CSC 4103 - Operating Systems Fall 2009

LECTURE - I INTRODUCTION

Tevfik Koşar

Louisiana State University August 25th, 2009

Contact Information

Instructor: Prof. Tevfik Kosar

- Office: 292 Coates (also 333 Johnston)

- Phone: 578-9483

- Email: kosar@csc.lsu.edu

- Web: http://www.cct.lsu.edu/~kosar

- Office hours: Wed & Thu, 2:00pm - 3:00pm (Or anytime by appointment)

• Teaching Assistant: Qing Huag (qhuang6@lsu.edu)

Logistics

- Course web page: http://www.cct.lsu.edu/~kosar/csc4103
 - All lecture notes will be available online
 - As well as homework assignments, projects and other important course information
- Course mailing list: csc4103-fall09@cct.lsu.edu
 - Important course announcements including projects, homework assignments, and exams will be sent to this mailing list
 - Provide me with your active email address to be added to the class mailing list

3

Textbooks 1: Main Text

Textbook 2: For Project (One of following)

5)

Grading

• The end-of-semester grades will be composed of:

-	Pop Quizzes	: 10%	(4-!
-	Homework	: 15%	(5)
-	Projects	: 20%	(2)
_	Midterm	: 25%	(1)
_	Final	: 30%	(1)

You are expected to attend the classes and actively contribute via asking and/or answering questions.

Passive vs Active Learning

Passive learning: learning through reading, hearing & seeing

Active learning: learning through saying and doing

After 2 weeks, we tend to remember:

Passive learning

- •10% of what we read
- •20% of what we hear
- •30% of what we see (i.e. pictures)
- •50% of what we hear and see

Active learning

- •70% of what we say
- •90% of what we say and do

7

How to Become an Active Learner

- · Recall prior materials
- Answer a question
- Guess the solution first (even guessing wrong will help you to remember the right approach)
- Work out the next step before you have to read on
- Think of an application
- Imagine that you were the professor and think about how you would give a test on the subject material so that key concepts and results will be checked.
- Summarize a lecture, a set of home work or a lab in your own words concisely.

Rules

- No late homework/project submissions accepted!
- Exams will be closed book.
- You are only responsible from material covered in the class, homework, and projects.
- Academic dishonesty will be treated seriously.

9

What Expect to Learn?

- Key Concepts of Operating Systems
 - Design, Implementation, and Optimization
- Topics will include:
 - Processes, Threads and Concurrency
 - CPU and I/O Scheduling
 - Memory and Storage Management
 - File System Structures
 - Synchronization and Deadlocks
 - Protection and Security
 - Distributed Computing & Related Issues

INTRODUCTION

11

What is an Operating System?

- A program that manages the computer hardware.
- An intermediary between the computer user and the computer hardware.
- Manages hardware and software resources of a computer.

Computer System Overview

A computer system consists of (bottom-up):

- 1 hardware
- 2. firmware (BIOS)
- 3. operating system
- 4. system programs
- 5. application programs
- 6. USers

13

Computer System Overview

1. Hardware

- \checkmark provides basic computing resources
- ✓ CPU, memory, disk, other I/O devices

2. Firmware (BIOS)

- √ software permanently stored on chip (but upgradable)
- √ loads the operating system during boot

3. Operating system

✓ controls and coordinates the use of the hardware among
the various application programs for the various users

Computer System Overview

4. System programs

- √ basic development tools (shells, compilers, editors, etc.)
- √ not strictly part of the core of the operating system

5. Application programs

- define the logic in which the system resources are used to solve the computing problems of the users
- √ database systems, video games, business programs, etc.

6. Users

√ people, other computers, machines, etc.

15

Role of an Operating System

The Silberschatz "pyramid" view

Abstract view of the components of a computer system

Role of an Operating System

The Tanenbaum "layered" view

Banking system	Airline reservation	Web browser		
Compilers	Editors	Command interpreter		
Operating system				
Machine language				
Microarchitecture				
Physical devices				

Application programs

System programs

Hardware

Tanenbaum, A. S. (2001) Modern Operating Systems (2nd Edition).

A computer system consists of hardware, system programs and application programs

17

Role of an Operating System

The Stallings "layered & stairs" view

Layers and views of a computer system

Role of an Operating System

- The Molay "aquarium" view
 - the only not-layered view
 - everything must transit through the O/S or "kernel"

The kernel manages all connections

19

Key Point

 An operating system is a program that acts as an intermediary between users/applications and the computer hardware.

Operating System Goals

- From the user perspective:
 - Executes user programs and make solving user problems easier
 - Makes the computer system convenient to use
 - hides the messy details which must be performed
 - presents user with a virtual machine easier to use
- From the System/HW Perspective:
 - Manages the resources
 - Uses the computer hardware in an efficient manner
 - time sharing: each program gets some time to use a resource
 - resource sharing: each program gets a portion of a resource

21

OS Services for Users

- Program Execution
 - The OS loads programs and data into memory, initializes I/O devices and files, schedules the execution of programs
- Access to I/O Devices
 - The OS hides I/O device details from applications (direct I/O access is forbidden) and offers a simplified I/O interface
- Controlled Access to Files & Directories
 - The OS organizes data into files and directories, controls access to them (i.e. create, delete, read, write) and preserves their integrity

OS Services for Users

Communications

- The OS allows exchange of information between processes, which are possibly executing on different computers

Error Detection and Response

- The OS properly handles HW failures and SW errors with the least impact to running applications (i.e. terminating, retrying, or reporting)

23

OS Services for System/HW

Resource Allocation

- The OS allocates resources to multiple users and multiple jobs running at the same time
- Operation Control
 - The OS controls the execution of user programs and operations of I/O devices
- System Access
 - The OS ensures that all access to resources is protected, including authorization, conflict resolution etc.
- Accounting and Usage Statistics
 - The OS keeps performance monitoring data

Evolution of Computer Systems

- 1. Serial processing
- 2. Simple batch systems
- 3. Multiprogrammed batch systems
- 4. Personal computers

25

Serial Processing Systems

- First generation: 1945-55
 - \checkmark room full of cabinets: mechanical relays, then vacuum tubes

The ENIAC (Electronic Numerical Integrator And Computer)

Serial Processing Systems

Human operator-programmer-user

- ✓ the machine was run from a console that had display lights, toggle switches, a plugboard or punched cards, a printer
- the programmer also "operated" the machine as she/he interacted directly with the bare hardware
- at first the computer was programmed by physically rewiring it; later, through stored programs ("von Neumann architecture")

> Operating systems were unheard of

- ✓ programs were entirely written in machine or assembly language
- ✓ one running program had complete control of the entire computer

27

Serial Processing Systems

> Programs directly access the hardware, one at a time

Serial Processing Systems

Problem 1: scheduling

- \checkmark users had access to the computer one by one in series
- machine time was reserved in blocks of half hours with a hard-copy sign-up sheet
- ✓ either the user was finished early and computer processing time was wasted
- or, more frequently, the user could not finish debugging her/his program during the allotted time

Problem 2: duplication of programming efforts

- user wrote again and again the same routines (ex: I/O devices)
- √ no concept of libraries

29

Simple Batch Systems

- > Second generation: 1955-65
 - √ advent of transistors and printed circuits

Simple Batch Systems

Separation between operators and programmers

- √ first commercially viable machines
- the programmer prepares her/his job off-line on punched cards, brings the card deck to the machine room and waits for results
- \checkmark the human operator runs the job and delivers a printed output

New problem: still basically serial processing

- ✓ one single job at a time
- huge setup time for each job: loading the compiler, the source program, saving the compiled program, loading, linking, etc.
- ✓ also mounting and dismounting tapes, handling card decks, etc.
- ✓ a lot of time was wasted manipulating things and walking around

31

Simple Batch Systems

Solution: batch the jobs together

- the human operator pre-reads a tray full of jobs onto a magnetic tape
- 2. the human operator loads a special program, the monitor, that will automatically read the jobs from the tape and run them sequentially
- 3. the effect of the monitor program is to write the output of each job on a second magnetic tape
- 4. finally, the human operator brings the full output tape for offline printing

- a) programmer brings cards to IBM 1401
- b) 1401 reads batch of jobs onto tape
- c) operator carries input tape to IBM 7094
- d) 7094 does computing
- e) operator carries output tape to 1401
- f) 1401 prints output

33

Simple Batch Systems

- The monitor program automates some of the human operator's tasks and is the ancestor of modern O/S
 - the monitor is a special program that controls the sequence of events
 - ✓ it always resides in main memory
 - ✓ it reads in jobs one at a time, places a job in the user program area of the memory, and passes control to it
 - upon completion, the user program branches back to the monitor, which immediately loads and executes the next job
 - therefore, the CPU alternates between fetching/executing instructions from the monitor program and fetching/executing instructions from the user program

Multi-Programmed Batch Systems

- Third generation: 1965-80
 - √ first major use of small-scale Integrated Circuits (ICs)

The IBM 360

35

Multi-Programmed Batch Systems

- Problem: despite batching, a lot of CPU time is still wasted waiting for I/O instructions to complete
 - √ I/O devices much slower than processor, e.g. tapes!

Example of system utilization with uniprogramming

Multi-Programmed Batch Systems

- Solution: load two jobs in memory
 - ✓ while one job is waiting for I/O, the processor could switch to the other job

Stallings, W. (2004) Operating Systems:

Multiprogramming with two programs

37

Multi-Programmed Batch Systems

- > Expand to three, four or more jobs
 - ✓ jobs are kept in main memory at the same time and the CPU is multiplexed among them, or "multi-programmed"
 - ✓ Multi-programming ("multitasking") is a central O/S theme

Stallings, W. (2004) Operating Systems:

Multiprogramming with three programs

Personal Computers

- Fourth generation: 1980-Present
 - ✓ Large Scale Integration (LSI) makes personal computing real

41

Personal Computers

- From multiple users back to a single user
 - preemptive multitasking was developed in the 1960's to share big and costly mainframe computers among multiple users
 - > since then, single-user interactive computing has become possible on dedicated personal computers (PCs)
- Resource sharing not critical anymore, yet multitasking still a central feature of modern PC operating systems
 - a single-tasking environment is tedious: one must close the drawing application before opening the word processor, etc.
 - multitasking makes it possible for a single user to run multiple applications at the same time (or "background" processes) while retaining control of the computer

Personal Computers

- Other mainframe system features have been integrated into PC systems, for example: file protection
 - √ in multi-user systems, file protection was critical
 - ✓ in single-user PCs, it was not considered necessary at first, but reappeared with the advent of networking
- > PC systems emphasize user convenience
 - the primary goal of the mainframe multiprogrammed systems was to maximize CPU utilization
 - ✓ as in time-sharing systems, the primary goal of PC systems
 is rather to maximize user convenience and responsiveness

43

Summary

- What is an OS?
- Role of an OS
- Operating System Goals
 - User View vs System View
- Operating System Services
 - For Users and HW
- Evolution of Computing Systems

Reading Assignment: Chapter 1 from Silberschatz.

Acknowledgements

- "Operating Systems Concepts" book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne
- "Operating Systems: Internals and Design Principles" book and supplementary material by W. Stallings
- "Modern Operating Systems" book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR