A Generalized Replica Placement Strategy to Optimize Latency in a Wide Area Distributed Storage System

John A. Chandy
Department of Electrical and Computer Engineering
Distributed Storage

• Local area network
 – Spread data across multiple networked nodes
 – Parallelism and higher throughput

• Wide-area network
 – Instead of splitting data for scalability, replicate data for availability
 – Improves latency
Replica Placement

• Where do you put the replicas?
 – Optimization problem
 • Minimize latency or maximize availability
 • Constraints: storage capacity, load balancing
 – Significant existing work
 • Latency optimization
 – Greedy algorithm, Qiu et al.
 – HotZone, Szymaniak et al.
 » Popularity based
 – Lat-cdn, Pallis et al.
 » Heuristic approach
Replica Placement

- Availability optimization
 - Van Renesse
 - Place replicas until desired availability is reached
 - Farsite
 - Hill-climbing approach to replica placement
 - Xin et al.
 - Takes into account bimodal availability
Replica Placement

- What’s the problem?
 - Existing approaches assume that objects are completely replicated
 - Full replication has significant overhead
 - Use erasure codes instead
 - Less overhead
 - Better reliability than parity
 - Placement is much more complicated
Problem Formulation

- K data objects
- N storage nodes
- C clients

- Each object is split into n fragments of which m fragments must be recovered to reconstruct object
 - $m=n$ - no redundancy
 - $m=n-1$ - parity
 - $m=1$ - replication
Problem Formulation

• **Placement problem**
 – Place fragments of each object on \(n \) of the \(N \) storage nodes
 – \(x_{jk} = 1 \) if fragment of object \(j \) is placed on storage node \(k \)

• **Assignment problem**
 – For each object, assign each client to \(m \) of the \(n \) storage nodes where the object fragments are placed
 – \(y_{ijk} = 1 \) if client \(i \) retrieves fragment of object \(j \) from storage node \(k \)
Problem formulation

• Overall objective is to minimize average latency

\[
\begin{pmatrix}
0 & \lambda_{1,2} & \ldots & \lambda_{1,N-1} & \lambda_{1,N} \\
\lambda_{2,1} & 0 & \ldots & \lambda_{2,N-1} & \lambda_{2,N} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\lambda_{C-1,1} & \lambda_{C-1,2} & \ldots & 0 & \lambda_{C-1,N} \\
\lambda_{C,1} & \lambda_{C,2} & \ldots & \lambda_{C,N-1} & 0
\end{pmatrix}
\]

• Cost function is

\[
F(X,Y) = \sum_{k \in K} \sum_{j \in N} \sum_{i \in C} y_{ijk} \lambda_{ij}
\]
Problem formulation

- **Constraints:**
 - x is a binary variable
 $$x \in \{0,1\}$$
 - y is a binary variable
 $$x \in \{0,1\}$$
 - Each object k has n fragments
 $$\sum_{j \in N} x_{jk} = n \quad \forall k$$
 - Each client i requests m fragments of object k
 $$\sum_{j \in N} y_{ijk} = m \quad \forall i,k$$
Problem formulation

• Constraints:
 – Client i should request a fragment of object k from storage node j only if that node stores the fragment
 \[y_{ijk} \leq x_{jk} \quad \forall i, j, k \]
 – Storage allocation balancing - each node j stores the same number of fragments
 \[\sum_{k \in K} x_{jk} = \frac{nK}{N} \quad \forall j \]
 – Load balancing - each node j services the same number of clients
 \[\sum_{i \in C} \sum_{k \in K} y_{ijk} = \frac{mCK}{N} \quad \forall j \]
Problem formulation

- 0-1 integer linear programming problem
 - $CN + CNK$ variables
 - $K + CK + CNK + N + N$ constraints
 - K and C can be in the millions and N can be in the thousands
 - Problem is too large to solve with normal methods
Problem formulation

• Instead of doing global placement, do a placement on each individual object
 – Makes more sense since it is impractical to reallocate and replace fragments every time an object is created
 – Make x and y independent of k
 • Will cause load imbalance as all objects will be placed on the same nodes
 – Intermediate approach - consider only a subset of objects
 • Since each object has n fragments, we can insure that each node has at least 1 fragment, by setting $K = \frac{N}{n}$ and introducing new constraint $\sum_{k \in K} x_{jk} = 1 \ \forall j$
Problem formulation

• With reduced object set size, derive global placement P

• For each new object, calculate a hash h based on object ID, name, contents, etc.

• Place and assign object according to object $h \mod K$ in placement P.
Problem Approach

- Heuristic approach to 0-1 integer linear programming problem

- Start with an initial placement and assignment that is guaranteed to be feasible
 - Place first object on the first n nodes, place second object on the next n nodes, and so on
 \[x_{jk} = \left(\left\lfloor \frac{j}{n} \right\rfloor = k \right) \]
 - Assign first client to the first m nodes of the n storage nodes, next client to the next m nodes and so on
 \[y_{ijk} = \left(\left\lfloor \frac{j}{m} \right\rfloor = k \frac{n}{m} + i \text{ mod } \frac{n}{m} \right) \]
Problem Approach

- Greedily alter solution until no improvements
- 3 possible solution transformations
 - Swap assignment
 \[y_{ijk} \leftrightarrow y_{i'j'k'} \text{ where } y_{ijk} = y_{i'j'k'} = 1 \]
 - Swap placement
 \[x_{jk} \leftrightarrow x_{j'k'} \text{ where } x_{jk} = x_{j'k'} = 1 \]
 - Change assignment
 \[y_{ijk} \leftrightarrow y_{i'j'k'} \text{ where } y_{ijk} = 1 \text{ and } y_{i'j'k'} = 0 \]
Problem approach

• Change assignment can introduce load imbalance

• We can relax the load balance requirement

\[
\frac{mCK}{N}(1 - \lambda) < \sum_{i \in C} \sum_{k \in K} y_{ijk} < \frac{mCK}{N}(1 + \lambda) \quad \forall j
\]
Algorithm

cost = F(X, Y)
do
 oldcost = cost
 for all objects k
 for all clients i
 for all storage nodes j
 delta_cost = change assignment
 if (delta_cost < 0)
 accept change
 for clients with maximum latencies
 delta_cost = swap placement
 if (delta_cost < 0)
 accept swap
 delta_cost = swap assignment
 if (delta_cost < 0)
 accept swap
 cost = F(X,Y)
while cost < oldcost
Algorithm

• Swaps provide the most improvement, but are very costly to evaluate

• Assignment changes provide relatively little improve, but is very easy to evaluate

• Do mostly assignment changes and do swaps only for maximum latency clients

• $O(CN)$ computation due to $mCK=mCN/n$ non-zero elements in matrix
Evaluation

- Autonomous System Network generated with Inet topology generator
- Similar to a content delivery network with storage nodes at AS nodes
- Graphs with 3200, 4000, 5000, and 6000 nodes
- Clients and storage nodes are equivalent
- Latency is number of hops
Evaluation

- $N=4000$, $n=8$, $m=4$

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Random</th>
<th>$\lambda = 0$</th>
<th>$\lambda = 0.2$</th>
<th>$\lambda = 1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average latency</td>
<td>3.582</td>
<td>3.156</td>
<td>3.581</td>
<td>3.365</td>
<td>3.166</td>
</tr>
<tr>
<td>Max latency</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.838</td>
<td>0.715</td>
<td>0.837</td>
<td>0.844</td>
<td>0.726</td>
</tr>
<tr>
<td>Max load</td>
<td>2000</td>
<td>20461</td>
<td>2400</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>Min load</td>
<td>2000</td>
<td>0</td>
<td>1600</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0</td>
<td>2589</td>
<td>349</td>
<td>1065</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation

- Average latency vs. \(\lambda \) \((n=8, m=4)\)
Evaluation

- **Average latency vs. N (varying n,m)**
Evaluation

- **Average latency vs. \(N \) (varying \(n,m=1 \))**

![Bar chart showing average latency vs. N for varying n,m=1](chart.png)
Summary

• Generalized replica placement algorithm suitable for fragmented objects - parity, erasure codes, secret sharing, etc.

• Greedy algorithm based on assignment changes and swaps

• Load balancing relaxation improves performance significantly