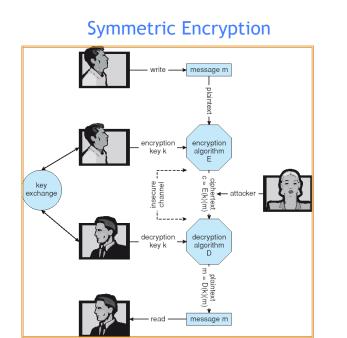
CSC 4103 - Operating Systems Spring 2007


LECTURE - XXI PROTECTION AND SECURITY - II

Tevfik Koşar

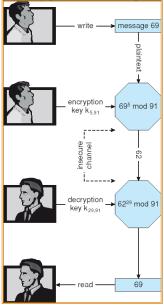
Louisiana State University April 17th, 2007

Symmetric Encryption

- Same key used to encrypt and decrypt
 - E(k) can be derived from D(k), and vice versa
- DES is most commonly used symmetric block-encryption algorithm (created by US Govt)
 - Encrypts a block of data at a time (64 bit messages, with 56 bit key)
- Triple-DES considered more secure (repeat DES three times with three different keys)
- Advanced Encryption Standard (AES) replaces DES
 - Key length upto 256 bits, working on 128 bit blocks
- Twofish, RC4, RC5 .. other symmetric algorithms
- RC4 is most common symmetric stream cipher (works on bits, not blocks), but known to have vulnerabilities
 - Encrypts/decrypts a stream of bytes (i.e wireless transmission, web browsers)
 - Key is a input to psuedo-random-bit generator
 - Generates an infinite keystream

Asymmetric Encryption

- Encryption and decryption keys are different
- Public-key encryption based on each user having two keys:
 - public key published key used to encrypt data
 - private key key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
 - Most common is RSA (Rivest, Shamir, Adleman) block cipher


Asymmetric Encryption (Cont.)

- Formally, it is computationally infeasible to derive $D(k_d, N)$ from $E(k_e, N)$, and so $E(k_e, N)$ need not be kept secret and can be widely disseminated
 - $E(k_e, N)$ (or just k_e) is the **public key**
 - $D(k_d, N)$ (or just k_d) is the **private key**
 - N is the product of two large, randomly chosen prime numbers p and q (for example, p and q are 512 bits each)
 - Select k_e and k_d , where k_e satisfies $k_e k_d \mod (p-1)(q-1) = 1$
 - Encryption algorithm is $E(k_e, N)(m) = m^{k_e} \mod N$,
 - Decryption algorithm is then $D(k_d, N)(c) = c^{k_d} \mod N$

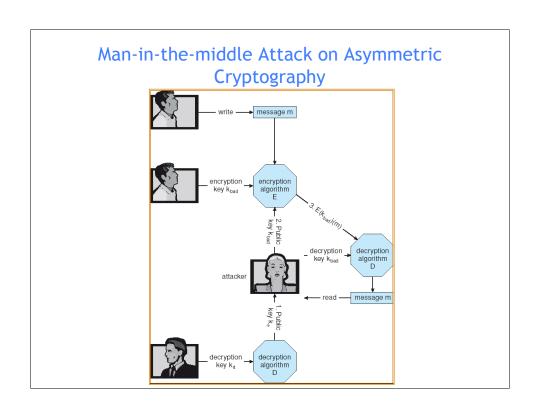
Asymmetric Encryption Example

- For example. choose p = 7 and q = 13
- We then calculate N = 7*13 = 91 and (p-1)(q-1) = 72
- We next select k_e relatively prime to 72 and < 72, yielding 5
- Finally, we calculate k_d such that $k_e k_d \mod 72 = 1$, yielding 29
- We how have our keys
 - Public key, $k_e N = 5$, 91
 - Private key, k_d , N = 29, 91
- Encrypting the message 69 with the public key results in the cyphertext 62 (E=695 mod 91)
- Cyphertext can be decoded with the private key
 - Public key can be distributed in cleartext to anyone who wants to communicate with holder of public key

Cryptography (Cont.)

- Note symmetric cryptography based on transformations, asymmetric based on mathematical functions
 - Asymmetric much more compute intensive
 - Typically not used for bulk data encryption
 - Used for authentication, confidentiality, key distribution

Authentication


- · Constraining set of potential senders of a message
 - Complementary and sometimes redundant to encryption
 - Also can prove message unmodified
- Algorithm components
 - A set K of keys
 - A set M of messages
 - A set A of authenticators
 - A function $S: K \to (M \to A)$
 - That is, for each k ∈ K, S(k) is a function for generating authenticators from messages
 - Both S and S(k) for any k should be efficiently computable functions
 - A function $V: K \to (M \times A \to \{\text{true, false}\})$. That is, for each $k \in K$, V(k) is a function for verifying authenticators on messages
 - Both V and V(k) for any k should be efficiently computable functions

Authentication (Cont.)

- For a message m, a computer can generate an authenticator $a \in A$ such that V(k)(m, a) = true only if it possesses S(k)
- Thus, computer holding S(k) can generate authenticators on messages so that any other computer possessing V(k) can verify them
- Computer not holding S(k) cannot generate authenticators on messages that can be verified using V(k)
- Since authenticators are generally exposed (for example, they are sent on the network with the messages themselves), it must not be feasible to derive S(k) from the authenticators

Key Distribution

- Delivery of symmetric key is huge challenge
 - Sometimes done **out-of-band**, via paper documents or conversation
- Asymmetric keys can proliferate stored on key ring
 - Even asymmetric key distribution needs care man-in-the-middle attack

Digital Certificates

- Proof of who or what owns a public key
- Public key digitally signed a trusted party
- Trusted party receives proof of identification from entity and certifies that public key belongs to entity
- Certificate authority are trusted party their public keys included with web browser distributions
 - They vouch for other authorities via digitally signing their keys, and so on

Encryption Example - SSL

- Insertion of cryptography at one layer of the ISO network model (the transport layer)
- SSL Secure Socket Layer (also called TLS)
- Cryptographic protocol that limits two computers to only exchange messages with each other
 - Very complicated, with many variations
- Used between web servers and browsers for secure communication (credit card numbers)
- The server is verified with a **certificate** assuring client is talking to correct server
- Asymmetric cryptography used to establish a secure **session key** (symmetric encryption) for bulk of communication during session
- Communication between each computer then uses symmetric key cryptography

User Authentication

- Crucial to identify user correctly, as protection systems depend on user ID
- User identity most often established through *passwords*, can be considered a special case of either keys or capabilities
 - Also can include something user has and /or a user attribute
- A password can be associated with each resource (eg. File)
- Different passwords may be associated with different access rights
 - Eg. Reading, updating, and deleting files
- · Passwords must be kept secret
 - Frequent change of passwords
 - Use of "non-guessable" passwords
 - Log all invalid access attempts
- Passwords may also either be encrypted or allowed to be used only once

Password Vulnerabilities

- Password length
 - A four digit password would take less than 5 seconds to crack
- Password combination
 - Should use combination of digits, upper and lower case letters, and other characters
- Never write your password somewhere, memorize it
- Periodically change your password
- Do not use the following in your password:
 - Name, lastname
 - Username
 - Date of birth, zipcode, other personal info
- Do not share your accounts with others

Encrypted Passwords

- How to keep a password secure within the computer?
- UNIX-type systems keep the password lists encrypted
 - Impossible to invert
 - Simple to compute
 - ==> one-way encryption
- Comparison is performed between encoded passwords
- Another level of protection:
 - Encrypted password file is only readable to root

Biometrics

- Instead of passwords, use biomentric measures
 - Palm-readers
 - Finger-print-readers
 - Iris scanners
 - Voice recognition
- Multi-factor authentication
 - Use a combination of different authentication mechanisms

Implementing Security Defenses

- **Defense in depth** is most common security theory: using multiple layers of security
- Security policies
 - Eg. Policies on user passwords and accounts
- Vulnerability assessment compares real state of system / network compared to security policy
 - Eg. Assessment to passwords, network ports
- Intrusion detection endeavors to detect attempted or successful intrusions
 - **Signature-based** detection
 - Examine system input or network traffic for specific behavior patterns
 - Anomaly detection
 - Detect differences from normal behavior
 - Can also detect previously unknown methods of intrusion: zero-day attacks
 - False-positives (false alarms) and false-negatives (mussed intrusions) are problem
- Auditing, accounting, and logging of all or specific system or network activities

Any Questions?

Reading Assignment

• Read chapter 14 and 15 from Silberschatz.

21

Acknowledgements

• "Operating Systems Concepts" book and supplementary material by Silberschatz, Galvin and Gagne.