CSC 4103 - Operating Systems Spring 2008

LECTURE - XXI PROTECTION AND SECURITY - II

Tevfik Koşar

Louisiana State University April 22nd, 2008

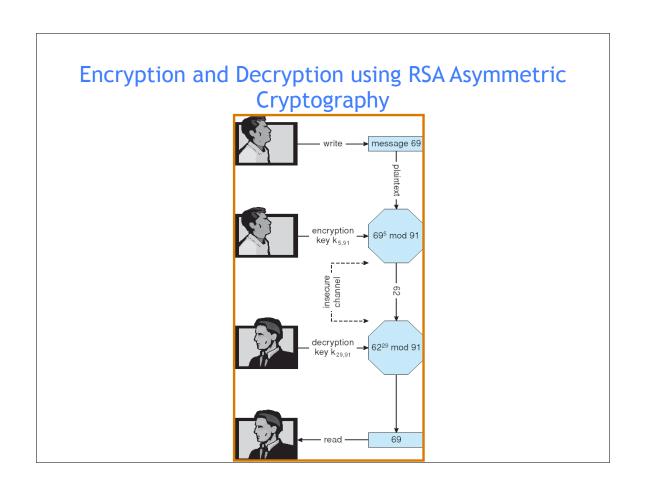
Encryption and Decryption using RSA Asymmetric Cryptography write encryption write encryption write encryption write encryption write encryption encryptio

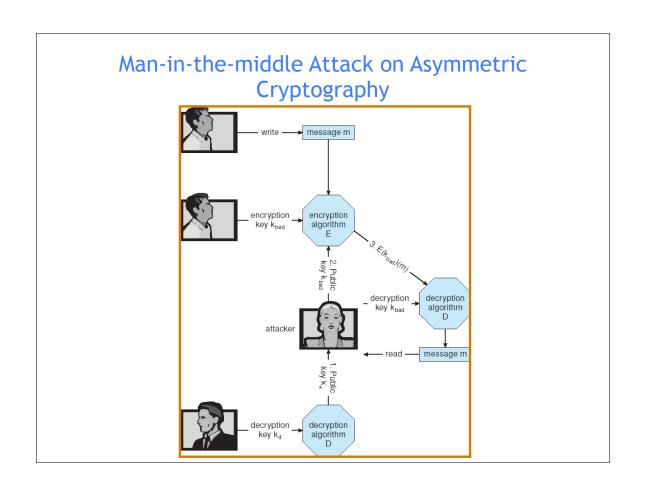
Authentication

- Constraining set of potential senders of a message
 - Complementary to encryption
 - Also can prove message unmodified
- Algorithm components
 - A set K of keys
 - A set M of messages
 - A set A of authenticators
 - A function $S: K \to (M \to A)$
 - That is, for each $k \in K$, S(k) is a function for generating authenticators from messages
 - Both S and S(k) for any k should be efficiently computable functions
 - A function $V: K \to (M \times A \to \{\text{true, false}\})$. That is, for each $k \in K$, V(k) is a function for verifying authenticators on messages
 - Both V and V(k) for any k should be efficiently computable functions

Authentication (Cont.)

- For a message m, a computer can generate an authenticator $a \in A$ such that V(k)(m, a) = true only if it possesses S(k)
- Thus, computer holding S(k) can generate authenticators on messages so that any other computer possessing V(k) can verify them
- Computer not holding S(k) cannot generate authenticators on messages that can be verified using V(k)
- Since authenticators are generally exposed (for example, they are sent on the network with the messages themselves), it must not be feasible to derive S(k) from the authenticators


Constraining both Sender & Receiver


- generate an authenticator $a \in A$ such that V(k)(m, a) = true only if it possesses S(k)
- Encrypt this authenticator with the public key of the targeted receiver
 - E(k)(m,a) = C

5

Key Distribution

- Delivery of symmetric key is huge challenge
 - Sometimes done **out-of-band**, via paper documents or conversation
- Asymmetric keys can proliferate stored on key ring
 - Even asymmetric key distribution needs care man-in-the-middle attack

Digital Certificates

- Proof of who or what owns a public key
- Public key digitally signed a trusted party
- Trusted party receives proof of identification from entity and certifies that public key belongs to entity
- Certificate authority are trusted party their public keys included with web browser distributions
 - They vouch for other authorities via digitally signing their keys, and so on
 - i.e. VeriSign, Comodo etc.

Encryption Example - SSL

- Insertion of cryptography at one layer of the ISO network model (the transport layer)
- SSL Secure Socket Layer (also called TLS)
- Cryptographic protocol that limits two computers to only exchange messages with each other
 - Very complicated, with many variations
- Used between web servers and browsers for secure communication (credit card numbers)
- The server is verified with a certificate assuring client is talking to correct server
- Asymmetric cryptography used to establish a secure **session key** (symmetric encryption) for bulk of communication during session
- Communication between each computer then uses symmetric key cryptography

User Authentication

- Crucial to identify user correctly, as protection systems depend on user ID
- User identity most often established through *passwords*, can be considered a special case of either keys or capabilities
 - Also can include something user has and /or a user attribute
- A password can be associated with each resource (eg. File)
- Different passwords may be associated with different access rights
 - Eg. Reading, updating, and deleting files
- Passwords must be kept secret
 - Frequent change of passwords
 - Use of "non-guessable" passwords
 - Log all invalid access attempts
- Passwords may also either be encrypted or allowed to be used only once

Password Vulnerabilities

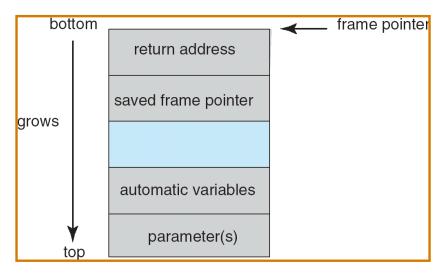
- Password length
 - A four digit password would take less than 5 seconds to crack
- Password combination
 - Should use combination of digits, upper and lower case letters, and other characters
- Never write your password somewhere, memorize it
- Periodically change your password
- Do not use the following in your password:
 - Name, lastname
 - Username
 - Date of birth, zipcode, other personal info
- Do not share your accounts with others

Encrypted Passwords

- How to keep a password secure within the computer?
- UNIX-type systems keep the password lists encrypted
 - Impossible to invert
 - Simple to compute
 - ==> one-way encryption
- Comparison is performed between encoded passwords
- Another level of protection:
 - Encrypted password file is only readable to root

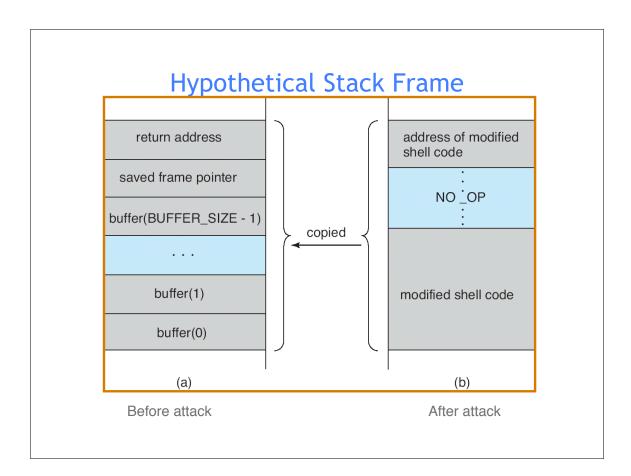
Biometrics

- Instead of passwords, use biometric measures
 - Palm-readers
 - Finger-print-readers
 - Iris scanners
 - Voice recognition
- Multi-factor authentication
 - Use a combination of different authentication mechanisms


Program Threats

- Trojan Horse
 - Code segment that misuses its environment
 - Exploits mechanisms for allowing programs written by users to be executed by other users
 - Spyware, pop-up browser windows, covert channels
- Trap Door
 - Specific user identifier or password that circumvents normal security procedures
 - Could be included in a compiler
- Logic Bomb
 - Program that initiates a security incident under certain circumstances
- Stack and Buffer Overflow
 - Exploits a bug in a program (overflow either the stack or memory buffers)

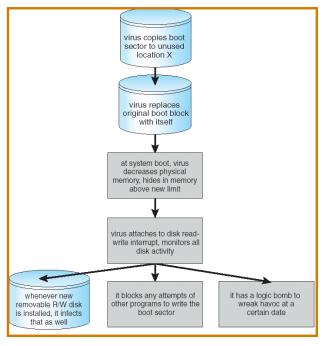
C Program with Buffer-overflow Condition


```
#include <stdio.h>
#define BUFFER SIZE 256
int main(int argc, char *argv[])
{
   char buffer[BUFFER SIZE];
   if (argc < 2)
      return -1;
   else {
      strcpy(buffer,argv[1]);
      return 0;
   }
}</pre>
```

Layout of Typical Stack Frame

Modified Shell Code

```
#include <stdio.h>
int main(int argc, char *argv[])
{
  execvp(''\bin\sh'', ''\bin\sh'', NULL);
  return 0;
}
```



Program Threats (Cont.)

- Viruses
 - Code fragment embedded in legitimate program
 - Very specific to CPU architecture, operating system, applications
 - Usually borne via email or as a macro
 - Visual Basic Macro to reformat hard drive

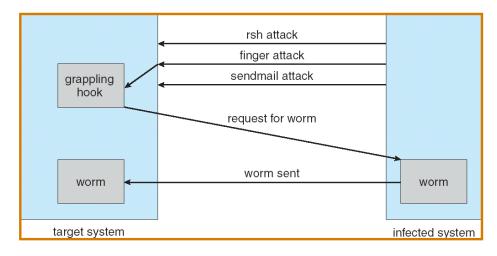
Program Threats (Cont.)

- Virus dropper inserts virus onto the system
- Many categories of viruses, literally many thousands of viruses:
 - File (appends itself to a file, changes start pointer, returns to original code)
 - Boot (writes to the boot sector, gets exec before OS)
 - Macro (runs as soon as document containing macro is opened)
 - Source code (modifies existing source codes to spread)
 - Polymorphic (changes each time to prevent detection)
 - **Encrypted** (first decrypts, then executes)
 - Stealth (modify parts of the system to prevent detection, eg read system call)
 - Tunneling (installs itself as interrupt handler or device driver)
 - Multipartite (can infect multiple pars of the system, eg. Memory, bootsector, files)
 - Armored (hidden and compressed virus files)
 - Browser virus, keystroke logger ..etc

A Boot-sector Computer Virus

System and Network Threats

- Worms use spawn mechanism; standalone program
- Internet worm (Robert Morris, 1998, Cornell)
 - Exploited UNIX networking features (remote access) and bugs in finger and sendmail programs
 - Grappling hook program uploaded main worm program


Port scanning

 Automated attempt to connect to a range of ports on one or a range of IP addresses

Denial of Service

- Overload the targeted computer preventing it from doing any useful work
- Distributed denial-of-service (DDOS) come from multiple sites at once

The Morris Internet Worm

