Abstract Storage

Moving file format-specific abstractions into petabyte-scale storage systems

Joe Buck, Noah Watkins,
Carlos Maltzahn & Scott Brandt

Introduction

- Current HPC environment separates computation from storage
 - Traditional focus on computation, not I/O
 - Applications require I/O architecture independence
- Many scientific applications are data intensive
- Performance increasingly limited by datamovement

HPC Architecture

Architectural diagram of the 557 TFlop IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

Diagram courtesy of Rob Ross, Argonne National Laboratory

HPC Architecture

Architectural diagram of the 557 TFlop IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

Diagram courtesy of Rob Ross, Argonne National Laboratory

HPC Architecture

Architectural diagram of the 557 TFlop IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

Diagram courtesy of Rob Ross, Argonne National Laboratory

Approach: Move functions closer to data

- Use spare CPU cycles at intelligent storage nodes
 - Replace communication with CPU cycles
- Provide storage interfaces with higher abstractions
- Enable file system optimizations due to knowledge of data structure
- Do this for small selection of data structures
 - This is **not** another object-oriented database!

Why Now?

- Parallel file systems move more intelligence into storage nodes anyways
- Advances in performance management and virtualization
- Moving bytes slated to be a dominant cost in exa-scale systems
- Scientific file formats and operators increasingly standard
 - NetCDF, HDF
- Structured abstractions have seen recent success
 - BigTable, MapReduce
 - CouchDB

Abstract Storage Storage as an Abstract Data Type

- ADT decouples interface from implementation
- Only few ADTs necessary, e.g.:
 - Dictionary (Key/value pairs)
 - Hypercube (Coordinate Systems)
 - Queue
- Optimize each one for each parallel architecture
 - Data placement
 - Performance management
 - Buffer cache management (incl. pre-fetching)
 - Coherence

ADTs and Scientific Data

- Scientific data is normally multi-dimensional, lending itself well to this approach
 - Multi-dimensional and hierarchical structures are readily mapped onto data types
- Multiple structures mapped onto (portions) of the same data for more efficient access
 - Operate on the appropriate structure (matrix, row, element, etc)

Implementation Challenges

- Programming model for implementing ADTs
- Everything based on byte streams
 - Current storage APIs (e.g. POSIX)
 - Current file system subsystems
 - Buffer cache
 - Striping strategies
 - Storage node interfaces
- Need awareness of structured data
 - New interfaces at various storage layers

Prototype: Ceph Doodle

- Focus: Programming model for implementing ADTs
- Construction and test framework for:
 - Storage abstractions
 - ADT implementations
 - Programming models (flexibility, ease-of-use)
- Based on object-based parallel file system architecture (e.g. Ceph).

Ceph Doodle Features

- Rapid prototyping:
 - Uses RPC mechanism
 - Written in Python
- Support for plugins for different ADTs
 - Byte stream (implemented as storage objects)
 - Dictionary (implemented as skip lists)

Ceph Doodle Overview

Dictionary Implementation: Skip lists

Splitting skip lists across nodes

Future Work

- Building on top of Ceph
 - New dynamically loadable object libraries
- Redesigning caching
 - Data structure boundary aware v.s. pages
 - Pre-fetching = access patterns = ADT parameters
- Rethinking striping strategies
- Unified views supported by virtual ADT layer
- Embedding versioning and provenance capturing into file system

Thank you

buck@cs.ucsc.edu

