Programming Languages

Tevfik Koşar

Lecture - XIV
March 7th, 2006
Quiz - 2

1) Consider the following Scheme definition:
>> (define (test x y) (if (= x 3) 1 y))

Write the output of the following call to this function
>> (test 3 (/ 5 0))

a) assuming normal-order evaluation is used

b) assuming applicative-order evaluation is used
Quiz - 2

2) Write the output of the following programs:

a) >> (let ((a 3) (b 4))
 (let ((a 5) (b a))
 (let ((a b) (c a))
 (+ a b c))))

b) >> (let ((a 3) (b 4))
 (let* ((a 5) (b a))
 (let* ((a b) (c a))
 (+ a b c))))
Roadmap

- **Scheme**
 - List Operations
 - Assignment
 - Loops
 - Evaluation Order in Scheme

- **Lambda Calculus**

- **Comments on Midterm Exam**
List Operations

Scheme provides a variety of procedures for operating on lists:

- **length** takes one argument (a list) and returns an integer giving the length of the list.

  ```scheme
  (length '(0 #t #f)) 3
  ```

- **list** takes one or more arguments and constructs a list of those items.

  ```scheme
  (list 1) ; == (cons 1 `()) (1)
  (list 1 2 3) (1 2 3)
  ```
List Operations

- **append** takes two or more lists and constructs a new list with all of their elements.

  ```
  >> (append '(1 2) '(3 4))
  (1 2 3 4)
  ```

 Notice that this is different from what list does:

  ```
  >> (list '(1 2) '(3 4))
  ((1 2) (3 4))
  ```

  ```
  >> (append '((1 2) (3 4)) '((5 6) (7 8)))
  ((1 2) (3 4) (5 6) (7 8))
  ```
List Operations

- **reverse** takes one list, and returns a new list with the same elements in the opposite order.

 >> reverse '(1 2 3 4))
 (4 3 2 1)
Assignment

- set!
- set-car!
- set-cdr!

```lisp
(let ((x 2)
       (l `(a b)))
  (set x! 3)
  (set-cdr! l `(c d))
  (set-car! l `(c d))
  (set-cdr! l `(e))

>> x
3
>> l
((c d) e)
```
Loops

\[
\begin{align*}
\text{>> (do ((i 0 (+ i 1)) (a 0 b) (b 1 (+ a b))) ((= i n)) b) (display b) (display " ")}) & \quad \text{-> initialize & increment} \\
& \quad \text{-> " " " } \\
& \quad \text{-> " " " } \\
& \quad \text{-> termination test} \\
& \quad \text{-> body of the loop} \\
& \quad \text{-> " " " }
\end{align*}
\]
Loops

```scheme
>> (for-each (lambda (a b) (display (* a b)) (newline))
   `(2 4 6)
   `(3 5 7))
```

6
20
42
()
Evaluation Order in Scheme

- Scheme uses **applicative-order** evaluation
 - Evaluate arguments before passing them to subroutine

```
>> (define double (lambda (x) (+ x x)))
```

Applicative order evaluation (as in Scheme):
```
>> (double (* 3 4))
\rightarrow (double 12)
\rightarrow (+ 12 12)
\rightarrow 24
```
Evaluation Order in Scheme

>> (define double (lambda (x) (+ x x)))

Normal order evaluation:
>> (double (* 3 4))
⇒ (+ (* 3 4) (* 3 4))
⇒ (+ 12 (* 3 4))
⇒ (+ 12 12)
⇒ 24

⇒ Normal order causes us to evaluate (* 3 4) twice
Evaluation Order in Scheme

- In specific cases, the outcome can be different.

Eg. (define switch (lambda x a b c)
 (cond ((< x 0) a)
 ((= x 0) b)
 ((> x 0) c))))

Using applicative order:

>> (switch -1 (+ 1 2) (+ 2 3) (+ 3 4))

⇒ (switch -1 3 (+ 2 3) (+ 3 4))
⇒ (switch -1 3 5 (+ 3 4))
⇒ (switch -1 3 5 7)
⇒ (cond ((< x 0) 3)
 ((= x 0) 5)
 ((> x 0) 7))
⇒ (cond (#t 3)
 ((= x 0) 5)
 ((> x 0) 7))
Evaluation Order in Scheme

Using normal order:

\[(\text{switch } -1 \ (\text{\(+ 1 2\)) \ (\text{\(+ 2 3\)) \ (\text{\(+ 3 4\))})} \]

\[(\text{cond} \ ((< x 0) \ (+ 1 2)) \ ((= x 0) \ (+ 2 3)) \ ((> x 0) \ (+ 3 4))) \]

\[(\text{cond} \ (#t \ (+ 1 2)) \ ((= x 0) \ (+ 2 3)) \ ((> x 0) \ (+ 3 4))) \]

\[(+ 1 2) \]

\[3 \]

\[\text{Normal order avoids evaluating \((+ 2 3)\) and \((+ 3 4)\)} \]
Comments in Scheme

You can and should put comments in your Scheme programs. **Start a comment with a semicolon.** Scheme will ignore any characters after that on a line. (This is like the // comments in C++.)

```scheme
>> (define foo 22) ; define foo with an initial value of 22
```
Lambda Calculus

- lambda calculus is a formal system designed to investigate function definition, function application, and recursion.
- was introduced in 1930’s
- the smallest universal programming language
- lambda calculus consists of a single transformation rule (variable substitution) and a single function definition scheme
- lambda calculus is universal in the sense that any computable function can be expressed and evaluated using this formalism
Lambda Calculus

- In lambda calculus, every expression stands for a function with a single argument
- the argument of the function is in turn a function with a single argument
- and the value of the function is another function with a single argument

Eg.

\(f(x) = x + 2 \) would be expressed as \(\lambda x. x + 2 \)
and the number \(f(3) \) would be written as \((\lambda x. x + 2) 3 \)
Lambda Calculus

• A function of two variables is expressed in lambda calculus as a function of one argument which returns a function of one argument.

Eg. the function $f(x, y) = x - y$ would be written as:
$$\lambda x. \lambda y. x - y.$$

A common convention is to abbreviate curried functions as, for instance, $\lambda x y. x - y$.

Example: $(\lambda x y. x - y) 7 2$
$$= (\lambda y. 7 - y) 2$$
$$= 7 - 2$$
$$= 5$$
Consider a function which takes another function as argument and applies it to the argument 3: \(\lambda f. f 3 \).

This latter function could be applied to our earlier "add-two" function as follows: \((\lambda f. f 3) (\lambda x. x+2) \).

\[
\begin{align*}
\Rightarrow & \quad (\lambda f. f 3) (\lambda x. x + 2) \\
& = (\lambda x. x + 2) 3 \\
& = 3 + 2 \\
& = 5
\end{align*}
\]
Lambda Calculus

Formal definition:
The set of all lambda expressions can then be described by the following context-free grammar in BNF:

expr → identifier
expr → λ identifier . expr
expr → expr expr
Lambda Calculus

Mapping Lambda Calculus to Scheme:

<table>
<thead>
<tr>
<th>Math:</th>
<th>f(x) = x + 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda Calculus:</td>
<td>λ x. x + 2</td>
</tr>
<tr>
<td>Scheme:</td>
<td>(define f (lambda (x) (+ x 2)))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Math:</th>
<th>f(x, y) = x -y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda Calculus:</td>
<td>λ x. λ y. x -y</td>
</tr>
<tr>
<td>Scheme:</td>
<td>(define f (lambda (x y) (- x y)))</td>
</tr>
</tbody>
</table>
Midterm will cover:

- Ch 1.1-1.6
- Ch 2.1-2.3
- Ch 3.1-3.3
- Ch 4.1-4.6
- Ch 6.1-6.7
- Ch 10.1-10.5
- Scheme

- Check the class notes! Anything not covered in the class will not be asked!
- Expect similar questions to the homework assignments and quizzes.
Midterm Hints

- Be sure that you know:
 - difference between compilation and interpretation; lexical, syntactic and semantic analysis; linking and binding
 - how to write regular expressions
 - how to generate NFA and DFA from regular expressions
 - how to generate parse trees
 - difference between top-down and bottom-up parsing; LL vs LR grammars
 - difference between stack-based vs heap-based allocation; static vs dynamic scoping
 - how to generate attribute grammars; decorate parse trees; and generate syntax trees
 - expression evaluation orders; applicative vs normal-order evaluation
 - basic scheme functions; lists, searching, and scoping in Scheme