The Security Problem

- Protecting your system resources, your files, identity, confidentiality, or privacy
- **Intruders** (crackers) attempt to breach security
- **Threat** is potential security violation
- **Attack** is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse
Security Violations

- **Categories**
 - **Breach of confidentiality**
 - information theft, identity theft
 - **Breach of integrity**
 - unauthorized modification of data
 - **Breach of availability**
 - unauthorized destruction of data
 - **Theft of service**
 - unauthorized use of resources
 - **Denial of service**
 - crashing web servers

Security Violation Methods

- **Masquerading** (breach authentication)
 - Pretending to be somebody else
- **Replay attack** (message modification)
 - Repeating a valid data transmission (eg. Money transfer)
 - May include message modification
- **Session hijacking**
 - The act of intercepting an active communication session
- **Man-in-the-middle attack**
 - Masquerading both sender and receiver by intercepting messages
Program Threats

• Trojan Horse
 - Code segment that misuses its environment
 - Exploits mechanisms for allowing programs written by users to be executed by other users
 - Spyware, pop-up browser windows, covert channels

• Trap Door
 - A hole in the security of a system deliberately left in place by designers or maintainers
 - Specific user identifier or password that circumvents normal security procedures

• Logic Bomb
 - Program that initiates a security incident under certain circumstances

• Stack and Buffer Overflow
 - Exploits a bug in a program (overflow either the stack or memory buffers)

Program Threats (Cont.)

• Viruses
 - Code fragment embedded in legitimate program
 - Very specific to CPU architecture, operating system, applications
 - Usually borne via email or as a macro

• Visual Basic Macro to reformat hard drive

 Sub AutoOpen()
 Dim oFS
 Set oFS = CreateObject(‘’Scripting.FileSystemObject’’)
 vs = Shell(‘’c:command.com /k format c:’’, vbHide)
 End Sub
Program Threats (Cont.)

- **Virus dropper** inserts virus onto the system
- Many categories of viruses, literally many thousands of viruses:
 - **File** (appends itself to a file, changes start pointer, returns to original code)
 - **Boot** (writes to the boot sector, gets exec before OS)
 - **Macro** (runs as soon as document containing macro is opened)
 - **Source code** (modifies existing source codes to spread)
 - **Polymorphic** (changes each time to prevent detection)
 - **Encrypted** (first decrypts, then executes)
 - **Stealth** (modify parts of the system to prevent detection, eg read system call)
 - **Tunneling** (installs itself as interrupt handler or device driver)
 - **Multipartite** (can infect multiple pars of the system, eg. Memory, bootsector, files)
 - **Armored** (hidden and compressed virus files)

System and Network Threats

- **Worms** - use spawn mechanism; standalone program
- **Internet worm** (*Robert Morris, 1998, Cornell*)
 - Exploited UNIX networking features (remote access) and bugs in *finger* and *sendmail* programs
 - **Grappling hook** program uploaded main worm program
- **Port scanning**
 - Automated attempt to connect to a range of ports on one or a range of IP addresses
- **Denial of Service**
 - Overload the targeted computer preventing it from doing any useful work
 - Distributed denial-of-service (DDOS) come from multiple sites at once
Cryptography as a Security Tool

- Broadest security tool available
 - Source and destination of messages cannot be trusted without cryptography
 - Means to constrain potential senders (sources) and/or receivers (destinations) of messages
- Based on secrets (keys)

Secure Communication over Insecure Medium
Encryption

- Encryption algorithm consists of
 - Set of K keys
 - Set of M Messages
 - Set of C ciphertexts (encrypted messages)
 - A function $E : K \rightarrow (M \rightarrow C)$. That is, for each $k \in K$, $E(k)$ is a function for generating ciphertexts from messages.
 - A function $D : K \rightarrow (C \rightarrow M)$. That is, for each $k \in K$, $D(k)$ is a function for generating messages from ciphertexts.

Encryption

- An encryption algorithm must provide this essential property: Given a ciphertext $c \in C$, a computer can compute m such that $E(k)(m) = c$ only if it possesses $D(k)$.
 - Thus, a computer holding $D(k)$ can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding $D(k)$ cannot decrypt ciphertexts.
 - Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive $D(k)$ from the ciphertexts.
Symmetric Encryption

- Same key used to encrypt and decrypt
 - $E(k)$ can be derived from $D(k)$, and vice versa
- DES is most commonly used symmetric block-encryption algorithm (created by US Govt)
 - Encrypts a block of data at a time (64 bit messages, with 56 bit key)
- Triple-DES considered more secure (repeat DES three times with three different keys)
- Advanced Encryption Standard (AES) replaces DES
 - Key length upto 256 bits, working on 128 bit blocks
- RC4 is most common symmetric stream cipher (works on bits, not blocks), but known to have vulnerabilities
 - Encrypts/decrypts a stream of bytes (i.e wireless transmission, web browsers)
 - Key is a input to psuedo-random-bit generator
 - Generates an infinite keystream

Secure Communication over Insecure Medium
Asymmetric Encryption

- Encryption and decryption keys are different
- Public-key encryption based on each user having two keys:
 - public key - published key used to encrypt data
 - private key - key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
 - Most common is RSA (Rivest, Shamir, Adleman) block cipher
Asymmetric Encryption (Cont.)

- Formally, it is computationally infeasible to derive \(D(k_d, N) \) from \(E(k_e, N) \), and so \(E(k_e, N) \) need not be kept secret and can be widely disseminated
 - \(E(k_e, N) \) (or just \(k_e \)) is the public key
 - \(D(k_d, N) \) (or just \(k_d \)) is the private key
 - \(N \) is the product of two large, randomly chosen prime numbers \(p \) and \(q \) (for example, \(p \) and \(q \) are 512 bits each)
 - Select \(k_e \) and \(k_d \), where \(k_e \) satisfies \(k_e k_d \mod (p-1)(q-1) = 1 \)
 - Encryption algorithm is \(E(k_e, N)(m) = m^{k_e} \mod N \),
 - Decryption algorithm is then \(D(k_d, N)(c) = c^{k_d} \mod N \)

Asymmetric Encryption Example

- For example, choose \(p = 7 \) and \(q = 13 \)
- We then calculate \(N = 7 \times 13 = 91 \) and \((p-1)(q-1) = 72 \)
- We next select \(k_e \) relatively prime to 72 and less than 72, yielding 5
- Finally, we calculate \(k_d \) such that \(k_e k_d \mod 72 = 1 \), yielding 29
- We now have our keys
 - Public key, \(k_e, N = 5, 91 \)
 - Private key, \(k_d, N = 29, 91 \)
- Encrypting the message 69 with the public key results in the ciphertext 62 \((E=69^5 \mod 91) \)
- Cyphertext can be decoded with the private key
 - Public key can be distributed in cleartext to anyone who wants to communicate with holder of public key
Cryptography (Cont.)

- Note symmetric cryptography based on transformations, asymmetric based on mathematical functions
 - Asymmetric much more compute intensive
 - Typically not used for bulk data encryption
 - Used for authentication, confidentiality, key distribution

Man-in-the-middle Attack on Asymmetric Cryptography
Key Distribution

• Delivery of symmetric key is huge challenge
 - Sometimes done out-of-band, via paper documents or conversation
• Asymmetric keys can proliferate - stored on key ring
 - Even asymmetric key distribution needs care - man-in-the-middle attack

Digital Certificates

• Proof of who or what owns a public key
• Public key digitally signed a trusted party
• Trusted party receives proof of identification from entity and certifies that public key belongs to entity
• Certificate authority are trusted party - their public keys included with web browser distributions
 - They vouch for other authorities via digitally signing their keys, and so on
 - i.e. VeriSign, Comodo etc.