CSC 4304 - Systems Programming Fall 2010

LECTURE - I INTRODUCTION

Tevfik Koşar

Louisiana State University August 24th, 2010

Contact Information

- Instructor: Prof. Tevfik Kosar
 - Office: 292 Coates (also 333 Johnston)
 - Phone: 578-9483 | 578-8983Email: kosar@cct.lsu.edu
 - Web: http://www.cct.lsu.edu/~kosar
 - Office hours: Wed 3:00pm-4:00pm & Thu 2:00pm 3:00pm (at 292 Coates)
 - (Or anytime by appointment)
- Teaching Assistant: Sharma Thankachan
 - Email: thanks@csc.lsu.edu

Logistics

- Course web page: http://www.cct.lsu.edu/~kosar/csc4304
 - All lecture notes will be available online
 - As well as homework assignments, projects and other important course information
- Course mailing list: cs4304@cct.lsu.edu
 - Important course announcements including projects, homework assignments, and exams will be sent to this mailing list
 - Provide me with your active email address to be added to the class mailing list

3

Textbooks

PRENTICE HALL SOFTWARE SERIES

DENNIS M. RITCHIE

Recommended Text

Understanding Unix/Linux Programming

A Guide to Theory and Practice

5

Grading

• The end-of-semester grades will be composed of:

-	Pop Quizzes	: 5%	(~5)
-	Homework	: 10%	(5)
-	Projects	: 30%	(3)
-	Midterm	: 25%	(1)
_	Final	: 30%	(1)

You are expected to attend the classes and actively contribute via asking and/or answering questions.

Passive vs Active Learning

After 2 weeks, we tend to remember:

Passive learning

- •10% of what we read
- •20% of what we hear
- •30% of what we see (pictures)
- •50% of what we hear and see

Active learning

- •70% of what we say
- •90% of what we say and do

7

How to Become an Active Learner

- · Recall prior materials
- Answer a question
- Guess the solution first (even guessing wrong will help you to remember the right approach)
- · Work out the next step before you have to read on
- Think of an application
- Imagine that you were the professor and think about how you would give a test on the subject material so that key concepts and results will be checked.
- Summarize a lecture, a set of home work or a lab in your own words concisely.

Rules

- No late homework/project submissions accepted!
- You are encouraged to bring your laptops to the class to go over some of the exercises together.
- Exams will be closed book.
- You are only responsible from material covered in the class, homework, and projects.
- Academic dishonesty will be treated seriously.

9

INTRODUCTION

What is Systems Programming?

- Programming where the software and hardware meet or where the application interfaces with the operating system (OS).
- Includes issues such as: resource management (CPU and memory), process scheduling, concurrency and performance.

11

What Expect to Learn?

- 1. Using the C programming language, its constructs and grammar, to create system software.
- Usage of makefiles, linking, object files, loading, symbol resolution, shared and static libraries, debugging, and execution of system programs.
- UNIX OS concepts such as: process, program, process groups, signals, running programs, process control, address space, user and kernel modes, system calls, and context switching.
- 4. File I/O (i.e. open, close, read, write, seek)
- 5. Using sockets to implement client-server and network programs.
- 6. Using thread execution models (e.g. Posix threads).
- 7. Handle signals and exceptions within a process and to control processes.
- 8. Different approaches of concurrent programming.

UNIX BASICS

13

logon

- ssh classes.csc.lsu.edu -l username
 - or:
- ssh <u>username@classes.csc.lsu.edu</u>
- passwd: change password
- putty: a free telnet/ssh client
- ls /bin (ls /usr/bin)
- man ...
- text editing: vi, emacs, pico

Vi Editor

- vi filename
 - a: enter insert mode, after the cursor
 - i: enter insert mode, before the cursor
 - 0: enter insert mode, above the cursor
 - o: enter *insert* mode, below the cursor
 - r: replace one character under the cursor
 - u: undo the last change to the file.
 - x: delete character under the cursor
 - yy: copy line
 - dd: delete line
 - :w: write
 - :q: quit
 - :q!: quit without saving changes
 - /keyword : search for the keyword in text
 - :n : go to line number n
- Vi tutorial: http://www.gnulamp.com/vi.html

15

Emacs Editor

- Emacs filename
 - CTRL-d: delete one character
 - CTRL-k: delete one line
 - CTRL-y: paste
 - CTRL-x 2 : split window into 2 (horizontal)
 - CTRL-x 3 : split window into 2 (vertical)
 - CTRL-x o: switch window
 - CTRL-x 1: kill all other windows
 - CTRL-x u : undo (also CTRL-_)
 - CTRL-x CTRL-f: open file
 - CTRL-x CTRL-b: open buffer (CTRL-x b: switch to buffer)
 - CTRL-s : search
 - CTRL-x CTRL-s: save file
 - CTRL-x CTRL-c: quit
- Emacs Tutorial: http://www.gnu.org/software/emacs/

16

Files and Directories

- directory operations
 - ls: list
 - cd: change directory
 - pwd: print working directory
 - mkdir: create directory
 - rmdir: remove directory
- file operations
 - cp: copy
 - rm: delete
 - mv: move (rename)
 - cat, more, less: examine
- file permissions: rwx rwx rwx user group others
 - chmod 755 filename (or chmod u+r filename) (or chmod u=rwx)

Processes

- ps: list currently active user processes
- ps aux: list all active processes in long format
- kill n: kill process with id=n
- kill -9 n : force to kill
- CTRL-z: push to background
- fg: bring to foreground (also fg n: bring nth process)
- top: system utilization information
- time command : calculate time for a given command

Summary

- UNIX Basics
 - Logging in
 - Text editing
 - File and directory operations
 - Processes

- HW: login to classes server, and try everything we have learned today!
- Read Chapter 1 from Kernighan & Ritchie

19

Acknowledgments

- Advanced Programming in the Unix Environment by R. Stevens
- The C Programming Language by B. Kernighan and D. Ritchie
- Understanding Unix/Linux Programming by B. Molay
- Lecture notes from B. Molay (Harvard), T. Kuo (UT-Austin), G. Pierre (Vrije), M. Matthews (SC), and B. Knicki (WPI).