Programming Environment on LONI/LSU HPC Clusters

Le Yan
Scientific computing consultant
User services group
LSU/LONI HPC

Email: lyan1@lsu.edu Office: (225)578-7524 AIM: lyanlsu
Outline

- Overview
- Hardware
- Software
 - User environment
 - Compilers
 - Application software
- Job management
Outline

• Overview

• Hardware

• Software
 – User environment
 – Compilers
 – Application software

• Job management
Two Major Types of Clusters

- **Linux clusters**
 - Vendor: Dell
 - OS: Linux (Red hat)
 - Processor: Intel

- **AIX clusters**
 - Vendor: IBM
 - OS: AIX
 - Processor: IBM
Current deployment status - Dell Linux clusters

<table>
<thead>
<tr>
<th>Name</th>
<th>Peak TeraFLOPS/s</th>
<th>Location</th>
<th>Status</th>
<th>Login</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queen Bee</td>
<td>50.7</td>
<td>ISB</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Eric</td>
<td>4.7</td>
<td>LSU</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Oliver</td>
<td>4.7</td>
<td>ULL</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Louie</td>
<td>4.7</td>
<td>Tulane</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Poseidon</td>
<td>4.7</td>
<td>UNO</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Painter</td>
<td>4.7</td>
<td>LaTech</td>
<td>To be deployed</td>
<td>LONI</td>
</tr>
<tr>
<td>???</td>
<td>4.7</td>
<td>Southern</td>
<td>To be deployed</td>
<td>LONI</td>
</tr>
<tr>
<td>LSU</td>
<td>15.3</td>
<td>LSU</td>
<td>Available</td>
<td>HPC</td>
</tr>
</tbody>
</table>

Manage your account:
- **LONI** https://allocations.loni.org/balances.php
- **HPC** https://accounts.hpc.lsu.edu/profile.php

Email: lyan1@lsu.edu Office: (225)578-7524 AIM: lyanlsu
Current deployment status - IBM AIX clusters

<table>
<thead>
<tr>
<th>Name</th>
<th>Peak TeraFLOPS/s</th>
<th>Location</th>
<th>Status</th>
<th>Login</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bluedawg</td>
<td>0.85</td>
<td>LaTech</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Ducky</td>
<td>0.85</td>
<td>Tulane</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Zeke</td>
<td>0.85</td>
<td>ULL</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Neptune</td>
<td>0.85</td>
<td>UNO</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>Lacumba</td>
<td>0.85</td>
<td>Southern</td>
<td>Available</td>
<td>LONI</td>
</tr>
<tr>
<td>LSU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelican</td>
<td>2.8</td>
<td>LSU</td>
<td>Available</td>
<td>HPC</td>
</tr>
</tbody>
</table>

Manage your account:
LONI https://allocations.loni.org/balances.php
HPC https://accounts.hpc.lsu.edu/profile.php
Outline

• Overview

• Hardware

• Software
 – User environment
 – Compilers
 – Application software

• Job management
Definition of **Cluster** (from Wikipedia):
A group of linked computers working together closely
Hardware (Linux)

- Queen Bee
 - 668 nodes with each node having: 8 Intel “Cloverton” Xeons cores @ 2.33 GHz, 8 GB RAM, 36 GB HD
 - 192 TB storage

- Tezpur
 - 360 nodes with each node having: 4 Intel “Woodcrest” Xeons cores @ 2.33 Ghz, 4 GB RAM, 80 GB HD
 - 32 TB storage

- Other LONI Linux clusters
 - 128 nodes with each node having: 4 Intel “Woodcrest” Xeons cores @ 2.33 Ghz, 4 GB RAM, 80 GB HD
 - 9 TB storage
Hardware (AIX)

- **Pelican**
 - 16 power5+ nodes with each node having: **16** IBM Power5+ processors @ 1.9 GHz, **32** GB RAM
 - 14 power5 nodes with each node having: **8** IBM Power5 processors @ 1.9 GHz, **16** GB RAM
 - 21 TB storage

- **LONI AIX clusters**
 - 14 power5 nodes with each node having: **8** IBM Power5 processors @ 1.9 GHz, **16** GB RAM
 - 280 GB storage
More on Hardware

- Technical details are usually not of interest to normal users
- A couple of things to keep in mind
 - Max usable amount of memory per node
 - Linux clusters: ~6 GB for Queen Bee, ~3 GB for others
 - AIX clusters: ~26 GB for Power5+ nodes (Pelican), ~13 GB for others
 - Which ARCHITECTURE to choose when trying to download/install/use software
 - Linux clusters: EM64T, AMD64, X86_64
 - AIX clusters: PowerPC, Power5

Email: lyan1@lsu.edu Office: (225)578-7524 AIM: lyanlsu
Outline

• Overview
• Hardware
• Software
 – User environment
 – Compilers
 – Application software
• Job management
Initial Login

- Log in via ssh
 - example: ssh <your_user_name>@oliver.loni.org

- Linux clusters
 - When you first login you'll see something like this:

 Generating public/private dsa key pair.
 Enter file in which to save the key (/home1/me/.ssh/id_dsa):
 Enter passphrase (empty for no passphrase):
 Enter same passphrase again:
 Your identification has been saved in /home1/me/.ssh/id_dsa.
 Your public key has been saved in /home1/me/.ssh/id_dsa.pub.
 The key fingerprint is:

 - What you need to do: press <enter> all the way down

 - Do not enter a passphrase !!!!!!!!
Login Shell

- The default Login shell is bash
- Supported shells: bash, tcsh, ksh, csh & sh
- View your shell by “echo $SHELL”
- Change your shell at the profile page
 - LONI: allocations.loni.org
 - LSU HPC: accounts.hpc.lsu.edu
File Systems

<table>
<thead>
<tr>
<th>File System</th>
<th>Throughput</th>
<th>File Life Time</th>
<th>Typically Used For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed file system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td>Yes</td>
<td>Low</td>
<td>Unlimited Code in development, compiled executables</td>
</tr>
<tr>
<td>Scratch</td>
<td>Yes</td>
<td>High</td>
<td>30 days Job input/output</td>
</tr>
<tr>
<td>Local Scratch</td>
<td>No</td>
<td>Job duration</td>
<td>Temporary files needed by running jobs</td>
</tr>
</tbody>
</table>

- Never ever let your job write output to your home directory
- The “scratch” space is not for long-term storage
Disk Quota

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Home Access point</th>
<th>Home Quota</th>
<th>Scratch Access point</th>
<th>Scratch Quota</th>
<th>Local scratch Access point</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONI Linux</td>
<td><code>/home/$USER</code></td>
<td>5 GB</td>
<td><code>/scratch/$USER</code></td>
<td>100 GB</td>
<td><code>/var/scratch</code></td>
</tr>
<tr>
<td>LONI AIX</td>
<td><code>/home/$USER</code></td>
<td>5 GB</td>
<td><code>/work/default/$USER</code></td>
<td>20 GB</td>
<td><code>/scratch/local</code></td>
</tr>
<tr>
<td>Tezpur</td>
<td><code>/home/$USER</code></td>
<td>5 GB</td>
<td><code>/scratch/$USER</code></td>
<td>NA</td>
<td><code>/var/scratch</code></td>
</tr>
<tr>
<td>Pelican</td>
<td><code>/home/$USER</code></td>
<td>5 GB</td>
<td><code>/work/default/$USER</code></td>
<td>50 GB</td>
<td><code>/scratch/local</code></td>
</tr>
</tbody>
</table>
Exercise 1: Now it's time to log in

• Log in any cluster

• Check your disk quota
 – Linux clusters: use “showquota” command
 ▪ Your scratch directory will be created within an hour of the first login
 – AIX clusters: use “quota” command

• Locate the directory
 /home/lyan1/traininglab/environment
 – There are files that you will need for following exercises
Manage the environment

- Environment variables
 - PATH: where to look for executables
 - LD_LIBRARY_PATH: where to look for shared libraries
 - Other custom environment variables needed by various software
- SOFTENV is a software that is used to set up these environment variables on all the clusters
 - More convenient than setting numerous environment variables in .bashrc or .cshrc
• Command “softenv” lists all packages that are managed by SOFTENV

[lyan1@tezpur2 ~]$ softenv
...
These are the macros available:
* @default
* @globus-4.0
globus client
* @intel-compilersglobus client
compiler: 'Intel Compilers', version: Latest.
A pointer to the latest installed intel
compilers.

These are the keywords explicitly available:
+Mesa-6.4.2
+R-2.8.0-gec 3.4.6
+ansys-lsdyna 11.0

ANSYS LS-DYNA is a premier software package
for explicit nonlinear structural
simulation with finite element pre- and
post-processor. docs =>
http://www1.ansys.com/customer/

Softenv key
...
SOFTENV

- Set up the environment variables to use a certain software
 - First add the key to $HOME/.soft

```
[lyan1@tezpur2 ~]$ cat .soft
#
# This is the .soft file.
# It is used to customize your environment by setting up environment
# variables such as PATH and MANPATH.
# To learn what can be in this file, use 'man softenv'.
+fds
+smv
+matlab-r2007b
```

- Then execute `resoft` at the command line

```
[lyan1@tezpur2 ~]$ resoft
```
SOFTENV

- **Command “soft-dbq” shows which variables are set by a certain SOFTENV key**

```bash
[lyan1@tezpur2 ~]$ soft-dbq +gcc-4.3.0
This is all the information associated with
the key or macro +gcc-4.3.0.
```

Name: +gcc-4.3.0
Description: GNU gcc compiler, version 4.3.0
Flags: none
Groups: none
Exists on: Linux

On the Linux architecture,
the following will be done to the environment:

```
The following environment changes will be made:
    LD_LIBRARY_PATH = ${LD_LIBRARY_PATH}:/usr/local/compilers/GNU/gcc-4.3.0/lib64
    PATH = ${PATH}:/usr/local/compilers/GNU/gcc-4.3.0/bin
```

Exercise 2: Use Softenv

- Find the key for VISIT (a visualization package)
- Check what variables are set through the key
- Set up your environment to use VISIT
- Check if the variables are correctly set by “which visit”
Exercise 2: Use Softenv

- Find the key for VISIT (a visualization package)
 - Use `softenv`
 - Or `softenv | grep -i visit` in case that the list is too long

- Check what variables are set through the key
 - Use `soft-dbq +visit`

- Set up your environment to use VISIT
 - Add "+visit" to your .soft file and `resoft`

- Check if the variables are correctly set by "which visit"
 - The output should be the path to the executable `visit`
Compilers

<table>
<thead>
<tr>
<th>Language</th>
<th>Linux clusters</th>
<th>AIX clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intel</td>
<td>GNU</td>
</tr>
<tr>
<td>Fortran</td>
<td>Ifort</td>
<td>G77</td>
</tr>
<tr>
<td>C</td>
<td>Icc</td>
<td>Gcc</td>
</tr>
<tr>
<td>C++</td>
<td>Icpc</td>
<td>G++</td>
</tr>
</tbody>
</table>

- **Usage: <compiler> <options> <your_code>**
 - Example: `icc -O3 -o myexec mycode.c`

- Some compilers options are **architecture** specific
 - Linux: EM64T, AMD64 or X86_64
 - AIX: power5 or powerpc
Compilers for MPI code

<table>
<thead>
<tr>
<th>Language</th>
<th>Linux clusters</th>
<th>AIX clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>mpif77,mpif90</td>
<td>mpxlf,mpxlf_r,mpxlF90,mpxlF90_r</td>
</tr>
<tr>
<td>C</td>
<td>Mpicc</td>
<td>mpcc,mpcc_r</td>
</tr>
<tr>
<td>C++</td>
<td>MpiCC</td>
<td>mpCC,mpCC_r</td>
</tr>
</tbody>
</table>

- Usage: similar to what we have seen
 - Example: `mpif90 -O2 -o myexec mycode.f90`

- On Linux clusters
 - We don't differentiate between different vendors, i.e. We don't have things like intel_mpicc and pg_mpicc
Compilers for MPI code

<table>
<thead>
<tr>
<th>Language</th>
<th>Linux clusters</th>
<th>AIX clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>mpif77,mpif90</td>
<td>mpxlf,mpxlf_r,mpxf90,mpxf90_r</td>
</tr>
<tr>
<td>C</td>
<td>Mpicc</td>
<td>mpcc,mpcc_r</td>
</tr>
<tr>
<td>C++</td>
<td>MpiCC</td>
<td>mpCC,mpCC_r</td>
</tr>
</tbody>
</table>

- These MPI compilers are actually **wrappers**
 - They still use the same compilers we've seen on the previous slides
 - They take care of everything we need to run MPI codes
 - What they actually do can be reveal by the `–show` option

```
[lyan1@tezpur2 ~]$ mpicc –show
icc –DUSE_STDARG –DHAVE_STDLIB_H=1 –DHAVE_STRING_H=1 –DHAVE_UNISTD_H=1
–DHAVE_STDARG_H=1 –DUSE_STDARG=1 –DMALLOC_RET VOID=1 –L
/usr/local/packages/mvapich-1.0-intel10.1/lib –lmpich –L
/usr/local/ofed/lib64 –Wl,–rpath=/usr/local/ofed/lib64 –libverbs –libumad
–lpthread –lpthread –lrt
```
Be careful on Linux clusters...

```
[lyan1@qb2 ~]$ ls -ld /usr/local/packages/mvapich*
drwxr-xr-x 12 root root 4096 Oct 18 13:25 /usr/local/packages/mvapich-0.98-gcc
drwxr-xr-x 12 root root 4096 Jan 23 11:35 /usr/local/packages/mvapich-0.98-intel110.1
```

- We have many different versions of MPI compilers
- So it is extremely important to compile and run your code with the same version of MPI compiler and mpirun!!!
Application Packages

- Installed under /usr/local/packages
- Most of them are managed by SOFTENV
 - Libraries
 - FFTW, HDF5, NetCDF, PETSc, MKL
 - Chemistry
 - Amber, Gaussian, CPMD, NWChem, NAMD
 - Profiling/debugging tools
 - TAU, Totalview
 - ...

- We will provide tutorials on some of them as part of the LSU HPC training series
Exercise 3: Compile a code

- **Serial code**
 - Copy `hello.f90` from `/home/lyan1/traininglab/environment`
 - Compile it with a compiler of your choice
 - Run the executable from the command line

- **MPI code**
 - Copy `hello_mpi.f90` from `/home/lyan1/traininglab/environment`
 - Compile it with a serial compiler and see what happens
 - Compile it with an MPI compiler
 - We will run it later
Exercise 3: Compile a code

- **Serial code**
 - **Linux**
 - `cp /home/lyan1/traininglab/environment/* .`
 - `icc -o hello_ser hello.f90`
 - `./hello_ser`
 - **AIX**
 - `cp /home/lyan1/traininglab/environment/* .`
 - `xlf90_r -o hello_ser hello.f90`
 - `./hello_ser`

- **MPI code**
 - Copy `hello_mpi.f90` from `/home/lyan1/traininglab/environment`
 - Compile it with a serial compiler and see what happens
 - Compile it with an MPI compiler
 - We will run it later

```bash
Linux
```
Outline

• Overview

• Hardware

• Software
 – User environment
 – Compilers
 – Application software

• Job management
Batch Queuing System

• A software suite that schedules job execution on (the computation nodes of) a cluster
 – Linux clusters: Torque/Moab
 – AIX clusters: Loadleveler

• Jobs are scheduled for execution in a number of queues, each of which has different
 – Number of available nodes
 – Max running jobs per user
 – Max run time
 – ...

Queue Characteristics - Queen Bee

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workq</td>
<td>2 days</td>
<td>530</td>
<td>8</td>
<td>128</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td>2 days</td>
<td>668</td>
<td>8</td>
<td>256</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td>2 days</td>
<td>668</td>
<td>NA</td>
<td>NA</td>
<td>Require permission</td>
</tr>
<tr>
<td>Priority</td>
<td>2 days</td>
<td>668</td>
<td>NA</td>
<td>NA</td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Queue Characteristics - Other LONI Linux Clusters

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>14 days</td>
<td>16</td>
<td>64</td>
<td>1</td>
<td>Single processor jobs</td>
</tr>
<tr>
<td>Workq</td>
<td>3 days</td>
<td>64</td>
<td>8</td>
<td>40</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td>3 days</td>
<td>128</td>
<td>8</td>
<td>64</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td>3 days</td>
<td>64</td>
<td>NA</td>
<td>NA</td>
<td>Require permission</td>
</tr>
<tr>
<td>Priority</td>
<td>3 days</td>
<td>64</td>
<td>NA</td>
<td>NA</td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Queue Characteristics - Tezpur

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>3 days</td>
<td>16</td>
<td>64</td>
<td>1</td>
<td>Single processor jobs</td>
</tr>
<tr>
<td>Workq</td>
<td></td>
<td>180</td>
<td>8</td>
<td>90</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td></td>
<td>344</td>
<td>8</td>
<td>180</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Require permission</td>
</tr>
<tr>
<td>Priority</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Queue Characteristics - Pelican

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available processors</th>
<th>Max running jobs per user</th>
<th>Max processors per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB5L</td>
<td>12 hours</td>
<td>32</td>
<td></td>
<td>1</td>
<td>Short single processor jobs</td>
</tr>
<tr>
<td>LB5L</td>
<td>14 days</td>
<td>28</td>
<td></td>
<td>1</td>
<td>Long single processor jobs</td>
</tr>
<tr>
<td>SP5L</td>
<td>4 hours</td>
<td>368</td>
<td>8</td>
<td>256</td>
<td>Short parallel jobs</td>
</tr>
<tr>
<td>MP5L</td>
<td>7 days</td>
<td>368</td>
<td></td>
<td>128</td>
<td>Medium parallel jobs</td>
</tr>
<tr>
<td>LP5L</td>
<td>14 days</td>
<td>368</td>
<td>4</td>
<td>64</td>
<td>Long parallel jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td>7 days</td>
<td>80</td>
<td>NA</td>
<td>64</td>
<td>Require permission</td>
</tr>
</tbody>
</table>
Queue Characteristics - LONI AIX Clusters

<table>
<thead>
<tr>
<th>Queue</th>
<th>Max Runtime</th>
<th>Total number of available nodes</th>
<th>Max running jobs per user</th>
<th>Max nodes per job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>14 days</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>Single processor jobs</td>
</tr>
<tr>
<td>Workq</td>
<td>5 days</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Unpreemptable (default)</td>
</tr>
<tr>
<td>Checkpt</td>
<td>6</td>
<td>14</td>
<td>NA</td>
<td>14</td>
<td>Preemptable jobs</td>
</tr>
<tr>
<td>Preempt</td>
<td>6</td>
<td>NA</td>
<td>NA</td>
<td>Require permission</td>
<td></td>
</tr>
<tr>
<td>Priority</td>
<td>6</td>
<td>NA</td>
<td>NA</td>
<td>Require permission</td>
<td></td>
</tr>
</tbody>
</table>

Email: lyan1@lsu.edu Office: (225)578-7524 AIM: lyanlsu
Job management

• Queue querying
 – Check free nodes and processors in each queue

• Job submission
 – Linux clusters: qsub <job_script>
 – AIX clusters: llsubmit <job_script>

• Job monitoring
 – Check the status of submitted jobs

• Job manipulation
 – Cancel/hold/release jobs
Queue Querying – Linux Clusters

- **Command:** `qfree`

```bash
[lyan1@louie2 ~]$ qfree
PBS total nodes: 128, free: 81, busy: 44, down: 3, use: 34%
PBS checkpt nodes: 128, free: 81, busy: 28
PBS workq nodes: 32, free: 16, busy: 16
```
Queue Querying – AIX Clusters

• **Command - llclass**

```
lyan1@12f1n03$ llclass
Name            MaxJobCPU  MaxProcCPU Free Max Description
               d+hh:mm:ss  d+hh:mm:ss Slots Slots

interactive   undefined  undefined  8   8  Interactive Parallel jobs running on interactive node
single          unlimited  unlimited  4   8 One node queue (14 days) for serial and up to 8-processor parallel jobs
workq           unlimited  unlimited  51  56 Default queue (5 days), up to 56 processors
priority       unlimited  unlimited  40  40 priority queue reserved for on-demand jobs (5 days), up to 48 processors
preempt         unlimited  unlimited  40  40 preemption queue reserved for on-demand jobs (5 days), up to 48 processors
checkpt         unlimited  unlimited  91  96 queue for checkpointing jobs (5 days), up to 104 processors, Job running on this queue can be preempted for on-demand job
```
Job submission script – Linux clusters

#!/bin/bash
#PBS -l nodes=4:ppn=4
#PBS -l walltime=24:00:00
#PBS -N myjob
#PBS -o pbsout
#PBS -j oe
#PBS -q checkpt
#PBS -A loni_allocation
#PBS -m e
#PBS -M user@lsu.edu

Number of nodes and processor
Maximum wall time
Job name
Output file name (stdout)
Join stdout and stderr
Submission queue
Account (allocation name)
Send mail when job ends
Send mail to this address

<shell commands>
mpirun -machinefile $PBS_NODEFILE -np 16 <path_of_your_executable>
<shell commands>
Job submission script – AIX clusters

#!/bin/sh
#@ environment = COPY_ALL
#@ job_type = parallel
#@ output = /work/default/username/$(jobid).out
#@ error = /work/default/username/$(jobid).err
#@ notify_user = youremail@domain
#@ notification = error
#@ class = checkpt
#@ wall_clock_limit = 24:00:00
#@ node_usage = shared
#@ node = 2,2
#@ total_tasks = 16
#@ initialdir = /work/default/username
#@ queue
<shell commands>
/usr/bin/poe <path_of_your_executable>
<shell commands>
Job Monitoring – Linux Clusters

- **Command:** `qstat <options> <job_id>
- All jobs are displayed if `<job_id>` is omitted
- Display a full status display: `qstat -f <job_id>
- Display in the alternative format: `qstat -a <job_id>`

```bash
[lyan1@qb2 ~]$ qstat -a
qb2:

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Username</th>
<th>Queue</th>
<th>Jobname</th>
<th>SessID</th>
<th>NDS</th>
<th>TSK</th>
<th>Req'd Memory</th>
<th>Req'd Time</th>
<th>Elap Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2063.qb2</td>
<td>skeasler</td>
<td>checkpoint</td>
<td>nh4claa1</td>
<td>22534</td>
<td>12</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 00:00</td>
</tr>
<tr>
<td>2064.qb2</td>
<td>skeasler</td>
<td>checkpoint</td>
<td>nh4claa2</td>
<td>20625</td>
<td>12</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 00:00</td>
</tr>
<tr>
<td>2065.qb2</td>
<td>skeasler</td>
<td>checkpoint</td>
<td>nh4no3hs1</td>
<td>29016</td>
<td>12</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 00:00</td>
</tr>
<tr>
<td>2079.qb2</td>
<td>ade</td>
<td>checkpoint</td>
<td>F3ran_dlv</td>
<td>19851</td>
<td>10</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 36:26</td>
</tr>
<tr>
<td>2080.qb2</td>
<td>cott</td>
<td>checkpoint</td>
<td>D0HR7</td>
<td>23738</td>
<td>32</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 36:25</td>
</tr>
<tr>
<td>2081.qb2</td>
<td>pakya</td>
<td>workq</td>
<td>blade</td>
<td>24485</td>
<td>20</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 36:19</td>
</tr>
<tr>
<td>2099.qb2</td>
<td>ade</td>
<td>checkpoint</td>
<td>sp10</td>
<td>1531</td>
<td>10</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 31:04</td>
</tr>
<tr>
<td>2100.qb2</td>
<td>ade</td>
<td>checkpoint</td>
<td>F3ran2_dlv</td>
<td>3359</td>
<td>10</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 31:00</td>
</tr>
<tr>
<td>2106.qb2</td>
<td>ade</td>
<td>checkpoint</td>
<td>PLdt4_rani</td>
<td>25354</td>
<td>10</td>
<td>1</td>
<td>--</td>
<td>48:00</td>
<td>R 28:58</td>
</tr>
</tbody>
</table>
```
Job Monitoring – AIX Clusters

- **Command:** `llq <options> <job_id>`
 - All jobs are displayed if `<job_id>` is omitted
 - Display detailed information: `llq -l <job_id>`
 - Display jobs from a certain user: `llq -u <username>`

```bash
lyan1@l2f1n03$ llq
Id             Owner     Submitted     ST  PRI  Class        Running On
--------------   ---------   -----------   --  --   --------        ----------
12f1n03.3697.0  collin    1/22 16:59    R   50   single       l2f1n14
12f1n03.3730.0  jheiko    1/28 13:30    R   50   workq       l2f1n10
12f1n03.3726.0  collin    1/26 08:21    R   50   single       l2f1n14
12f1n03.3698.0  collin    1/22 17:00    R   50   single       l2f1n14
12f1n03.3727.0  collin    1/26 08:21    R   50   single       l2f1n14

5 job step(s) in queue, 0 waiting, 0 pending, 5 running, 0 held, 0 preempted
```
Job Manipulation – Linux Clusters

- To kill a running or queued job (it could take a while to complete)
 - `qdel <job_id>`
 - `qdel -W force <job_id>`

- Put a queued job on hold
 - `qhold <job_id>`

- Resume a held job
 - `qrls <job_id>`
Job Manipulation – AIX Clusters

- **Cancel a job**
 - `llcancel <job_id>`

- **Hold a job**
 - `llhold <job_id>`

- **Release a job**
 - `llhold -r <job_id>`
Exercise 4: Run the MPI “hello world” program

- Run the parallel executable you compiled in Exercise 3 through the batch queuing system
 - On any cluster
 - In any queue
 - Recommended parameters
 - Number of processors: 8
 - Wall clock limit: 10 minutes
Exercise 4: Run the MPI “hello world” program

- Run the parallel executable you compiled in Exercise 3 through the batch queuing system
 - On any cluster
 - In any queue
 - Recommended parameters
 - Number of processors: 8
 - Wall clock limit: 10 minutes
 - There are two scripts in the directory where you copied the program from, which can be used as a template
 - Linux: qsub submit.linux
 - AIX: llsubmit submit.aix
When you have questions

- User's Guide
 - HPC: http://www.hpc.lsu.edu/help
 - LONI: https://docs.loni.org/wiki/Main_Page

- User Support
 - LONI: sys-help@loni.org
 - HPC: consult@cct.lsu.edu

- Walk-in consulting session at Middleton library
- Live help (AIM, Yahoo Messenger, Google Talk)
 - Add “lsuhpchelp”