CSC 4103 - Operating Systems Fall 2009

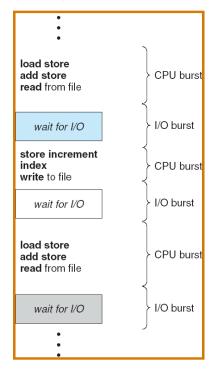
LECTURE - V CPU SCHEDULING - I

Tevfik Koşar

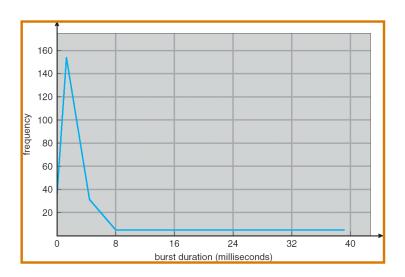
Louisiana State University September 10th, 2009

Roadmap

- CPU Scheduling
 - Basic Concepts
 - Scheduling Criteria & Metrics
 - Different Scheduling Algorithms
 - FCFS
 - SJF
 - Priority
 - RR

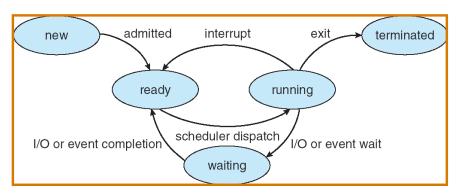


Basic Concepts


- Multiprogramming is needed for efficient CPU utilization
- CPU Scheduling: deciding which processes to execute when
- Process execution begins with a CPU burst, followed by an I/O burst
- CPU-I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait

3

Alternating Sequence of CPU And I/O Bursts


Histogram of CPU-burst Durations

5

Process State

- As a process executes, it changes state
 - new: The process is being created
 - ready: The process is waiting to be assigned to a process
 - running: Instructions are being executed
 - waiting: The process is waiting for some event to occur
 - terminated: The process has finished execution

CPU Scheduler

- Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them
 - → short-term scheduler
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- Scheduling under 1 and 4 is nonpreemptive/cooperative
 - Once a process gets the CPU, keeps it until termination/switching to waiting state/release of the CPU
- All other scheduling is *preemptive*
 - Most OS use this
 - Cost associated with access to shared data
 - i.e. time quota expires

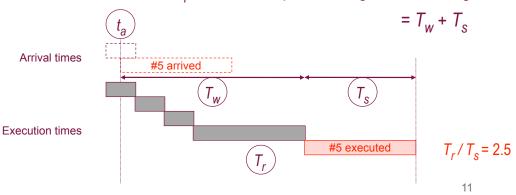
7

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler;
 Its function involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- *Dispatch latency* time it takes for the dispatcher to stop one process and start another running

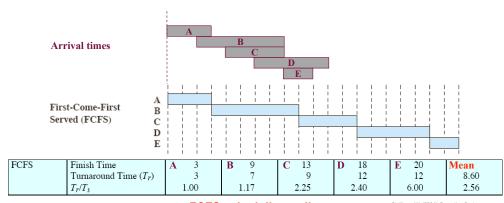
Scheduling Criteria

- CPU utilization keep the CPU as busy as possible
 --> maximize
- Throughput # of processes that complete their execution per time unit -->maximize
- Turnaround time amount of time passed to finish execution of a particular process --> minimize
 - i.e. execution time + waiting time
- Waiting time total amount of time a process has been waiting in the ready queue -->minimize
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment) -->minimize


9

Optimization Criteria

- Maximize CPU utilization
- Maximize throughput
- Minimize turnaround time
- Minimize waiting time
- Minimize response time


Scheduling Metrics

- Scheduling metrics
 - ✓ arrival time t_a = time the process became "Ready" (again)
 - ✓ wait time T_w = time spent waiting for the CPU
 - \checkmark service time T_s = time spent executing in the CPU
 - \checkmark turnaround time T_r = total time spent waiting and executing

First-Come, First-Served (FCFS) Scheduling

- ✓ processes are assigned the CPU in the order they request it
- ✓ when the running process blocks, the first "Ready" is run next
- ✓ when a process gets "Ready", it is put at the end of the queue

FCFS scheduling policy

Stallings, W. (2004) Operating Systems: Internals and Design Principles (5th Edition)

FCFS Scheduling - Example

Process	Burst Time
P_1	24
P_2	3
P_3	3

• Suppose that the processes arrive in the order: P_1 , P_2 , P_3

The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

13

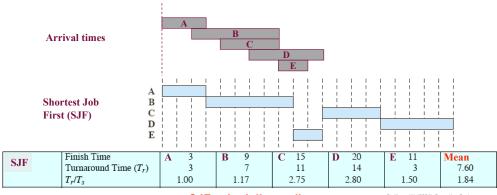
FCFS Scheduling - Example

Suppose that the processes arrive in the order

$$P_2$$
, P_3 , P_1

• The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process


Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time
- Two schemes:
 - nonpreemptive once CPU given to the process it cannot be preempted until completes its CPU burst
 - preemptive if a new process arrives with CPU burst length less than remaining time of current executing process, preempt.
 -->This scheme is know as the Shortest-Remaining-Time-First (SRTF)
- SJF is optimal gives minimum average waiting time for a given set of processes

15

Non-Preemptive SJF

- ✓ <u>nonpreemptive</u>, assumes the run times are known in advance
- ✓ among several equally important "Ready" jobs (or CPU bursts), the scheduler picks the one that will finish the earliest

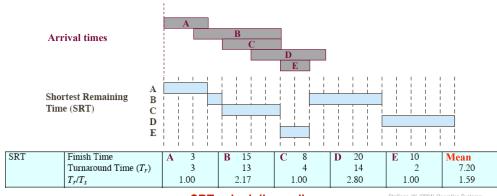

SJF scheduling policy

Stallings, W. (2004) Operating Systems: Internals and Design Principles (5th Edition)

Non-Preemptive SJF - Example

<u>Process</u>	<u>Arrival Time</u>	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{\scriptscriptstyle \mathcal{A}}$	5.0	4

• SJF (non-preemptive) Gantt Chart

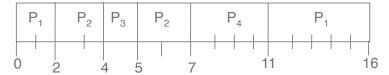


• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

17

Preemptive SJF (SRT)

- Shortest Remaining Time (SRT)
 - ✓ preemptive version of SJF, also assumes known run time
 - ✓ choose the process whose <u>remaining</u> run time is shortest
 - ✓ allows new short jobs to get good service


SRT scheduling policy

Stallings, W. (2004) Operating Systems: Internals and Design Principles (5th Edition)

Example of Preemptive SJF

<u>Process</u>	<u>Arrival Time</u>	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

• SJF (preemptive) Gantt Chart

19

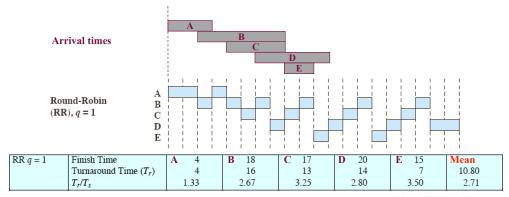
Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer = highest priority)
 - Preemptive
 - nonpreemptive
- SJF is a priority scheduling where priority is the predicted next CPU burst time
- Problem = Starvation low priority processes may never execute
- Solution = Aging as time progresses increase the priority of the process

Example of Priority

	Process	<u>Arrival Time</u>	Burst Time	<u>Priority</u>
_	P_1	0.0	7	2
	P_2	2.0	4	1
	P_3	4.0	1	4
	P_4	5.0	4	3

- Priority (non-preemptive)
 - P1 --> P2 --> P4 --> P3
- Priority (preemptive)
 - ??

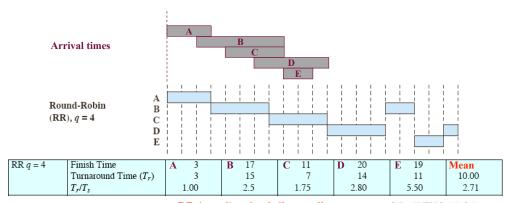

21

Round Robin (RR)

- Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds.
 After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.
- Performance
 - $q \text{ large} \Rightarrow \text{FIFO}$

Round Robin (RR)

- ✓ preemptive FCFS, based on a timeout interval, the quantum q
- the running process is interrupted by the clock and put last in a FIFO "Ready" queue; then, the first "Ready" process is run instead

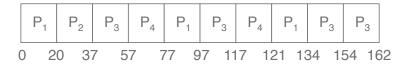

RR (q = 1) scheduling policy

Stallings, W. (2004) Operating Systems: Internals and Design Principles (5th Edition)

23

Round Robin (RR)

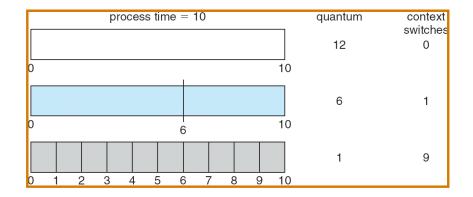
- ✓ a crucial parameter is the quantum q (generally ~10–100ms)
 - q should be big compared to context switch latency (~10μs)
 - q should be less than the longest CPU bursts, otherwise RR degenerates to FCFS

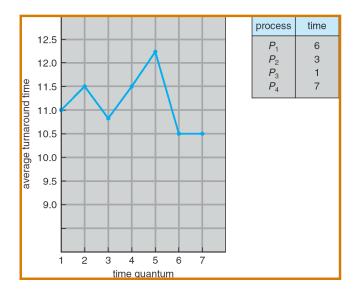

RR (q = 4) scheduling policy

Stallings, W. (2004) Operating Systems: Internals and Design Principles (5th Edition)

Example of RR with Time Quantum = 20

Burst Time
53
17
68
24


• For q=20, the Gantt chart is:


• Typically, higher average turnaround than SJF, but better *response*

25

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

27

Exercise

Process ID	Arrival Time	Priority	Burst Time
Α	0	3	20
В	5	1	15
С	10	2	10
D	15	4	5

- Draw gantt charts, find average turnaround and waiting times for above processes, considering:
- 1) First Come First Served Scheduling
- 2) Shortest Job First Scheduling (non-preemptive)
- 3) Shortest Job First Scheduling (preemptive)
- 4) Round-Robin Scheduling
- 5) Priority Scheduling (non-preemptive)
- 6) Priority Scheduling (preemptive)

Summary

- CPU Scheduling
 - Basic Concepts
 - Scheduling Criteria & Metrics
 - Different Scheduling Algorithms
 - FCFS
 - SJF
 - Priority
 - RR

- Next Lecture: Project Overview
- Reading Assignment: Chapter 5 from Silberschatz.

29

Acknowledgements

- "Operating Systems Concepts" book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne
- "Operating Systems: Internals and Design Principles" book and supplementary material by W. Stallings
- "Modern Operating Systems" book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR