CSC 4103 - Operating Systems Spring 2007

LECTURE - XV
FILE SYSTEMS - I

Tevfik Koşar

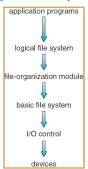
Louisiana State University March 20th, 2007

File-System Structure

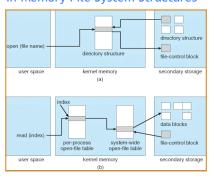
- Provides organized and efficient access to data on secondary storage, E.g.:
 - Organizing data into files and directories
 - Improve I/O efficiency between disk and memory (perform I/O in units of blocks rather than bytes)
 - Contains file structure via a File Control Block (FCB)
 Ownership, permissions, location..

A Typical File Control Block

file permissions


file dates (create, access, write)

file owner, group, ACL


file size

file data blocks or pointers to file data blocks

Layered File System

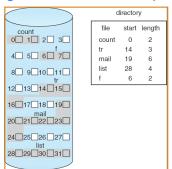
In-Memory File System Structures

Virtual File Systems

- Virtual File Systems (VFS) provide an object-oriented way of implementing file systems.
- VFS allows the same system call interface (the API) to be used for different types of file systems.
- The API is to the VFS interface, rather than any specific type of file system.

Directory Implementation

- Linear list of file names with pointer to the data blocks.
 - simple to program
 - time-consuming to execute
- Hash Table linear list with hash data structure.
 - decreases directory search time
 - collisions situations where two file names hash to the same location
 - fixed size

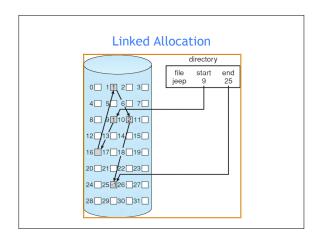

Allocation Methods

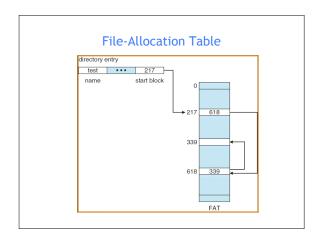
- An allocation method refers to how disk blocks are allocated for files:
- · Contiguous allocation
- · Linked allocation
- Indexed allocation

Contiguous Allocation

- Each file occupies a set of contiguous blocks on the disk
- Simple only starting location (block #) and length (number of blocks) are required
- Wasteful of space (dynamic storage-allocation problem)
- · Files cannot grow

Contiguous Allocation of Disk Space




Linked Allocation

• Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk.

- + Simple need only starting address
- + Free-space management system no waste of space
- No random access
- Extra space required for pointers
- Reliability: what if a pointer gets corrupted?

Indexed Allocation ings all pointers together into the index block,

- Brings all pointers together into the $\mathit{index\ block}$, to allow random access to file blocks.
- Logical view.

- + Supports direct access
- + Prevents external fragmentation
- High pointer overhead --> wasted space

Example of Indexed Allocation directory file index block jeep 19 4 | 5 | 6 | 7 | 9 8 | 9 | 10 | 11 | 19 16 | 17 | 18 | 19 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |

Any Questions? Hmm..

Reading Assignment

• Read chapter 11 from Silberschatz.

18

Acknowledgements

• "Operating Systems Concepts" book and supplementary material by Silberschatz, Galvin and Gagne.

19