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Abstract. As the size of scientific and commercial datasets grows, it
becomes imperative that an expressive metadata framework to be de-
veloped to facilitate access to the semantics of the data. However, the
drive to enhance expressiveness and maximize performance often turns
out to be contradictory. Hence, the design of metadata framework needs
to take into consideration many factors in order to achieve balance be-
tween expressive power and performance. In this paper, we discuss the
metadata framework developed for PetaShare and explain the design and
implementation decisions we made in the process.
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1 Introduction

As the size and complexity of the scientific and commercial datasets continue
to grow, new data-centric scientific computing infrastructure needs to be built
to satisfy the requirement. Among all the challenges involved in building such
computing infrastructure, the need to reconcile the often conflicting requirement
for expressive power and sufficient performance is quite challenging.

On the one hand, traditional metadata services have limitations in such ap-
plication scenarios. Data from different disciplines is difficult to integrate due to
lack of expressive metadata framework.

On the other hand, semantically rich representation scheme such as ontology-
based semantic metadata provides rich expressiveness while maintaining decid-
ability, but it is not designed for large scale scientific computing. As a result,
much of the semantic web [7] technologies developed so far do not provide suffi-
cient performances.

In this paper, we present the metadata system we developed for the PetaShare
project. Our system seeks to take advantage of both semantically rich ontol-
ogy representation of metadata and natively supported metadata represented in
triples to provide access for users with different requirements.
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We also discuss the choices we made and lessons we learned in the design
and implementation process.

2 PetaShare

PetaShare [5] is a state-wide distributed data storage and sharing cyberinfras-
tructure effort in Louisiana. It aims to enable collaborative data-intensive re-
search in different application areas such as coastal and environmental modeling,
geospatial analysis, bioinformatics, medical imaging, fluid dynamics, petroleum
engineering, numerical relativity, and high energy physics. PetaShare manages
the low-level distributed data handling issues, such as data migration, replica-
tion, data coherence, and metadata management, so that the domain scientists
can focus on their own research and the content of the data rather than how to
manage it.

Currently, there are six PetaShare sites online across Louisiana: Louisiana
State University, University of New Orleans, University of Louisiana at Lafayette,
Tulane University, Louisiana State University-Health Sciencies Center at New
Orleans, and Louisiana State University-Shreveport. They are connected to each
other via 40Gb/s optical network, called LONI (Louisiana Optical Network Ini-
tiative). In total, PetaShare manages more than 250TB of disk storage and
400TB of tape storage across these sites.

At each PetaShare site, there is an iRODS [2] server deployed, which man-
ages the data on that specific site. A Unix-like interface is available to access
iRODS storage with commands like “ils”, “icd”, “ichmod” providing functional-
ities similar to their respective Unix counterparts, “itrim” for trimming number
of replicas in iRODS, “irule” for submitting user defined rules and “imeta” for
adding, removing, querying user defined metadata. Currently, each iRODS server
communicates with a central iCAT [3] server that provides a unified name space
across all the PetaShare sites. This centralized system will soon be replaced by a
fully distributed and replicated server system. Clients, either human users or pro-
grams, can access the PetaShare servers via three different interfaces: petashell,
petafs, and pcommands. These interfaces allow the injection of semantic meta-
data information (i.e. any keywords regarding the content of the file) to the
ontology whenever a new file is uploaded to any of the PetaShare sites. The
physical metadata information (i.e. file size and location information) is inserted
to iCAT using the iRODS API.

As part of the PetaShare project, we intend to develop a semantically-enabled
metadata management and query system called petasearch. With petasearch, we
intend to design an extendable metadata framework that gives a unified view over
multidisciplinary datasets. We also plan to provide fast and efficient metadata
query services for physically and conceptually distributed datasets of peta-scale.
Protege [1] and iRODS-based metadata management and query system we are
going to discuss in this paper are intended to serve as testbed for petasearch.
Specifically, we seek to focus on performance issues we encountered during the
design and testing of these two systems.
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3 PetaShare Metadata System

We have implemented two metadata management and query systems in PetaShare,
one is based on Protege [1] and and the other one based on iRODS.

As the current de facto standard of ontology design, Protege provides a com-
plete set of tools in support of the design and implementation of ontology-based
systems. But the complex nature of the ontologies and the implementation of
Protege turn out to be inadequate to provide sufficient performance.

iRODS, on the other hand, is a integral part of PetaShare and it provides
its own native metadata system, but the triple-based metadata representation is
not powerful enough to satisfy the need for cross-domain metadata management.

Both systems provide some unique advantages the other system currently
does not support. At the same time, both systems turned out to be inadequate
on other fronts. There are two different approaches we considered to bridge these
differences:

1. Take advantage of iRODS’s built-in metadata support and try to integrate
our semantically rich metadata into iRODS’s metadata system. Advantages
of this approach include potentially better query performance because of
fewer layers a query has to go through. This approach also comes with dis-
advantages, namely, the added requirement to figure out a way to encode
semantic metadata into iRODS’s metadata system which, so far, only sup-
ports simple queries over triples.

2. Build middleware between current mostly Java-based Semantic Web infras-
tructure such as Protege where metadata will be modeled and stored and
traditionally C-based iRODS where actual data archives are managed. Ad-
vantages of this approach includes more established support for ontology
insertion, modification, merging and query which our system can readily tap
into. Disadvantages may involve developing a whole set of tools required to
bridge the inherent differences, also our preliminary testing of the browser
based ontology system indicated less than satisfactory performance.

To better understand the advantages and deficiencies of the two approaches,
we decided to implement two different metadata systems based on the two dif-
ferent approaches respectively. Our hope is at the current stage, the two systems
can complement each other. Eventually, our development goal is to overcome
the shortcomings of both systems and hopefully merge the two systems into a
unified petasearch metadata system.

3.1 Protege-based Metadata System Framework

The reason we chose to implement the upper layer of our metadata system based
on Protege-API and the Protege-based database back-end is to take advantage
of the semantic expressive power of the ontologies. As the de facto standard for
ontology design, Protege supports almost all the W3C standards and provides
support for the whole range of ontology related functionalities, from graphic on-
tology design interface to built-in reasoner all the way to ontology serialization
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into relational database, which makes Protege and the Protege-related technolo-
gies good candidates for implementing a semantic enabled metadata system.

As shown in Figure 1, two different interfaces are available in our system.
They are browser-based and commandline-based respectively. The purpose of
browser-based metadata interface to PetaShare is to provide an easy-to-use,
easy-to-understand method of access so that scientists can query and obtain
small numbers of experimental files, while commandline-based interface can be
combined with scripts and other programming tools so that more flexible, more
powerful access to bulk files is also available in our system.

Fig. 1. PetaShare Metadata Framework for Protege

The core of the system consists of Protege Query Parser and Semantic Meta-
data Store. Protege Query Parser is implemented to parse queries entered by
users into Sparql [6] queries understandable to the Protege query engine. In Se-
mantic Metadata Store, metadata definitions in the forms of ontological classes
and ontological instances are stored. Protege itself provides two ways of storing
ontologies: file-based and relational database-based. The first approach essen-
tially stores ontological classes and instance definitions to text files, although
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it is easier to implement and access file-based ontology, our experiment showed
that file-based ontology can not scale to satisfy the data intensive requirements
of PetaShare: attempts to insert metadata instances in excess of ten thousand
resulted in insufficient memory error. Even though increase of physical mem-
ory size can partially alleviate this problem, but the fact that the Java Virtual
Machine places limit on the amount of physical memory it can handle means
text-based ontology can not scale as much as we want. Another problem is it
often takes more than a dozen hours to load text-based ontology with more than
ten thousand instances into memory. The causes of the failure to scale include:

1. The amount of memory required exceeds the maximum memory size the
Java Virtual Machine is capable of handling.

2. System is saddled with too high a performance overhead as a result of large
numbers of file accesses.

To overcome the above mentioned problems, we decided to take advantage
of the second approach and store our ontology in regular relational databases.
In our system, we chose MySQL as the back end database in which all metadata
are stored in ontological form. We tested insertion of 1 million instances on a
workstation with 4 GB memory. Each insertion consisted of creating 15 prop-
erties for a particular file in the archive. Our experiment showed that 1 million
instances could be inserted in 6898 minutes 59 seconds, approximately 5 days.
The relatively slow speed of the insertion owes partially to the overheads as-
sociated with representing complex modeling scheme such as ontology through
tables in relational database. More experiments are needed to assess the upward
limit of relational database-based ontology store.

Another part of our system is called Metadata-insertion interface. It is a
Java-based commandline program that can be utilized, with the help of script
languages such as perl, to automatically insert metadata about newly created
experiment files.

For example, in large science experiments, when an experiment file is created,
metadata-insertion interface can be triggered to automatically add appropriate
metadata information, such as name, keyword, time of creation, file type, etc,
into Semantic Metadata Store. The system administrator can also choose to do
bulk-insertion. As of now, we have successfully inserted metadata about more
than 1 million files.

Our Protege-based metadata system implementation offers support for ontology-
based metadata query, ontology-based automatic metadata insertion, as well as
ontology-based file access through both browser and command-line interfaces.

One typical use scenario is as follows: a meteorologist needs some monitor-
ing data on Hurricane Katrina’s path of movement. He also would like to see a
visualization of the monitoring data.. In real life, raw monitoring and visualized
data could belong to different projects, and different projects may have different
vocabulary for describing data. The use of the ontologies in the Protege-based
system can bridge the semantic differences that may exist among different sci-
ence projects. We assume here that raw and visualized data belong to different
projects. In this use scenario, on PetaShare, the meteorologist could simply open
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his web browser or the specific PetaShare commandline interface. Here we as-
sume he types “Katrina” into the search box of his web browser and presses the
search button. The straight arrow in Figure 1 shows the data flow of his query.
PetaShare will then search its metadata store and return a list of files from both
projects it thinks are related to Hurricane Katrina, as indicated in Figure 1 by
dotted arrows. Then the meteorologist can simply click whatever file he wants to
obtain, the metadata system will send out request to other parts of PetaShare
to fetch the file back into the machine of the meteorologist.

The biggest advantage for the Protege-based system is the establishment of
a unified view of scientific data across different science projects or even differ-
ent science disciplines. A unified data view can enable scientists to access data
from multiple projects from multiple disciplines, regardless of the differences in
vocabulary. Such data view is critical in modern, increasingly cross-disciplinary
science.

The shortcomings of the Protege-based metadata system are clearly illus-
trated in Figure 1. Basically, in exchange for the expressive power of the on-
tologies, we have to build another metadata system independent of the iCAT [3]
metadata system used by iRODS. Doubtlessly, the extra set of metadata and
everything related to its management add overhead to overall performance of
PetaShare. Also almost the entire set of technologies we employed to implement
the system is Java-based, which introduces more overhead to performance and
more complications to achieve maximum scalability.

3.2 iRODS-based Metadata System Framework

Unlike ontology-based system, the iRODS-based Metadata System does not sup-
port a richly representative scheme, namely ontology, like Protege does. On the
other hand, iRODS and its corresponding iCAT metadata system serve as the
backbone of PetaShare. As a result, metadata system based on iRODS and iCAT
is naturally integrated into PetaShare seamlessly. Also, unlike ontology technol-
ogy which is Java-based and was originally designed for Semantic Web with little
prior consideration for performance, iRODS and its corresponding metadata sys-
tem iCAT were designed with the requirements of data-intensive computing in
mind. Better performance can be achieved as a result.

As Figure 2 shows, the framework of the iRODS-based metadata system is
far simpler. Only one extra layer of system is added to the existing iRODS-
based PetaShare storage. The PetaShare clients have been developed to parse
and remote-execute various iRODS commands. One such command is “imeta”,
which is used for inserting and accessing metadata stored in iCAT.

Command “imeta” can be used to insert metadata about iRODS files, col-
lections, resources and users in the form of Attribute-Value-Unit triples (AVUs)
Because iCAT also employs relational database as back end storage and the fact
that iCAT deals with metadata far less expressive than ontology does, we expect
it to be able to be at least as scalable as the Protege-based system. Our experi-
ment indicates that iCAT can easily handle file metadata in the order of millions
of files. In current implementation, command “imeta” can only insert metadata
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Fig. 2. PetaShare Metadata Framework for iRODS

one AVU at a time. To expand its functionalities, we implemented another ver-
sion of command “imeta” that supports bulk-insertion function similar to the
one provided by Metadata-insertion interface in the Protege-based system.

In the iRODS-based metadata system, a typical query operation would be
users typing in what they want to query as parameters of command “imeta”.
“imeta” will do the query and return a list of files. Users then can use other
iRODS commands supported by the PetaShare clients to access the files needed
to be accessed.

There are several functionalities missing in command “imeta”. For example,
although Attribute-Value-Unit triples are easy to handle and understand, their
expressive power is far from being able to adequately meet the requirement of
an extendable semantic metadata system we envision for PetaShare. On the
other hand, at the lowest level of representation, an ontology also consists of
triples. We think it is possible to implement certain middleware so that upper
level ontology-based metadata can be stored in lower level iCAT store. We are
also interested in adding over the long term, the kind of querying and reasoning
capabilities supported by the Protege-based system.

4 Issues and Observations in Performance Evaluation
Experiments

In this section, we will present our investigation into some of the performance and
scalability issues we encountered during the design and implementation process.
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Both systems have been deployed on PetaShare, with controlled access granted
to four PetaShare science projects. The iRODS-based metadata system is used
internally by the PetaShare system itself, and the Protege-based system is de-
ployed as a web-based search engine that allows scientists to search the metadata
store and access files stored in PetaShare.The scalability and performance of the
Protege-based system is not entirely satisfactory, as a result, we conducted an
series of experiments to

We first tested the bulk insertion program we developed for the Protege-
based system and modified “imeta” command for the iRODS-based system as
users often need to first “build up” their presence on PetaShare, which makes
performance and scalability of the bulk insertion program a important issue.

In the case of the Protege-based system, the Java implementation of Pro-
tege and the complexity of the ontologies exact a heavy toll on performance of
the Protege-based insertion. During our experiment, we attempted to test the
limit of the scalability of the Protege-based system. The conflict of a Java-based
system and the memory requirement for data intensive applications was laid
bare: The Java Virtual Machine can only use at most 2 GB of memory in Unix
like system, which is hardly enough for a ontology containing metadata for tens
of thousands of files. We experimented with inserting metadata for 1 million
files in the Protege-based system. The experiment ran 19 hours 12 minutes and
46 seconds. It succeeded in inserting metadata for 684632 files, then the pro-
cess crashed when another Java-based program was launched. Another attempt
ended with metadata for 734845 files inserted in 24 hours 43 minutes and 53
seconds. The process crashed again presumably because of memory hog. It has
also been observed that as the size of metadata grew, the execution of the inser-
tion programs became extremely slow and unresponsive. Further investigation is
needed to determine the exact cause of the performance differences we witnessed
and how big the ontology can be scaled to.

It is clear that as the size of the ontologies grows, the Protege-based system
would encounter scalability problem. In the future implementation, we plan to
physically distribute the ontology to expand its scalability.

Scalability test on the iRODS-based system, however, did not go as smoothly
as we hoped either. Similarly to what we did on the Protege-based system, we
attempted to insert metadata for 1 million files to the iRODS-based system. We
observed that there was not discernible slow-down of the insertion speed as the
size of metadata inserted grew, but error occurred after 2 hours 2 minutes and
35 seconds and metadata for 109428 files inserted. The error forced the insertion
operation to stop and restart. Restarted insertion operation continued metadata
inserting without a glitch until 1 hour 57 minutes and 50 seconds later and an-
other approximately 100000 files inserted when another similar error occurred.
Our observation was the iRODS-based system had no problem handling meta-
data for tens of thousands of files, but the insertion needs to be done in batches
with approximately 100000 files as one batch. Precisely what caused the limita-
tion on the size of the metadata insertion operation that can finish in one single
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run is not clear yet. We will tryto answer this question with more experiments
in our follow-up work.

Beside scalability, we also tested performance on querying metadata store on
the two systems. Our experiments showed that query time on the iRODS-based
system is positively correlated to the size of result set. As the size of the result
set grew, significantly more time was needed for the query to finish.

In the case of the Protege-based system, however, performance varied lit-
tle as the query result size changed. Another observations of ours was that in
the Protege-based system, queries that would return tens of thousands of files
crashed the system. When no crash occurred, the performance was extremely
bad, which indicated that the size of available memory that can be utilized by
the Java Virtual Machine is also a contributing factor to query performance of
the Protege-based system.

5 Conclusion

In this paper, we have introduced two preliminary experimental metadata manage-
ment systems developed for the PetaShare project. For each system, we have pre-
sented the design and underlying technologies, and discussed potential benefits
and pitfalls they might bring to the capabilities and performance of the overall
metadata system. We have also discussed performance and scalability issues we
encountered in the development process.
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