The Security Problem

- Security must consider external environment of the system, and protect the system resources
- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse
Security Violations

- **Categories**
 - Breach of confidentiality (information theft, identity theft)
 - Breach of integrity (unauthorized modification of data)
 - Breach of availability (unauthorized destruction of data)
 - Theft of service (unauthorized use of resources)
 - Denial of service (crashing web servers)

- **Methods**
 - Masquerading (breach authentication)
 - Pretending to be somebody else
 - Replay attack (message modification)
 - Repeating a valid data transmission (eg. Money transfer)
 - May include message modification
 - Session hijacking
 - The act of intercepting an active communication session
 - Man-in-the-middle attack
 - Masquerading both sender and receiver by intercepting messages

Standard Security Attacks
Security Measure Levels

- Security must occur at four levels to be effective:
 - Physical
 - Human
 - Avoid social engineering, phishing, dumpster diving
 - Operating System
 - Network
- Security is as weak as the weakest chain

Program Threats

- Trojan Horse
 - Code segment that misuses its environment
 - Exploits mechanisms for allowing programs written by users to be executed by other users
 - Spyware, pop-up browser windows, covert channels
- Trap Door
 - Specific user identifier or password that circumvents normal security procedures
 - Could be included in a compiler
- Logic Bomb
 - Program that initiates a security incident under certain circumstances
- Stack and Buffer Overflow
 - Exploits a bug in a program (overflow either the stack or memory buffers)
C Program with Buffer-overflow Condition

```c
#include <stdio.h>
#define BUFFER_SIZE 256
int main(int argc, char *argv[]) {
    char buffer[BUFFER_SIZE];
    if (argc < 2)
        return -1;
    else {
        strcpy(buffer, argv[1]);
        return 0;
    }
}
```

Layout of Typical Stack Frame

![Diagram of Typical Stack Frame](image)
Modified Shell Code

```c
#include <stdio.h>
int main(int argc, char *argv[])
{
    execvp("\bin\sh", "\bin\sh", NULL);
    return 0;
}
```

Hypothetical Stack Frame

![Diagram showing the stack frame before and after the attack, with the modified code copied into the stack frame.](image)

(a) Before attack

(b) After attack
Program Threats (Cont.)

- **Viruses**
 - Code fragment embedded in legitimate program
 - Very specific to CPU architecture, operating system, applications
 - Usually borne via email or as a macro
 - **Visual Basic Macro to reformat hard drive**

```vba
Sub AutoOpen()
    Dim oFS
    Set oFS = CreateObject("Scripting.FileSystemObject")
    vs = Shell("c:\command.com /k format c:", vbHide)
End Sub
```

- **Virus dropper** inserts virus onto the system
- Many categories of viruses, literally many thousands of viruses:
 - **File** (appends itself to a file, changes start pointer, returns to original code)
 - **Boot** (writes to the boot sector, gets exec before OS)
 - **Macro** (runs as soon as document containing macro is opened)
 - **Source code** (modifies existing source codes to spread)
 - **Polymorphic** (changes each time to prevent detection)
 - **Encrypted** (first decrypts, then executes)
 - **Stealth** (modify parts of the system to prevent detection, eg read system call)
 - **Tunneling** (installs itself as interrupt handler or device driver)
 - **Multipartite** (can infect multiple pars of the system, eg. Memory, bootsector, files)
 - **Armored** (hidden and compressed virus files)
 - Browser virus, keystroke logger ..etc
A Boot-sector Computer Virus

System and Network Threats

- **Worms** - use spawn mechanism; standalone program
- **Internet worm** *(Robert Morris, 1998, Cornell)*
 - Exploited UNIX networking features (remote access) and bugs in *finger* and *sendmail* programs
 - **Grappling hook** program uploaded main worm program
- **Port scanning**
 - Automated attempt to connect to a range of ports on one or a range of IP addresses
- **Denial of Service**
 - Overload the targeted computer preventing it from doing any useful work
 - Distributed denial-of-service (*DDOS*) come from multiple sites at once
The Morris Internet Worm

Cryptography as a Security Tool

- Brodest security tool available
 - Source and destination of messages cannot be trusted without cryptography
 - Means to constrain potential senders (sources) and/or receivers (destinations) of messages
- Based on secrets (keys)
Secure Communication over Insecure Medium

Encryption

- Encryption algorithm consists of
 - Set of K keys
 - Set of M Messages
 - Set of C ciphertexts (encrypted messages)
 - A function $E : K \rightarrow (M \rightarrow C)$. That is, for each $k \in K$, $E(k)$ is a function for generating ciphertexts from messages.
 - A function $D : K \rightarrow (C \rightarrow M)$. That is, for each $k \in K$, $D(k)$ is a function for generating messages from ciphertexts.
- An encryption algorithm must provide this essential property: Given a ciphertext $c \in C$, a computer can compute m such that $E(k)(m) = c$ only if it possesses $D(k)$.
 - Thus, a computer holding $D(k)$ can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding $D(k)$ cannot decrypt ciphertexts.
 - Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive $D(k)$ from the ciphertexts.
Symmetric Encryption

- Same key used to encrypt and decrypt
 - $E(k)$ can be derived from $D(k)$, and vice versa
- DES is most commonly used symmetric block-encryption algorithm (created by US Govt)
 - Encrypts a block of data at a time (64 bit messages, with 56 bit key)
- Triple-DES considered more secure (repeat DES three times with three different keys)
- Advanced Encryption Standard (AES) replaces DES
 - Key length upto 256 bits, working on 128 bit blocks
- Twofish, RC4, RC5 .. other symmetric algorithms
- RC4 is most common symmetric stream cipher (works on bits, not blocks), but known to have vulnerabilities
 - Encrypts/decrypts a stream of bytes (i.e wireless transmission, web browsers)
 - Key is a input to psuedo-random-bit generator
 - Generates an infinite keystream

Asymmetric Encryption

- Encryption and decryption keys are different
- Public-key encryption based on each user having two keys:
 - public key - published key used to encrypt data
 - private key - key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
 - Most common is RSA (Rivest, Shamir, Adleman) block cipher
Encryption and Decryption using RSA Asymmetric

Any Questions?
Reading Assignment

- Read chapter 14 and 15 from Silberschatz.

Acknowledgements