CSC 4103 - Operating Systems
Spring 2008

LECTURE - XIV

MAIN MEMORY - II

Tevfik Koşar

Louisiana State University

March 27th, 2008

Segmentation

• Memory-management scheme that supports user view of memory

• A program is a collection of segments. A segment is a logical unit such as:

main program,
procedure,
function,
method,
object,
local variables, global variables,
common block,

Segmentation Architecture

- Logical address consists of a two tuple: <segment-number, offset>,
- Segment table maps two-dimensional physical addresses; each table entry has:
 - base contains the starting physical address where the segments reside in memory
 - limit specifies the length of the segment
- Segment-table base register (STBR) points to the segment table's location in memory
- Segment-table length register (STLR) indicates number of segments used by a program;

27

Segmentation Architecture (Cont.)

- Protection. With each entry in segment table associate:
 - validation bit = $0 \Rightarrow$ illegal segment
 - read/write/execute privileges
- Protection bits associated with segments; code sharing occurs at segment level
- Since segments vary in length, memory allocation is a dynamic storage-allocation
- A segmentation example is shown in the following diagram

28

30

Example of Segmentation stack

Exercise

Consider the following segment table:

Segn	nent Base	Leng
0	219	600
1	2300	14
2	90	100
3	1327	580
4	1952	96

What are the physical addresses for the following logical addresses?

a. 1, 100

b. 2, 0

c.3,580

10

Solution

· Consider the following segment table:

sinsider the rollowing segment to			
Segn	nent Base	Length	
0	219	600	
1	2300	14	
2	90	100	
3	1327	580	
4	1052	06	

What are the physical addresses for the following logical addresses?

illegal reference (2300+100 is not within segment limits)

physical address = 90 + 0 = 90

c. 3, 580

illegal reference (1327 + 580 is not within segment limits)

Sharing of Segments

Segmentation with Paging

• Modern architectures use segmentation with paging (or paged-segmentation) for memory

32

MULTICS Address Translation Scheme Ogical address Segment lable STBR Ogical address Segment lable Final page table for segment s

Acknowledgements

- "Operating Systems Concepts" book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne
- "Operating Systems: Internals and Design Principles" book and supplementary material by W. Stallings
- "Modern Operating Systems" book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR

15