed intel compilers.

No description yet for Mesa-6.4.2.
application: 'R', version 2.8.0
application: 'ANSYS LS-DYNA', version: 11.0
ANSYS LS-DYNA is a premier software package for explicit nonlinear structural simulation with finite element pre- and post-processor. docs =>
http://www1.ansys.com/customer/
SOFTENV

• Set up the environment variables to use a certain software
 – First add the key to $HOME/.soft

[lyan1@tezpur2 ~]$ cat .soft
#
This is the .soft file.
It is used to customize your environment by setting up environment
variables such as PATH and MANPATH.
To learn what can be in this file, use 'man softenv'.
+fds
+smv
+matlab-r2007b

 – Then execute resoft at the command line

[lyan1@tezpur2 ~]$ resoft
SOFTENV

- **Command “soft-dbq” shows which variables are set by a certain SOFTENV key**

 [lyan1@tezpur2 ~]$ soft-dbq +gcc-4.3.0
 This is all the information associated with the key or macro +gcc-4.3.0.

 └───
 | Name: +gcc-4.3.0
 | Description: GNU gcc compiler, version 4.3.0
 | Flags: none
 | Groups: none
 | Exists on: Linux

 └───

 On the Linux architecture, the following will be done to the environment:

 The following environment changes will be made:

 - LD_LIBRARY_PATH = `${LD_LIBRARY_PATH}`:/usr/local/compilers/GNU/gcc-4.3.0/lib64
 - PATH = `${PATH}`:/usr/local/compilers/GNU/gcc-4.3.0/bin

 └───
Exercise 2: Use Softenv

- Find the key for VISIT (a visualization package)
- Check what variables are set through the key
- Set up your environment to use VISIT
- Check if the variables are correctly set by "which visit"
Exercise 2: Use Softenv

- Find the key for VISIT (a visualization package)
 - Use `softenv`
 - Or `softenv | grep -i visit` in case the list is too long

- Check what variables are set through the key
 - Use `soft-dbq +visit`

- Set up your environment to use VISIT
 - Add "+visit" to your .soft file and `resoft`

- Check if the variables are correctly set by "which visit"
 - The output should be the path to the executable `visit`
Compilers

<table>
<thead>
<tr>
<th>Language</th>
<th>Linux clusters</th>
<th>AIX clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intel</td>
<td>GNU</td>
</tr>
<tr>
<td>Fortran</td>
<td>ifort</td>
<td>g77</td>
</tr>
<tr>
<td>C</td>
<td>icc</td>
<td>gcc</td>
</tr>
<tr>
<td>C++</td>
<td>icpc</td>
<td>g++</td>
</tr>
</tbody>
</table>

- **Usage:** `<compiler> <options> <your_code>`
 - **Example:** `icc -O3 -o myexec mycode.c`
- **Some compilers options are architecture specific**
 - **Linux:** EM64T, AMD64 or X86_64
 - **AIX:** power5 or powerpc
Compilers for MPI code

<table>
<thead>
<tr>
<th>Language</th>
<th>Linux clusters</th>
<th>AIX clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>mpif77,mpif90</td>
<td>mpxlf,mpxf90,mpxf90_r</td>
</tr>
<tr>
<td>C</td>
<td>mpicc</td>
<td>mpcc,mpcc_r</td>
</tr>
<tr>
<td>C++</td>
<td>mpiCC</td>
<td>mpCC,mpCC_r</td>
</tr>
</tbody>
</table>

- Usage: similar to what we have seen
 - Example: `mpif90 -O2 -o myexec mycode.f90`
- On Linux clusters
 - We don't differentiate between different vendors, i.e. We don't have things like `intel_mpicc` and `pg_mpicc`
Compilers for MPI code

<table>
<thead>
<tr>
<th>Language</th>
<th>Linux clusters</th>
<th>AIX clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>mpif77,mpif90</td>
<td>mpixf,mpixf_r,mpixf90,mpixf90_r</td>
</tr>
<tr>
<td>C</td>
<td>Mpicc</td>
<td>mpcc,mpcc_r</td>
</tr>
<tr>
<td>C++</td>
<td>MpiCC</td>
<td>mpCC,mpCC_r</td>
</tr>
</tbody>
</table>

- These MPI compilers are actually wrappers
 - They still use the same compilers we've seen on the previous slides
 - They take care of everything we need to run MPI codes
 - What they actually do can be reveal by the \(-\text{show}\) option

```
[lyan1@tezpur2 ~]$ mpicc -show
icc -DUSE_STDARG -DHAVE_STDLIB_H=1 -DHAVE_STRING_H=1 -DHAVE_UNISTD_H=1
    -DHAVE_STDARG_H=1 -DUSE_STDARG=1 -DMALLOC_RET_VOID=1
    -L/usr/local/packages/mvapich-1.0-intel10.1/lib -Lmpich
    -L/usr/local/ofed/lib64 -Wl,-rpath=/usr/local/ofed/lib64 -libverbs
    -libumad -lpthread -lpthread -lrt
```
Be careful on Linux clusters...

```bash
[lyan1@qb2 ~]$ ls -ld /usr/local/packages/mvapich*
```

```
-drwxr-xr-x 12 root root 4096 Oct 18 13:25 /usr/local/packages/mvapich-0.98-gcc
-drwxr-xr-x 12 root root 4096 Jan 23 11:35 /usr/local/packages/mvapich-0.98-intel10.1
-drwxr-xr-x 12 root root 4096 Oct 18 13:25 /usr/local/packages/mvapich-0.98-intel19.1
-drwxr-xr-x 12 root root 4096 Feb 12 10:27 /usr/local/packages/mvapich-0.98-pgi6.1
-drwxr-xr-x 12 root root 4096 Nov 19 10:40 /usr/local/packages/mvapich-1.0-beta-intel10.0
-drwxr-xr-x 12 root root 4096 Nov 1 11:57 /usr/local/packages/mvapich-1.0-beta-intel-9.1
-drwxr-xr-x 12 root root 4096 Jan 24 16:38 /usr/local/packages/mvapich-1.0-intel10.1
-drwxr-xr-x 10 root root 4096 Oct 18 13:25 /usr/local/packages/mvapich2-0.98-gcc
-drwxr-xr-x 10 root root 4096 Jan 24 16:05 /usr/local/packages/mvapich2-0.98-intel10.1
-drwxr-xr-x 10 root root 4096 Oct 18 13:25 /usr/local/packages/mvapich2-0.98-intel19.1
-drwxr-xr-x 11 root root 4096 Nov 9 16:31 /usr/local/packages/mvapich2-1.01-intel10.0
-drwxr-xr-x  9 root root 4096 Jan 25 09:54 /usr/local/packages/mvapich2-1.0.1-intel10.1
-drwxr-xr-x 11 root root 4096 Nov 8 13:10 /usr/local/packages/mvapich2-1.0.1-intel19.1
```

- We have many different versions of MPI compilers
- So it is extremely important to compile and run you code with the same version of MPI compiler and mpirun!!!
Application Packages

• Installed under /usr/local/packages
• Most of them are managed by SOFTENV
 – Libraries
 ▪ FFTW, HDF5, NetCDF, PETSc, MKL
 – Chemistry
 ▪ Amber, Gaussian, CPMD, NWChem, NAMD
 – Profiling/debugging tools
 ▪ TAU, Totalview
 – ...

• We will provide tutorials on some of them as part of the HPC training series
Exercise 3: Compile a code

- **Serial code**
 - Copy `hello.f90` from `/home/lyan1/traininglab/environment`
 - Compile it with a compiler of your choice
 - Run the executable from the command line

- **MPI code**
 - Copy `hello_mpi.f90` from `/home/lyan1/traininglab/environment`
 - Compile it with a serial compiler and see what happens
 - Compile it with an MPI compiler
 - We will run it later
Exercise 3: Compile a code

- **Serial code**
 - Linux
 - cp /home/lyan1/traininglab/environment/* .f90
 - icc -o hello_ser hello.f90
 - ./hello_ser
 - AIX
 - cp /home/lyan1/traininglab/environment/* .f90
 - xlf90_r -o hello_ser hello.f90
 - ./hello_ser
 - mpxlf90_r -o hello hello_mpi.f90

- **MPI code**
 - Copy `hello_mpi.f90` from `/home/lyan1/traininglab/environment`
 - Compile it with a serial compiler and see what happens
 - Compile it with an MPI compiler
 - We will run it later
Outline

• Overview
• Hardware
• Software
 – User environment
 – Compilers
 – Application software
• Job management
Batch Queuing System

• A software suite that schedules job execution on (the computation nodes of) a cluster
 – Linux clusters: Torque/Moab
 – AIX clusters: Loadleveler

• Jobs are scheduled for execution in a number of queues, each of which has different
 – Number of available nodes
 – Max running jobs per user
 – Max run time
 – ...
Queue Characteristics - Queen Bee

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workq</td>
<td>2 days</td>
<td>530</td>
<td>8</td>
<td>128</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td></td>
<td>668</td>
<td></td>
<td>256</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td></td>
<td>668</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
<tr>
<td>Priority</td>
<td></td>
<td>668</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Queue Characteristics - Other LONI Linux Clusters

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>14 days</td>
<td>16</td>
<td>64</td>
<td>1</td>
<td>Single processor jobs</td>
</tr>
<tr>
<td>Workq</td>
<td>3 days</td>
<td>64</td>
<td>8</td>
<td>40</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td>3 days</td>
<td>128</td>
<td>8</td>
<td>64</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td>3 days</td>
<td>64</td>
<td>NA</td>
<td>NA</td>
<td>Require permission</td>
</tr>
<tr>
<td>Priority</td>
<td>3 days</td>
<td>64</td>
<td>NA</td>
<td>NA</td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Queue Characteristics - LONI AIX Clusters

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>14 days</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>Single processor jobs</td>
</tr>
<tr>
<td>Workq</td>
<td>5 days</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td></td>
<td>14</td>
<td></td>
<td>14</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td></td>
<td>6</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
<tr>
<td>Priority</td>
<td></td>
<td>6</td>
<td>NA</td>
<td></td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Job management

- Queue querying
 - Check free nodes and processors in each queue
- Job submission
 - Linux clusters: `qsub <job_script>`
 - AIX clusters: `llsubmit <job_script>`
- Job monitoring
 - Check the status of submitted jobs
- Job manipulation
 - Cancel/hold/release jobs
Queue Querying – Linux Clusters

Command: `showq`

```bash
[lyan1@oliver2 ~]$ showq
active jobs------------------------
JOBID   USERNAME   STATE   PROCS   REMAINING   STARTTIME
87809   pradeepv   Running  16   2:22:00:29   Fri Feb 27 10:36:41
87805   bnovak1    Running  32   2:20:54:58   Fri Feb 27 09:31:10
...  
87810   rama       Running  1    4:07:44       Fri Feb 27 10:43:56

13 active jobs     437 of 504 processors in use by local jobs (86.71%)
110 of 126 nodes active  (87.30%)

eligible jobs------------------------
JOBID   USERNAME   STATE   PROCS   WCLIMIT   QUEUETIME
0 eligible jobs

blocked jobs------------------------
JOBID   USERNAME   STATE   PROCS   WCLIMIT   QUEUETIME
0 blocked jobs
Total jobs: 13
Queue Querying – AIX Clusters

- **Command - llclass**

```bash
lyan1@l2f1n03$ llclass
```

<table>
<thead>
<tr>
<th>Name</th>
<th>MaxJobCPU</th>
<th>MaxProcCPU</th>
<th>Free</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interactive</td>
<td>undefined</td>
<td>undefined</td>
<td>8</td>
<td>8</td>
<td>Interactive Parallel jobs running on interactive node</td>
</tr>
<tr>
<td>single</td>
<td>unlimited</td>
<td>unlimited</td>
<td>4</td>
<td>8</td>
<td>One node queue (14 days) for serial and up to 8-processor parallel jobs</td>
</tr>
<tr>
<td>workq</td>
<td>unlimited</td>
<td>unlimited</td>
<td>51</td>
<td>56</td>
<td>Default queue (5 days), up to 56 processors</td>
</tr>
<tr>
<td>priority</td>
<td>unlimited</td>
<td>unlimited</td>
<td>40</td>
<td>40</td>
<td>priority queue reserved for on-demand jobs (5 days), up to 48 processors</td>
</tr>
<tr>
<td>preempt</td>
<td>unlimited</td>
<td>unlimited</td>
<td>40</td>
<td>40</td>
<td>preemption queue reserved for on-demand jobs (5 days), up to 48 processors</td>
</tr>
<tr>
<td>checkpoint</td>
<td>unlimited</td>
<td>unlimited</td>
<td>91</td>
<td>96</td>
<td>queue for checkpointing jobs (5 days), up to 104 processors, Job running on this queue can be preempted for on-demand job</td>
</tr>
</tbody>
</table>
Job submission script – Linux clusters

#!/bin/bash
#PBS -l nodes=4:ppn=4  Number of nodes and processor
#PBS -l walltime=24:00:00  Maximum wall time
#PBS -N myjob  Job name
#PBS -o pbsout  Output file name (stdout)
#PBS -j oe  Join stdout and stderr
#PBS -q checkpt  Submission queue
#PBS -A loni_allocation  Account (allocation name)
#PBS -m e  Send mail when job ends
#PBS -M user@lsu.edu  Send mail to this address

<shell commands>
mpirun -machinefile $PBS_NODEFILE -np 16 <path_of_your_executable>
<shell commands>
Job submission script – AIX clusters

#!/bin/sh
#@ environment = COPY_ALL
#@ job_type = parallel
#@ output = /work/default/username/$(jobid).out
#@ error = /work/default/username/$(jobid).err
#@ notify_user = youremail@domain
#@ notification = error
#@ class = checkpt
#@ wall_clock_limit = 24:00:00
#@ node_usage = shared
#@ node = 2,2
#@ total_tasks = 16
#@ initialdir = /work/default/username
#@ queue
<shell commands>
/usr/bin/poe <path_of_your_executable>
<shell commands>
Job Monitoring – Linux Clusters

• **Command:** `qstat <options> <job_id>`
  – All jobs are displayed if `<job_id>` is omitted
  – Display a full status display: `qstat -f <job_id>`
  – Display in the alternative format: `qstat -a <job_id>`

```
[lyan1@qb2 ~]$ qstat -a
```

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Username</th>
<th>Queue</th>
<th>Jobname</th>
<th>SessID</th>
<th>NDS</th>
<th>TSK</th>
<th>Memory</th>
<th>Elap S Time</th>
<th>Req'd Time</th>
<th>Req'd Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2063.qb2</td>
<td>skeasler</td>
<td>checkpt</td>
<td>nh4claa1</td>
<td>22534</td>
<td>12</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 00:00</td>
<td></td>
</tr>
<tr>
<td>2064.qb2</td>
<td>skeasler</td>
<td>checkpt</td>
<td>nh4claa2</td>
<td>20625</td>
<td>12</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 00:00</td>
<td></td>
</tr>
<tr>
<td>2065.qb2</td>
<td>skeasler</td>
<td>checkpt</td>
<td>nh4no3hs1</td>
<td>29016</td>
<td>12</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 00:00</td>
<td></td>
</tr>
<tr>
<td>2079.qb2</td>
<td>ade</td>
<td>checkpt</td>
<td>F3ran_dlv</td>
<td>19851</td>
<td>10</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 36:26</td>
<td></td>
</tr>
<tr>
<td>2080.qb2</td>
<td>cott</td>
<td>checkpt</td>
<td>D0HR7</td>
<td>23738</td>
<td>32</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 36:25</td>
<td></td>
</tr>
<tr>
<td>2081.qb2</td>
<td>pakya</td>
<td>workq</td>
<td>blade</td>
<td>24485</td>
<td>20</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 36:19</td>
<td></td>
</tr>
<tr>
<td>2099.qb2</td>
<td>ade</td>
<td>checkpt</td>
<td>sp10</td>
<td>1531</td>
<td>10</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 31:04</td>
<td></td>
</tr>
<tr>
<td>2100.qb2</td>
<td>ade</td>
<td>checkpt</td>
<td>F3ran2_dlv</td>
<td>3359</td>
<td>10</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 31:00</td>
<td></td>
</tr>
<tr>
<td>2106.qb2</td>
<td>ade</td>
<td>checkpt</td>
<td>PLdt4_rani</td>
<td>25354</td>
<td>10</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 28:58</td>
<td></td>
</tr>
</tbody>
</table>

LONI High Performance Computing Workshop – Southern University
March 3, 2009
Job Monitoring – AIX Clusters

• **Command:** `llq <options> <job_id>`
  
  – All jobs are displayed if `<job_id>` is omitted
  
  – Display detailed information: `llq -l <job_id>`
  
  – Display jobs from a certain user: `llq -u <username>`

```
lyan1@12f1n03$ llq
Id Owner Submitted ST PRI Class Running On
--- ------ ---------- -- -- -------- -----------
12f1n03.3697.0 collin 1/22 16:59 R 50 single 12f1n14
12f1n03.3730.0 jheiko 1/28 13:30 R 50 workq 12f1n10
12f1n03.3726.0 collin 1/26 08:21 R 50 single 12f1n14
12f1n03.3698.0 collin 1/22 17:00 R 50 single 12f1n14
12f1n03.3727.0 collin 1/26 08:21 R 50 single 12f1n14

5 job step(s) in queue, 0 waiting, 0 pending, 5 running, 0 held, 0 preempted
```
Job Manipulation – Linux Clusters

- To kill a running or queued job (it could take a while to complete)
  - `qdel <job_id>`
  - `qdel -W force <job_id>`

- Put a queued job on hold
  - `qhold <job_id>`

- Resume a held job
  - `qrls <job_id>`
Job Manipulation – AIX Clusters

- **Cancel a job**
  - `llcancel <job_id>`

- **Hold a job**
  - `llhold <job_id>`

- **Release a job**
  - `llhold -r <job_id>`
Exercise 4: Run the MPI “hello world” program

- Run the parallel executable you compiled in Exercise 3 through the batch queuing system
  - On any cluster
  - In any queue
  - Recommended parameters
    - Number of processors: 8
    - Wall clock limit: 10 minutes
Exercise 4: Run the MPI “hello world” program

- Run the parallel executable you compiled in Exercise 3 through the batch queuing system
  - On any cluster
  - In any queue
  - Recommended parameters
    - Number of processors: 8
    - Wall clock limit: 10 minutes
  - There are two scripts in the directory where you copied the program from, which can be used as a template
    - Linux: `qsub submit.linux`
    - AIX: `llsubmit submit.aix`
When you have questions

- User's Guide
  - LONI: https://docs.loni.org/wiki/Main_Page

- User Support
  - LONI: sys-help@loni.org

- Live help (AIM, Yahoo Messenger, Google Talk)
  - Add “lsuhpchelp”