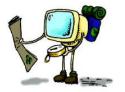
CSC 4103 - Operating Systems Spring 2007


LECTURE - V
CPU SCHEDULING

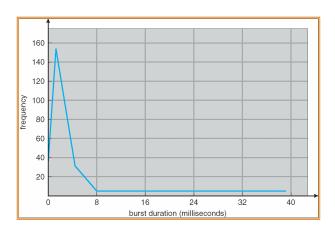
Tevfik Koşar

Louisiana State University February 1st, 2007

Roadmap

- CPU Scheduling
 - Basic Concepts
 - Scheduling Criteria
 - Different Scheduling Algorithms

Basic Concepts


- Multiprogramming is needed for efficient CPU utilization
- CPU Scheduling: deciding which processes to execute when
- Process execution begins with a CPU burst, followed by an I/O burst
- CPU-I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait

3

Alternating Sequence of CPU And I/O Bursts

Histogram of CPU-burst Durations

5

CPU Scheduler

- Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them
 - → short-term scheduler
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- Scheduling under 1 and 4 is nonpreemptive/cooperative
 - Once a process gets the CPU, keeps it until termination/switching to waiting state/release of the CPU
- All other scheduling is *preemptive*
 - Most OS use this
 - Cost associated with access to shared data

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler;
 Its function involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- *Dispatch latency* time it takes for the dispatcher to stop one process and start another running

7

Scheduling Criteria

- CPU utilization keep the CPU as busy as possible
- Throughput # of processes that complete their execution per time unit
- Turnaround time amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for timesharing environment)

Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

9

First-Come, First-Served (FCFS) Scheduling

Process	Burst Time
P_1	24
P_2	3
P_3	3

• Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

$$P_2$$
, P_3 , P_1

• The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$. $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process

1

Shortest-Job-First (SJR) Scheduling

- Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time
- Two schemes:
 - nonpreemptive once CPU given to the process it cannot be preempted until completes its CPU burst
 - preemptive if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is know as the Shortest-Remaining-Time-First (SRTF)
- SJF is optimal gives minimum average waiting time for a given set of processes

Example of Non-Preemptive SJF

Process	Arrival Time	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_{\perp}	5.0	4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

13

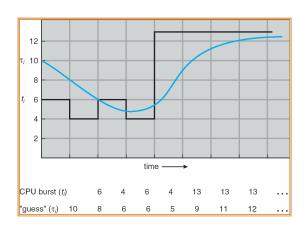
Example of Preemptive SJF

Process	Arrival Time	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{\scriptscriptstyle A}$	5.0	4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 + 2)/4 = 3

Determining Length of Next CPU Burst


- Can only estimate the length
- Can be done by using the length of previous CPU bursts, using exponential averaging

$$\tau_{n=1} = \alpha t_n + (1-\alpha)\tau_n.$$

- 1. $t_n = \text{actual lenght of } n^{th} \text{ CPU burst}$
- 2. τ_{n+1} = predicted value for the next CPU burst
- 3. α , $0 \le \alpha \le 1$
- 4. Define:

15

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

- $\bullet \quad \alpha = 0$
 - $\tau_{n+1} = \tau_n$
 - Recent history does not count
- $\alpha = 1$
 - $\tau_{n+1} = \alpha t_n$
 - Only the actual last CPU burst counts
- If we expand the formula, we get:

$$\begin{split} \tau_{n+1} &= \alpha \ t_n + (1 - \alpha) \alpha \ t_n - 1 + \dots \\ &\quad + (1 - \alpha)^j \alpha \ t_{n - j} + \dots \\ &\quad + (1 - \alpha)^{n + 1} \tau_0 \end{split}$$

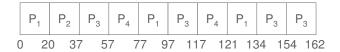
• Since both α and (1 - α) are less than or equal to 1, each successive term has less weight than its predecessor

17

Priority Scheduling

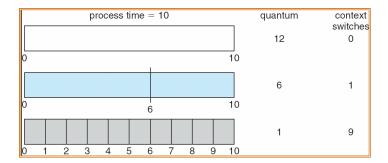
- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer = highest priority)
 - Preemptive
 - nonpreemptive
- SJF is a priority scheduling where priority is the predicted next CPU burst time
- Problem = Starvation low priority processes may never execute
- Solution ≡ Aging as time progresses increase the priority of the process

Round Robin (RR)

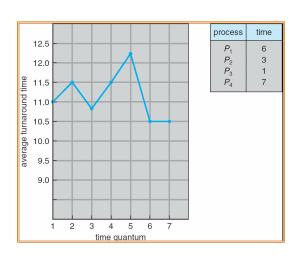

- Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds.
 After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.
- Performance
 - $q \text{ large} \Rightarrow \text{FIFO}$
 - q small $\Rightarrow q$ must be large with respect to context switch, otherwise overhead is too high

10

Example of RR with Time Quantum = 20

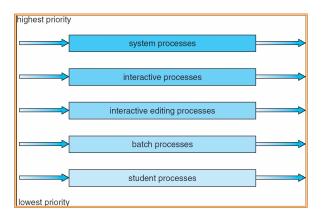

Process	Burst Time
P_1	53
P_2	17
P_3	68
$P_{\scriptscriptstyle A}$	24

• The Gantt chart is:



• Typically, higher average turnaround than SJF, but better *response*

Turnaround Time Varies With The Time Quantum

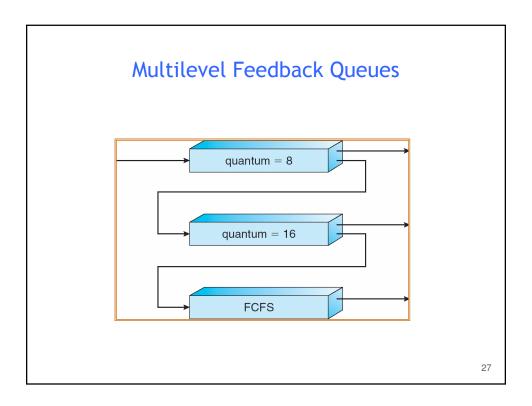


Multilevel Queue

- Ready queue is partitioned into separate queues: foreground (interactive) background (batch)
- Each queue has its own scheduling algorithm
 - foreground RR
 - background FCFS
- Scheduling must be done between the queues
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - 20% to background in FCFS

23

Multilevel Queue Scheduling


Multilevel Feedback Queue

- A process can move between the various queues; aging can be implemented this way
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service

25

Example of Multilevel Feedback Queue

- Three queues:
 - Q_0 RR with time quantum 8 milliseconds
 - Q_1 RR time quantum 16 milliseconds
 - Q2 FCFS
- Scheduling
 - A new job enters queue Q_0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q_1 .
 - At Q_1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q_2 .

Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available
- Homogeneous processors within a multiprocessor
- Load sharing
- Asymmetric multiprocessing only one processor accesses the system data structures, alleviating the need for data sharing

Real-Time Scheduling

- Hard real-time systems required to complete a critical task within a guaranteed amount of time
- Soft real-time computing requires that critical processes receive priority over less fortunate ones

29

Thread Scheduling

- Local Scheduling How the threads library decides which thread to put onto an available LWP
- Global Scheduling How the kernel decides which kernel thread to run next

Pthread Scheduling API

31

Pthread Scheduling API

Operating System Examples

- Solaris scheduling
- Windows XP scheduling
- Linux scheduling

33

Solaris 2 Scheduling

Solaris Dispatch Table

priority	time quantum	time quantum expired	return from sleep
0	200	0	50
5	200	0	50
10	160	0	51
15	160	5	51
20	120	10	52
25	120	15	52
30	80	20	53
35	80	25	54
40	40	30	55
45	40	35	56
50	40	40	58
55	40	45	58
59	20	49	59

35

Windows XP Priorities

	real- time	high	above normal	normal	below normal	idle priority
time-critical	31	15	15	15	15	15
highest	26	15	12	10	8	6
above normal	25	14	11	9	7	5
normal	24	13	10	8	6	4
below normal	23	12	9	7	5	3
lowest	22	11	8	6	4	2
idle	16	1	1	1	1	1

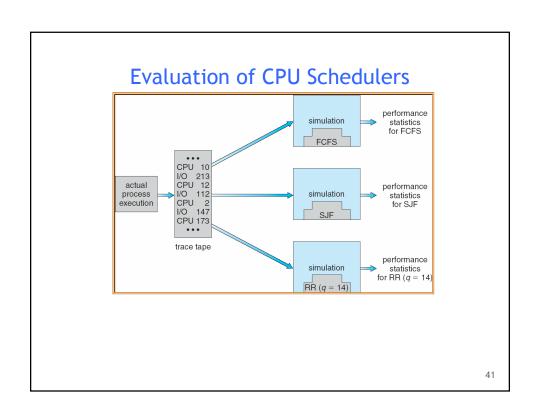
Linux Scheduling

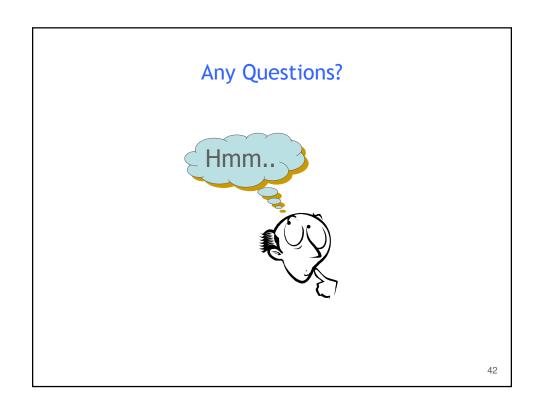
- Two algorithms: time-sharing and real-time
- · Time-sharing
 - Prioritized credit-based process with most credits is scheduled next
 - Credit subtracted when timer interrupt occurs
 - When credit = 0, another process chosen
 - When all processes have credit = 0, recrediting occurs
 - Based on factors including priority and history
- Real-time
 - Soft real-time
 - Posix.1b compliant two classes
 - FCFS and RR
 - Highest priority process always runs first

37

The Relationship Between Priorities and Time-slice length

numeric priority	relative priority		time quantum
0 • • • 99	highest	real-time tasks	200 ms
100 • • • 140	lowest	other tasks	10 ms


List of Tasks Indexed According to Prorities


active array		expired array	
priority [0] [1] •	task lists	priority [0] [1]	task lists
•	•	•	•
[140]	0	[140]	<u> </u>

39

Algorithm Evaluation

- Deterministic modeling takes a particular predetermined workload and defines the performance of each algorithm for that workload
- Queueing models
- Implementation

Reading Assignment

• Read chapter 5 from Silberschatz.

43

Acknowledgements

• "Operating Systems Concepts" book and supplementary material by Silberschatz, Galvin and Gagne.