CSC 4103 - Operating Systems Fall 2009

LECTURE - XII

DEADLOCKS - III

Tevfik Koşar

Louisiana State University October 6th, 2009

Deadlock Detection

- Allow system to enter deadlock state
- Detection algorithm
- Recovery scheme

Single Instance of Each Resource Type

- Maintain wait-for graph
 - Nodes are processes.
 - $P_i \rightarrow P_j$ if P_i is waiting for P_j .

Resource-Allocation Graph

Corresponding wait-for graph

3

Single Instance of Each Resource Type

- Periodically invoke an algorithm that searches for a cycle in the graph.
- An algorithm to detect a cycle in a graph requires an order of n^2 operations, where n is the number of vertices in the graph.
- Only good for single-instance resource allocation systems.

Several Instances of a Resource Type

- Available: A vector of length m indicates the number of available resources of each type.
- Allocation: An n x m matrix defines the number of resources of each type currently allocated to each process.
- Request: An $n \times m$ matrix indicates the current request of each process. If Request $[i_j] = k$, then process P_i is requesting k more instances of resource type. R_i .

5

Detection Algorithm

- 1. Let *Work* and *Finish* be vectors of length *m* and *n*, respectively Initialize:
 - (a) Work = Available
 - (b) For i = 0,2, ..., n-1, if $Allocation_i \neq 0$, then Finish[i] = false; otherwise, <math>Finish[i] = true.
- 2. Find an index *i* such that both:
 - (a) Finish[i] == false
 - (b) $Request_i \leq Work$

If no such *i* exists, go to step 4.

Detection Algorithm (Cont.)

- 3. Work = Work + Allocation; Finish[i] = true go to step 2.
- 4. If Finish[i] == false, for some i, $0 \le i \le n-1$, then the system is in deadlock state. Moreover, if Finish[i] == false, then P_i is deadlocked.

Algorithm requires an order of $O(m \times n^2)$ operations to detect whether the system is in deadlocked state.

7

Example of Detection Algorithm

- Five processes P_0 through P_4 ; three resource types A (7 instances), B (2 instances), and C (6 instances).
- Snapshot at time T_0 :

AllocationRequest Available

$$ABC$$
 ABC ABC ABC
 P_0 010 000 000
 P_1 200 202
 P_2 303 000
 P_3 211 100
 P_4 002 002

• Sequence $\langle P_0, P_2, P_3, P_1, P_4 \rangle$ will result in *Finish*[*i*] = true for all *i*.

8

Example (Cont.)

• P_2 requests an additional instance of type C.

Request

ABC

 $P_0 \ 0 \ 0 \ 0$

 P_1 201

 $P_2 = 0.01$

 P_3 100

 $P_4 002$

- State of system?
 - Can reclaim resources held by process P_0 , but insufficient resources to fulfill other processes; requests.
 - Deadlock exists, consisting of processes P_1 , P_2 , P_3 , and $P_{4\cdot_{q}}$

Recovery from Deadlock: Process Termination

- Abort all deadlocked processes.
- Abort one process at a time until the deadlock cycle is eliminated.
- In which order should we choose to abort?
 - Priority of the process.
 - How long process has computed, and how much longer to completion.
 - Resources the process has used.
 - Resources process needs to complete.
 - How many processes will need to be terminated.
 - Is process interactive or batch?

Recovery from Deadlock: Resource Preemption

- Selecting a victim minimize cost.
- Rollback return to some safe state, restart process for that state.
- Starvation same process may always be picked as victim, include number of rollback in cost factor.

27

Deadlock Avoidance

Requires that the system has some additional *a priori* information available.

- Simplest and most useful model requires that each process declare the *maximum number* of resources of each type that it may need.
- The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that there can never be a circular-wait condition.
- Resource-allocation *state* is defined by the number of available and allocated resources, and the maximum demands of the processes.

Safe State

- When a process requests an available resource, system must decide if immediate allocation leaves the system in a safe state.
- System is in safe state if there exists a safe sequence of all processes.
- Sequence <P₁, P₂, ..., P_n> is safe if for each P_i, the resources that P_i can still request can be satisfied by currently available resources + resources held by all the P_i, with j<I.
 - If P_i resource needs are not immediately available, then P_i can wait until all P_i have finished.
 - When P_j is finished, P_i can obtain needed resources, execute, return allocated resources, and terminate.
 - When P_i terminates, P_{i+1} can obtain its needed resources, and so on.

/

Basic Facts

- If a system is in safe state ⇒ no deadlocks.
- If a system is in unsafe state ⇒ possibility of deadlock.
- Avoidance ⇒ ensure that a system will never enter an unsafe state.

Safe, Unsafe, Deadlock State

6

Resource-Allocation Graph Algorithm

- Claim edge $P_i \rightarrow R_j$ indicated that process P_j may request resource R_j ; represented by a dashed line.
- Claim edge converts to request edge when a process requests a resource.
- When a resource is released by a process, assignment edge reconverts to a claim edge.
- Resources must be claimed a priori in the system.

Resource-Allocation Graph For Deadlock Avoidance

8

Unsafe State In Resource-Allocation Graph

9

Banker's Algorithm

- Multiple instances.
- Each process must a priori claim maximum use.
- When a process requests a resource it may have to wait.
- When a process gets all its resources it must return them in a finite amount of time.

10

Data Structures for the Banker's Algorithm

Let n = number of processes, and m = number of resources types.

- Available: Vector of length m. If available [j] = k, there are k instances of resource type R_j available.
- Max: $n \times m$ matrix. If Max [i,j] = k, then process P_i may request at most k instances of resource type R_i .
- Allocation: $n \times m$ matrix. If Allocation[i,j] = k then P_i is currently allocated k instances of R_i .
- Need: $n \times m$ matrix. If Need[i,j] = k, then P_i may need k more instances of R_j to complete its task.

Need [i,j] = Max[i,j] - Allocation [i,j].

11

Safety Algorithm

1. Let *Work* and *Finish* be vectors of length *m* and *n*, respectively. Initialize:

Work = Available Finish [i] = false for i - 1,3, ..., n.

- 2. Find an *i* such that both:
 - (a) Finish [i] = false
 - (b) $Need_i \leq Work$

If no such *i* exists, go to step 4.

- 3. Work = Work + Allocation; Finish[i] = true go to step 2.
- 4. If *Finish* [*i*] == true for all *i*, then the system is in a safe state.

12

Resource-Request Algorithm for Process P_i

Request = request vector for process P_i . If $Request_i[j] = k$ then process P_i wants k instances of resource type R_{j} .

- 1. If *Request*_i ≤ *Need*_i go to step 2. Otherwise, raise error condition, since process has exceeded its maximum claim.
- 2. If $Request_i \leq Available$, go to step 3. Otherwise P_i must wait, since resources are not available.
- 3. Pretend to allocate requested resources to P_i by modifying the state as follows:

Available = Available - Request;; Allocation; = Allocation; + Request;; Need; = Need; - Request;;

- If safe \Rightarrow the resources are allocated to Pi.
- If unsafe ⇒ Pi must wait, and the old resourceallocation state is restored

Example of Banker's Algorithm

- 5 processes P₀ through P₄; 3 resource types A
 (10 instances),
 B (5instances, and C (7 instances).
- Snapshot at time T_0 :

	<u>Allocation</u>	<u>Max</u>	<u>Available</u>
	ABC	ABC	ABC
P_0	0 1 0	753	3 3 2
P	200	3 2 2	
Р	302	902	
Р	3 211	2 2 2	
P	4 002	433	

14

Example (Cont.)

• The content of the matrix. Need is defined to be Max - Allocation.

Example P_1 Request (1,0,2) (Cont.)

• Check that Request \leq Available (that is, $(1,0,2) \leq (3,3,2) \Rightarrow$ true.

<u>Allocation</u>		<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
P_0	0 1 0	7 4 3	2 3 0
P_1	3 0 2	020	
P_2	3 0 1	600	
P_3	2 1 1	0 1 1	
P_4	002	4 3 1	

- Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety requirement.
- Can request for (3,3,0) by P4 be granted?
- Can request for (0,2,0) by P0 be granted?

16

Acknowledgements

- "Operating Systems Concepts" book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne
- "Operating Systems: Internals and Design Principles" book and supplementary material by W. Stallings
- "Modern Operating Systems" book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR