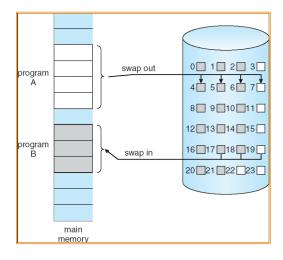
CSC 4103 - Operating Systems Spring 2007

LECTURE - XIII VIRTUAL MEMORY

Tevfik Koşar

Louisiana State University
March 20th, 2007

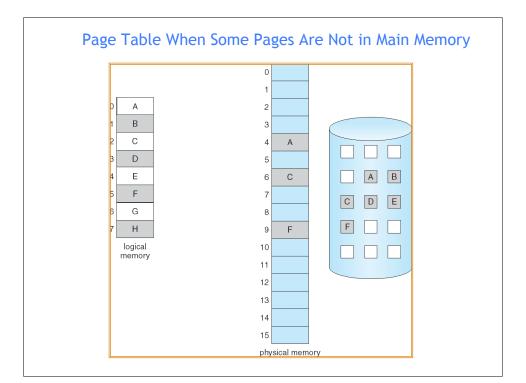

Background

- **Virtual memory** separation of user logical memory from physical memory.
 - Only part of the program needs to be in memory for execution.
 - Logical address space can therefore be much larger than physical address space.
 - Allows address spaces to be shared by several processes.
 - Allows for more efficient process creation.
- Virtual memory can be implemented via:
 - Demand paging
 - Demand segmentation

Demand Paging

- Bring a page into memory only when it is needed
 - Less I/O needed
 - Less memory needed
 - Faster response
 - More users
- Page is needed ⇒ reference to it
 - invalid reference ⇒ abort
 - not-in-memory ⇒ bring to memory

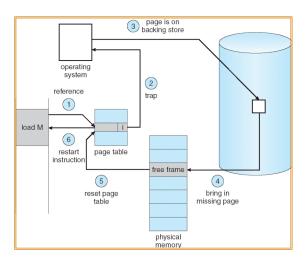
Transfer of a Paged Memory to Contiguous Disk Space


Valid-Invalid Bit

- With each page table entry a valid-invalid bit is associated (1 \Rightarrow in-memory and legal, 0 \Rightarrow not-in-memory or invalid)
- Initially valid-invalid bit is set to 0 on all entries
- Example of a page table snapshot:

Frame #	valid-invalid b	
	1	
	1	
	1	
	1	
	0	
:		
	0	
	0	
a a sua da la la		

page table


• During address translation, if valid-invalid bit in page table entry is $\mathbf{0} \Rightarrow \text{page fault}$

Page Fault

- If there is ever a reference to a page, first reference will trap to
 - OS ⇒ page fault
- OS looks at another table to decide:
 - Invalid reference ⇒ abort.
 - Just not in memory.
- Get empty frame.
- Swap page into frame.
- Reset tables, validation bit = 1.
- Restart instruction: Least Recently Used
 - block move
 - auto increment/decrement location

Steps in Handling a Page Fault

What happens if there is no free frame?

- Page replacement find some page in memory, but not really in use, swap it out
 - Algorithms (FIFO, LRU ..)
 - performance want an algorithm which will result in minimum number of page faults
- Same page may be brought into memory several times

Performance of Demand Paging

- Page Fault Rate $0 \le p \le 1.0$
 - if p = 0 no page faults
 - if p = 1, every reference is a fault
- Effective Access Time (EAT)

 $EAT = (1 - p) \times memory access$

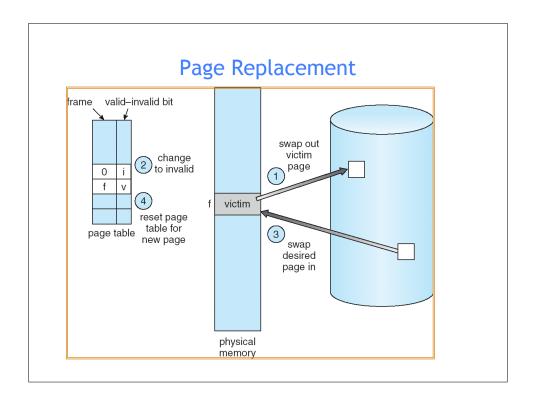
+ p x (page fault overhead

- + [swap page out]
- + swap page in
- + restart overhead)

Demand Paging Example

- Memory access time = 1 microsecond
- 50% of the time the page that is being replaced has been modified and therefore needs to be swapped out
- Swap Page Time = 10 msec = 10,000 microsec
- EAT = $(1 p) \times 1 + p \times (10,000 + 1/2 \times 10,000)$ = $1 + 14,999 \times p$ (in microsec)
- What if 1 out of 1000 memory accesses cause a page fault?
- What if we only want 30% performance degradation?

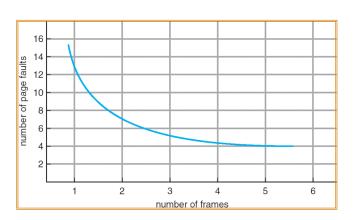
Copy-on-Write


- Copy-on-Write (COW) allows both parent and child processes to initially *share* the same pages in memory
 - If either process modifies a shared page, only then is the page copied
- COW allows more efficient process creation as only modified pages are copied
- Free pages are allocated from a pool of zeroed-out pages (zero-fill-on-demand pages)

Page Replacement

- Prevent over-allocation of memory by modifying pagefault service routine to include page replacement
- Use modify (dirty) bit to reduce overhead of page transfers - only modified pages are written to disk
- Page replacement completes separation between logical memory and physical memory - large virtual memory can be provided on a smaller physical memory

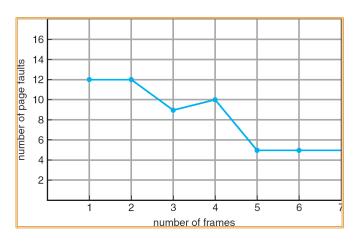
Basic Page Replacement


- 1. Find the location of the desired page on disk
- 2. Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page replacement algorithm to select a **victim** frame
- 3. Read the desired page into the (newly) free frame. Update the page and frame tables.
- 4. Restart the process

Page Replacement Algorithms

- Want lowest page-fault rate
- Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string
- In all our examples, the reference string is 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Graph of Page Faults Versus The Number of Frames



First-In-First-Out (FIFO) Algorithm

- Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
- 3 frames (3 pages can be in memory at a time per process)

- 4 frames
- FIFO Replacement Belady's Anomaly
 - more frames ⇒ more page faults

FIFO Illustrating Belady's Anomaly

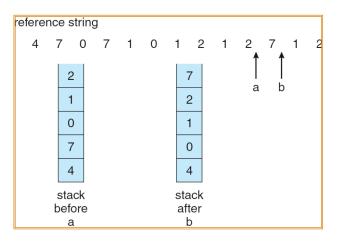
Optimal Algorithm

- Replace page that will not be used for longest period of time
- 4 frames example

- How do you know this?
- Used for measuring how well your algorithm performs

Least Recently Used (LRU) Algorithm

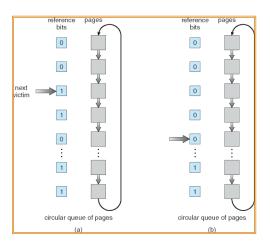
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5



- Needs hardware assistance
- Counter implementation
 - Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter
 - When a page needs to be changed, look at the counters to determine which are to change

LRU Algorithm (Cont.)

- Stack implementation keep a stack of page numbers in a double link form:
 - Page referenced:
 - move it to the top
 - requires 6 pointers to be changed
 - No search for replacement


Use Of A Stack to Record The Most Recent Page References

LRU Approximation Algorithms

- Reference bit
 - With each page associate a bit, initially = 0
 - When page is referenced bit set to 1
 - Replace the one which is 0 (if one exists). We do not know the order, however.
- Additional Reference bits
 - 1 byte for each page: eg. 00110011
 - Shift right at each time interval
- Second chance
 - Need reference bit
 - Clock replacement
 - If page to be replaced (in clock order) has reference bit = 1 then:
 - set reference bit 0
 - leave page in memory
 - replace next page (in clock order), subject to same rules

Second-Chance (clock) Page-Replacement Algorithm

Counting Algorithms

- Keep a counter of the number of references that have been made to each page
- LFU Algorithm: replaces page with smallest count
- MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in and has yet to be used

Allocation of Frames

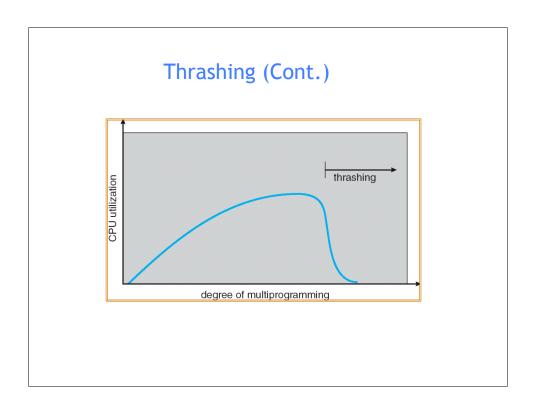
- Each process needs minimum number of pages
- Example: IBM 370 6 pages to handle SS MOVE instruction:
 - instruction is 6 bytes, might span 2 pages
 - 2 pages to handle from
 - 2 pages to handle to
- Two major allocation schemes
 - fixed allocation
 - priority allocation

Fixed Allocation

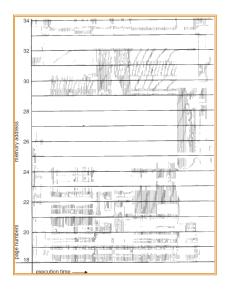
- Equal allocation For example, if there are 100 frames and 5 processes, give each process 20 frames.
- Proportional allocation Allocate according to the size of process

$$s_i$$
 = size of process p_i $m = 64$
 $S = \sum s_i$ $s_i = 10$
 $m = \text{total number of frames}$ $s_2 = 127$
 $a_1 = \text{allocation for } p_i = \frac{s_i}{S} \times m$ $a_1 = \frac{10}{137} \times 64 \approx 5$
 $a_2 = \frac{127}{137} \times 64 \approx 59$

Priority Allocation

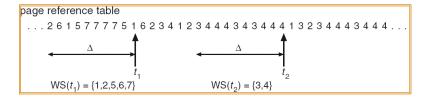

- Use a proportional allocation scheme using priorities rather than size
- If process P_i generates a page fault,
 - select for replacement one of its frames
 - select for replacement a frame from a process with lower priority number

Global vs. Local Allocation


- Global replacement process selects a replacement frame from the set of all frames; one process can take a frame from another
- Local replacement each process selects from only its own set of allocated frames

Thrashing

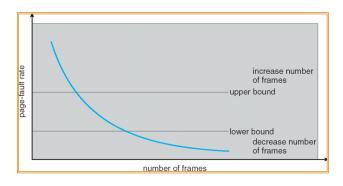
- If a process does not have "enough" frames, the page-fault rate is very high. This leads to:
 - Replacement of active pages which will be needed soon again
 - → Thrashing = a process is busy swapping pages in and out
- Which will in turn cause:
 - low CPU utilization
 - operating system thinks that it needs to increase the degree of multiprogramming
 - another process added to the system


Locality In A Memory-Reference Pattern

Working-Set Model

- Δ = working-set window = a fixed number of page references
 - Example: 10,000 instruction
- WSS_i (working set of Process P_i) = total number of pages referenced in the most recent Δ (varies in time)
 - if Δ too small will not encompass entire locality
 - if Δ too large will encompass several localities
 - if $\Delta = \infty \Rightarrow$ will encompass entire program
- $D = \Sigma WSS_i = \text{total demand frames}$
- if $D > m \Rightarrow$ Thrashing
- Policy if D > m, then suspend one of the processes

Working-set model



Keeping Track of the Working Set

- Approximate with interval timer + a reference bit
- Example: $\Delta = 10,000$
 - Timer interrupts after every 5000 time units
 - Keep in memory 2 bits for each page
 - Whenever a timer interrupts copy and sets the values of all reference bits to 0
 - If one of the bits in memory = $1 \Rightarrow$ page in working set
- Why is this not completely accurate?
- Improvement = 10 bits and interrupt every 1000 time units

Page-Fault Frequency Scheme

- Establish "acceptable" page-fault rate
 - If actual rate too low, process loses frame
 - If actual rate too high, process gains frame

Any Questions?

Reading Assignment

• Read chapter 9 from Silberschatz.

39

Acknowledgements

• "Operating Systems Concepts" book and supplementary material by Silberschatz, Galvin and Gagne.