LECTURE - I

INTRODUCTION

Tevfik Koşar

Louisiana State University
January 15th, 2007

Contact Information

• Instructor: Prof. Tevfik Kosar
 - Office: 292 Coates (also 333 Johnston)
 - Phone: 578-9483
 - Email: kosar@csc.lsu.edu
 - Web: http://www.cct.lsu.edu/~kosar
 - Office hours: Tue & Wed, 11:00am - noon
 (Or anytime by appointment)

• Teaching Assistant: TBD
Logistics

- Course web page: http://www.cct.lsu.edu/~kosar/csc4103
 - All lecture notes will be available online
 - As well as homework assignments, projects and other important course information

- Course mailing list: csc4103@cct.lsu.edu
 - Important course announcements including projects, homework assignments, and exams will be sent to this mailing list
 - Provide me with your active email address to be added to the class mailing list

Textbooks

![Textbook Images]
Grading

- The end-of-semester grades will be composed of:
 - Pop Quizzes: 10% (?)
 - Homework: 15% (5)
 - Projects: 20% (2)
 - Midterm: 25% (1)
 - Final: 30% (1)

You are expected to attend the classes and actively contribute via asking and/or answering questions.

Rules

- No late homework/project submissions accepted!
- No computers/laptops will be allowed in regular class as well as exam.
- Exams will be closed book.
- You are only responsible from material covered in the class, homework, and projects.
- Academic dishonesty will be treated seriously.
What Expect to Learn?

- Basic Concepts of Operating Systems
- Operation, Resource Utilization, Management
- Processes, Threads and Concurrency
- CPU and I/O Scheduling
- Memory and Storage Management
- File System Structures
- Synchronization and Deadlocks
- Protection and Security
- Distributed Computing & Related Issues

Introduction
What is an Operating System?

- A program that manages the computer hardware.
- An intermediary between the computer user and the computer hardware.
- Manages hardware and software resources of a computer.

Role of an Operating System

“Pyramid” View - Silberschatz
Role of an Operating System

```
<table>
<thead>
<tr>
<th>Banking system</th>
<th>Airline reservation</th>
<th>Web browser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compilers</td>
<td>Editors</td>
<td>Command interpreter</td>
</tr>
<tr>
<td>Operating system</td>
<td>Machine language</td>
<td>Microarchitecture</td>
</tr>
<tr>
<td>Physical devices</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Layered” View - Tanenbaum

Role of an Operating System

```
<table>
<thead>
<tr>
<th>Application programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>System programs</td>
</tr>
<tr>
<td>Hardware</td>
</tr>
</tbody>
</table>

“Layered & stairs” View - Stallings
Role of an Operating System

“In Aquarium” View - Molay

In Short

- An operating system is a program that acts as an intermediary between user (applications) and the computer hardware.
Operating System Goals

- From the user perspective
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use

- From the System/HW Perspective
 - Manage the resources
 - Use the computer hardware in an efficient manner

OS Services for Users

- Program Execution
- Access to I/O Devices
- Controlled Access to Files
- Communications
- Error Detection and Response
OS Services for Users

- **Program Execution**
 - The OS loads programs and data into memory, initializes I/O devices and files, schedules the execution of programs

- **Access to I/O Devices**
 - The OS hides I/O device details from applications (direct I/O access is forbidden) and offers a simplified I/O interface

- **Controlled Access to Files**
 - The OS organizes data into files, controls access to the files (i.e. create, delete, read, write) and preserves their integrity

- **Communications**
 - The OS allows exchange of information between processes, which are possibly executing on different computers

- **Error Detection and Response**
 - The OS properly handles HW failures and SW errors with the least impact to running applications (i.e. terminating, retrying, or reporting)
OS Services for System/HW

- Resource Allocation
 - The OS allocates resources to multiple users and multiple jobs running at the same time
- Operation Control
 - The OS controls the execution of user programs and operations of I/O devices
- System Access
 - The OS ensures that all access to resources is protected, including authorization, conflict resolution etc.
- Accounting and Usage Statistics
 - The OS keeps performance monitoring data
Computer System Organization

- Computer-system operation
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

- I/O devices and the CPU can execute concurrently.
- Each device controller is in charge of a particular device type.
- Each device controller has a local buffer.
- CPU moves data from/to main memory to/from local buffers
 - If no CPU involved → DMA
- I/O is from the device to local buffer of controller.
- Device controller informs CPU that it has finished its operation by causing an interrupt.
Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine generally, through the *interrupt vector*, which contains the addresses of all the service routines (interrupt handlers).
- Interrupt architecture must save the address of the interrupted instruction. (also save state of CPU, eg. registers, PC)
- Incoming interrupts are *disabled* while another interrupt is being processed to prevent a *lost interrupt*.
- A *trap* is a software-generated interrupt caused either by an error or a user request.
- An operating system is *interrupt driven*.

Interrupt Timeline for I/O

[Diagram showing the timeline of CPU and I/O device interactions during I/O requests and transfers.]
I/O Structure

- After I/O starts, control returns to user program only upon I/O completion ➔ **synchronous**
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access).
 - At most one I/O request is outstanding at a time, no simultaneous I/O processing.

- After I/O starts, control returns to user program without waiting for I/O completion ➔ **asynchronous**
 - *System call* - request to the operating system to allow user to wait for I/O completion.
 - *Device-status table* contains entry for each I/O device

Two I/O Methods

![Diagram](image.png)
Operating System Operations

- **Interrupt driven** by hardware
- Unexpected errors can happen anytime
 - Software error or request creates **exception** or **trap**
 - eg. division by zero, invalid memory access
 - Other process problems include infinite loop, processes modifying each other or the operating system
- OS needs to protects itself
 - **Dual-mode** operation

Dual-Mode Operation

- **Dual-mode** operation allows OS to protect itself and other system components
 - **User mode** and **kernel mode**
 - **Mode bit** provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Protects OS from errant users, and errant users from each other
 - Some instructions designated as **privileged**, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user
Transition from User to Kernel Mode

- How to prevent user program getting stuck in an infinite loop / process hogging resources
 - **Timer:** Set interrupt after specific period (1ms to 1sec)
 - Operating system decrements counter
 - When counter zero generate an interrupt
 - Set up before scheduling process to regain control or terminate program that exceeds allotted time

Summary

- What is an OS?
- Operating System Goals
 - User View vs System View
- Operating System Services
- Computer System Operation
 - Interrupts
- Synchronous vs Asynchronous I/O
- User Mode vs Kernel Mode

Reading Assignment: Chapter 1 from Silberschatz.
Acknowledgements

• “Operating Systems Concepts” book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles” book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR