
DISC: A System for Distributed Data Intensive Scientific Computing

George Kola, Tevfik Kosar, Jaime Frey, Miron Livny
Computer Sciences Department

University of Wisconsin-Madison
kola,kosart,jfrey,miron@cs.wisc.edu

Robert Brunner
Department of Astronomy and NCSA

University of Illinois at Urbana-Champaign
rb@astro.uiuc.edu

Michael Remijan
NCSA

University of Illinois at Urbana-Champaign
remijan@ncsa.uiuc.edu

Abstract
The increasing computation and data requirements of sci-
entific applications have necessitated the use of distributed
resources owned by collaborating parties. While exist-
ing distributed systems work well for computation that re-
quires limited data movement, they fail in unexpected ways
when the computation accesses, creates, and moves large
amounts of data over wide-area networks. In this work, we
analyzed the problems with existing systems and used the
result of this analysis to design our own system. Realizing
that it takes a long while for a new system to stabilize, we
tried our best to reuse existing components. We added new
components only when we could not get by with adding
features to existing ones. We used our system to success-
fully process three terabytes of DPOSS image data in un-
der a week by using idle CPUs in desktops and commodity
clusters in the UW-Madison Computer Science Department
and Starlight.

1 Introduction
The scientific community has been collaborating to solve
hard problems, such as finding the Higgs Boson [5] and
mapping the human genome. The solutions involve a large
amount of computation beyond the scope of a single or-
ganization. This has necessitated the use of distributed
resources owned by collaborating parties. While exist-
ing distributed systems work well for computation that re-
quires limited data movement, they fail in unexpected ways
when the computation accesses, creates, and moves large
amounts of data.

Typical scientific applications consist of multiple stages
of processing performed in a pipelined manner. The data
transfer between stages is mostly done via pipes and files.
Thain et al. [25] mention the process in detail.

Scientists want to run a large number of instances of the
pipeline, each of them operating on independent data. For
instance, NCSA astronomers search for bright galaxies by
running 2611 instances of the Sextractor [1] pipeline on the
DPOSS [8] dataset with each pipeline accessing a different
1.1 GB image. This process can be more complex, with

feedback from one set of pipelines affecting the next set.
The BMRB [2] BLAST [22] pipeline uses the result of a
set of protein sequence matches to refine the next set of
searches.

In this work, we analyzed the problems with existing
systems and used it to design our system. Realizing that it
takes a long time for a new system to stabilize, we tried our
best to reuse existing components and added new compo-
nents only when we could not get by with adding features to
existing ones. We used our system to successfully process
three terabytes of DPOSS image data in under a week by
using idle CPUs in desktops and commodity clusters in the
UW-Madison Computer Science Department and Starlight,
a network access point located in Chicago.

2 Limitations of Current Systems
Some of the limitations of the current systems in handling
data intensive distributed computation are as follows.

Data movement part of computation. Existing sys-
tems closely couple data movement and computation. This
results in re-computation whenever the output data transfer
fails. This is especially bad for data intensive applications,
where the transfers have a higher likelihood of failure be-
cause they move large amounts of data. Further, if there are
intermittent network failures, we may be unable to com-
plete the transfer unless we can resume the previous failed
transfer.

Data movement not scheduled.There is no schedul-
ing of data movement. This has resulted in storage server
thrashing/crashing when a large number of compute nodes
read/write data from/to it respectively. When a large num-
ber of compute nodes write data to a storage server, it acts
as a distributed denial of service attack.

Inability to distinguish between transient and perma-
nent failures. Current systems do not differentiate between
transient and permanent failures and apply the same strat-
egy to both, resulting in the system being unable to han-
dle each class of failure appropriately. For instance, some
systems waste resources trying to recover from a perma-
nent failure, which results in a considerable delay before



the user notices the problem. At other times, they give
up too soon on transient failures, resulting in application
level failure that needs user intervention to fix. For in-
stance, many data transfers fail because of temporary net-
work outage and temporary non-availability of a storage
server and users would prefer the system to automatically
recover from such transient failures.

Need artificial dependencies to prevent overcommit-
ing of resources.Existing systems allow users to specify
dependencies between jobs. However, they do not allow
them to restrict the number of concurrent jobs of a cer-
tain class. Many applications need to restrict the number
of concurrent jobs in a certain processing stage, as the jobs
can open only so many database connections without over-
whelming the server, or because of space limitations in the
shared fileserver. To accomplish this, users have to intro-
duce artificial dependencies between jobs/pipelines. In this
case, a failure of one pipeline may prevent a set of other in-
dependent pipelines from executing because of the artificial
dependency, resulting in sub-optimal throughput.

Inability to set priority between pipelines. Users want
some results before other results. Current systems do not
support priority between pipelines. Some support job-level
priority but they do not provide a higher-level interface
to set priority between pipelines. They require manual
mapping from pipeline-level priority to job-level priority.
Further, users may want to change the priorities between
pipelines dynamically. For instance, the user may have
made a mistake in a certain pipeline and when he notices
the failure, he may fix it and then want the fixed pipeline
to complete before some of the earlier submitted pipelines.
Users cannot easily accomplish this in existing systems.

Inability to execute alternative pipeline. There is
newer and/or alternative software that is faster but may fail
on certain inputs. Users want to use the faster software
when it works and switch to the slower, more reliable one
when the faster one fails. Current systems do not support
this.

Inability to dynamically balance load across multi-
domain resources. The current systems do not dynami-
cally load balance across multi-domain resources. Part of
the problem is that the pipeline may be different depending
on the domain. If a system is to dynamically load balance
across domains, it must be able to choose the appropriate
pipeline depending on the domain. Current systems cannot
do that and users who want to load balance across domains
have to do it statically.

Inability to dynamically adapt. Many tunable param-
eters depend on the current state of the network, server,
and other components involved in the pipeline. Ideally, the
system should be able to figure this out and adapt the ap-
plication. A low-level example is that the TCP buffer size
should be set equal to the bandwidth delay product to uti-
lize the full bandwidth. A higher-level example is that to
maximize throughput of a storage server, the number of

concurrent data transfers should be controlled taking into
account server, end host, and network characteristics. Cur-
rent systems do not perform automated tuning.

3 Related Work
GridDB [19] is a grid middleware based on a data-
centric model for representing workflows and their data.
GridDB provides users with a relational interface through
a three-tiered programming model combining procedu-
ral programs (tier 1) and their data through a functional
composition language (tier 2). The relational interface
(tier 3) provides an SQL-like query and data manipula-
tion language and data definition capability. GridDB al-
lows prioritization of parts of a computation through a
tabular interface. GridDB is at a higher-level than our
system. It presents a data-centric view to the user and
uses the Condor [18]/Condor-G [11] batch scheduling sys-
tem underneath. Since our system is a transparent layer
above Condor/Condor-G, GridDB can easily use our sys-
tem for data intensive applications and benefit from im-
proved throughput, fault-tolerance, and failure handling.

Chimera [10] is a virtual data system for representing,
querying, and automating data derivation. It provides a
catalog that can be used by application environments to
describe a set of application programs (“transformations”),
and then track all the data files produced by executing those
applications (“derivations”). Chimera contains a mecha-
nism to locate the “recipe” to produce a given logical file, in
the form of an abstract program execution graph. The Pe-
gasus planner [7] maps Chimera’s abstract workflow into
a concrete workflow DAG that the DAGMan [6] meta-
scheduler executes. DAGMan is a popular workflow sched-
uler and our system addresses the deficiencies of DAGMan
and provides new capabilities that considerably improve
fault-tolerance, increase throughput, and greatly enhance
user experience. Thus, Pegasus and Chimera would benefit
from our system.

4 Framework
We set out to address all the problems with existing systems
mentioned in the previous section.

First, we define some terms used in our work. ‘Pipeline
Identifier’ is a string that uniquely identifies the data to be
processed by one pipeline within a dataset. ‘Pipeline Gen-
erator’ is a program that takes a pipeline identifier and gen-
erates the workflow to process that data. The workflow is
represented as a directed acyclic graph(DAG) of processing
stages in the same manner as DAGMan. For the NCSA im-
age processing, the pipeline identifier is a string that speci-
fies the source directory of the dataset, the filename of the
1.1 GB image file to be processed, the destination directory
for the result, and the file transfer protocol to use.

Figure 1 shows an overview of our system. The user first
supplies a set of pipeline generators. Individual execution
domains can have their own pipeline generators. The user



Database

Multi-domain
Scheduler

Concrete
Workflow

Concrete
Workflow

Data Placement
Scheduler

Workflow 
Manager

Workflow 
Manager

Computation 
Scheduler

Computation 
Scheduler

Domain A 
Scheduling System

Log Files

Failure
Manager

Pipeline
Identifier

List

Domain A Domain B

Pipeline Generators

User

Presentation
Layer 

SQ
L

 Interface

Domain B     
Scheduling System

Feedback to System

Feedback to U
ser

Figure 1: Shows the components of our system

can also define a default set of generators that are used for
domains that do not have their own generators. For each
domain, the user can specify a list of alternative genera-
tors sorted by preference order. The alternative generators
usually perform equivalent processing using different pro-
grams or different versions of the same program. It enables
users to use newer and faster programs when they work
and switch to slower and more reliable programs when the
faster ones fail. The pipeline generators are stored in a
database, allowing them to be set up once and used repeat-
edly by multiple users.

Whenever a user wants to process some data, he specifies
a list of pipeline identifiers, their priority, and the pipeline
generators to be used. The user may also specify the do-
mains to be used to execute these pipelines. Otherwise, the
system uses only the local domain. The user can change
the priority of the pipeline anytime.

The multi-domain scheduler determines the available
CPU, storage, and network resources in each domain and
uses that to dynamically assign pipelines to domains in
the order of pipeline priority. It then invokes the appro-
priate pipeline generator and submits the resulting work-
flow to our workflow manager. The scheduler monitors
the progress of executing pipelines and uses that to dy-
namically assign work. The net result is that each domain
gets work according to its capability and users see a much
shorter turn-around time.

To provide fault-isolation, we decouple data placement
and computation, making data placement a full-fledged
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Figure 2: Shows the analytical model of processing in a
domain

job. Thus, data placement failures do not result in com-
putation failures and vice-versa. We schedule the data
placement jobs taking into account end-host and storage
server characteristics. Our concrete workflow DAG speci-
fies two types of jobs: computation jobs and data placement
jobs. Our workflow manager submits computation jobs to
Condor-G and data placement jobs to Stork [17], our pro-
totype data-placement scheduler.

We parse Stork and Condor-G job log files and store
them in the database. We extended the methodology de-
veloped in our previous work [14], where we entered Con-
dor log data into a relational database. This allows us to
efficiently access past performance data to aid in future
scheduling decisions.

The multi-domain scheduler is responsible for load bal-
ancing across domains. We built an analytical model,
shown in figure 2, for calculating the throughput of a do-
main. We split the execution of a pipeline into three stages:
stage-in, processing, and stage-out. The throughput of the
stage-in process depends on the input network, source disk,
and destination disk. We have profilers that calculate the
data rate sustained by the source and destination disks. Us-
ing network bandwidth estimation tools [9,13], we estimate
the input network bandwidth to the domain. The input data
rate is the minimum of the source disk, destination disk,
and network data rates. Similarly, we calculate the output
data rate. Knowing the average input and output file sizes,
we can calculate the throughput of the input network and
output network. We needed to use a load dependent server
to model the CPU because the throughput keeps increasing
until the number of processing instances becomes equal to
the number of idle processors. Space availability may limit
the number of concurrent processing instances. Taking into
account space availability, number of idle CPUs, and aver-
age processing time, we can estimate the throughput of the
CPU resource. As we pipeline the three stages (overlap ex-
ecution of these three stages), the overall throughput is the
minimum of the throughput of the three stages. During the
execution of each pipeline, the throughput of each stage is
measured. We use these measurements to refine the model



and get a better estimate of the overall throughput.

We assign pipelines to domains in proportion to their es-
timated throughput. The throughput estimate gets refined
dynamically as the pipelines execute. In steady state, the
work assigned to each domain is the same as the through-
put of the domain. When failures occur, they affect the
throughput of one or more stages and hence the overall
throughput of the domain. Because the throughput drops,
the multi-domain scheduler would assign new work propor-
tional to the new throughput. If there is a backlog because
of a drop in throughput, we do not assign new work until
the backlog is cleared.

Towards the end of a run, certain domains may not have
any pipelines to run while others may still have a backlog.
The continuous dynamic estimation reduces the amount of
backlog, but the actual amount depends on the scale of fluc-
tuation and failures. For instance, towards the end if the
number of available CPUs in a domain drops from hun-
dred to five, there may be a backlog in that domain. We
can safely assign unstarted processing to another domain.
However, this is not work conserving, as we have to pay
the cost for shipping the data to a different domain.

The system can run extra instances of the unfinished
pipelines on the idle resources, killing all other instances
when one completes. We must be careful that the final data
transfers of two instances do not conflict, for example, by
writing to the same file. We handle this with a namespace
mapping technique (writing to a different directory and do-
ing a move with the condition that the first domain that has
successfully transferred the whole data wins). This may
not be safe as some programs may modify permanent state
outside the system’s knowledge and control (e.g. directly
modifying a central database). Simultaneously executing
two instances of such a program may corrupt the shared
data. Therefore, we require the user to explicitly enable
this optimization. We provide the mechanism to reduce the
completion time and let users specify policies on what they
want to do: conserve work, amount of extra work to per-
form to reduce turn-around time, etc.

Towards the end, when there are fewer pipelines than
available resources, we can use the analytical model and
assign work to domains in such a way as to minimize the
turn around time. This optimization requires further explo-
ration.

One of the key issues that we wanted to address is the
separation of system and application failures. To handle
this we have developed a failure manager that can clas-
sify failures as transient or permanent and, consulting user-
specified policies, handle each failure appropriately. We
developed the failure manager from our earlier work on
Phoenix [15], a fault-tolerant middleware layer. Details of
the classification mechanism are described in [15]. If the
user specifies alternative pipelines, the system switches to
an alternative pipeline on application failure. At times, a
data transfer may fail and if it is a transient failure (e.g.
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Figure 3: Shows how an agent can tune the concurrency
level

network outage), the failure manager detects that and sug-
gests a suitable strategy to Stork. For instance, if the trans-
fer failed because of a network outage, the failure manager
would ask Stork to try to resume the transfer with exponen-
tial back off between failures. If the transfer failed because
of a protocol server crash, the failure manager would sug-
gest an alternative protocol if that is available.

To handle concurrency issues, we have a concurrency
manager. Users can restrict the number of concurrent
pipelines both globally and within each domain. This may
be necessary to prevent overloading of shared resources
that our system is unaware of, such as a central database
accessed by the user program. Such throttling does away
the need to create artificial dependencies and improves
throughput in the presence of failures.

Figure 3 shows a sample throughput and server CPU uti-
lization with respect to concurrency level. An agent can
monitor this and dynamically tune the concurrency level to
achieve the user desired metric. In the simplistic case, the
agent can tweak the concurrency level and set it to the min-
imum concurrency level to achieve the maximum through-
put. When the server load becomes too high, it can lower
the concurrency level to reduce the load.

Our system is fully backward compatible with
DAGMan/Condor-G, used by most grid users [12].
If users want to use the old interface of the dependency
manger, they would have to forgo multi-domain load
balancing, setting priority between pipelines, and support
for alternative pipelines, but they would still benefit from
the other features. If they are willing to slightly change
their setup and use our new interface, which is very similar
to the existing one, they benefit from all our features.

5 Evaluation
5.1 NCSA DPOSS Image Processing
NCSA astronomers wanted to search for bright galaxies in
the three terabyte DPOSS [8] dataset. Their two main re-
quirements were fully automated processing and short turn
around time. As we were building our system, we inter-
acted with them and the generated interest resulted in col-
laboration.

The DPOSS dataset was stored in NCSA’s UniTree [3]
mass storage system. The astronomers had access to only
a couple of shared dual Xeon processor machines and were
in the process of acquiring resources to process the DPOSS
data. They decided to try our system hoping to utilize idle
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Figure 5: Throughput of the System

CPUs to perform their computation.
Processing time for the initial analysis of a single im-

age varies from half-an-hour to two-and-a-half hours. Af-
ter initial analysis, astronomers want more a more detailed
processing, taking up to an order of magnitude longer,
for some of the images. The wide area transfer took less
than three minutes. The file transfer from the mass-storage
server depended on whether the file was in the cache or on
tape resulting in a high variance. This makes overlap of
stage-in and processing, which our system performs, very
beneficial.

We installed a prototype of our system (Figure 4). We
used one of the dual Xeon machines as a staging node. We
staged data from the NCSA mass-storage server to the local
staging node, which had 20 GB of free disk space. Our
plan was to use idle CPUs at the UW-Madison Computer
Science Department and Starlight.

We had access to eight CPUs at Starlight and over a thou-
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Figure 6: Shows the overview of our system to replicate
and preprocess data stored in SRB server at SDSC

sand CPUs at the UW-Madison Computer Science Depart-
ment main condor pool. We had to use different strategies
for the two domains. At UW-Madison, we used desktop
CPUs, so an interactive user could evict our job when he
started using the machine. In this case, directly transfer-
ring data to the compute node was not such a good idea, as
an eviction would result in re-transfer over the wide-area
network. We handled this by using a staging node at UW-
Madison. At Starlight, the eviction was more static. There
would be slots where users would use all the CPUs for ex-
periments. Starlight lets us use the CPUs when there is no
scheduled experiment. This meant that if an experiment
started, we would be unable to get the Starlight CPUs for a
long time.

We also used different protocols for the data transfer.
Since Starlight nodes did not have GridFTP servers, we
installed diskrouter [16] clients and used them. We used
GridFTP for data transfer between the NCSA and UW-
Madison staging nodes. Our system can handle any data
transfer protocol and this multi-protocol setup validates
that. Using a different protocol for each domain tests the
system’s domain specific pipeline capability.

Figure 5 shows the throughput of the processing of 400
images in a 36 hour period. Starlight had a consistent
throughput of 2.4 jobs per hour until around 33 hours, when
the machines became unavailable to us. UW-Madison had
higher throughput but more fluctuation as well. The space
constraints on the NCSA staging node created a backpres-
sure and slowed down the stage-in to that node. The whole
process was fully automated and did not require any human
intervention. With some tune-ups, we were able to pro-
cess the whole 3-terabyte DPOSS dataset in under a week,
making this one of the fastest astronomy image processing
systems.

5.2 Data Set Replication and Preliminary
Processing

We also evaluated our system on a data set replication and pre-
liminary processing. The data set was residing at the SRB mass
storage server at SDSC. We had to replicate that data set to the
UniTree mass storage server at NCSA.

Since, the mass storage systems did not have a common in-
terface, we had to use intermediate nodes to perform protocol
translation. We also did some preliminary processing at SDSC
and NCSA. Such combined data movement and processing are
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Figure 7: Shows the concurrency level of different stages
of our system used to replicate and preprocess data stored
in SRB server at SDSC

a common requirement for data set replication among collabo-
rating sites. The preliminary processing could be just a simple
checksum generation and verification or it could be generation of
site-specific metadata to identify the contents of the dataset or any
domain specific processing.

Figure 6 shows the process of moving 550 GB of data from
SRB mass storage at SDSC to UniTree mass storage at NCSA
using two stage nodes: one at SDSC and other at NCSA. We per-
formed preliminary processing at the SDSC stage node and the
NCSA stage node and transferred the results to UniTree. Figure 7
shows the concurrency level in the different stages of the system.
We maintained a concurrency level of five for GridFTP to maxi-
mize the wide-area throughput. An SRB concurrency level of one
was sufficient to sustain this wide area concurrency level. Uni-
Tree transfers have a higher concurrency level because we need
to transfer the results of preliminary processing in addition to the
source file. At around 50 hours, UniTree had a slowdown, pos-
sibly because of maintenance or a high priority job. The system
continued operating and successfully transferred data. The sys-
tem has backpressure, created by space limitation on the stage
nodes, so a slowdown of one component would gradually slow
down other components, preventing overfill of disks and the re-
sultant failures.

6 Future Work
We are in the process of using the system across a larger number
of sites. NCSA astronomers want to make our system the basis
of their astronomy cyber infrastructure. They are planning to use
it to process petabytes of data from Quest2 [21], CARMA [4],
NOAO [23], NRAO [24], and LSST [20] datasets.

7 Conclusions
We have analyzed the problems with the existing distributed
scheduling systems and used the result of this analysis to de-

sign our system. Our system considers data movement as full-
fledged jobs, differentiates between permanent and transient fail-
ures, automatically recovers from transient failures, and dynami-
cally adapts itself to the changing environment. We have shown
how we used our system to successfully process three terabytes of
DPOSS image data in under a week by using idle CPUs in desk-
tops and commodity clusters in the UW-Madison Computer Sci-
ence Department and Starlight, and presented the results of this
study.
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