Programming Languages

Tevfik Koşar

Lecture - I January 17th, 2006

Contact Information

Prof. Tevfik KosarOffice: 292 CoatesPhone: 578-9483

• Email: kosar@lsu.edu

• Web: http://www.cct.lsu.edu/~kosar

• Office hours: Tue & Thu, 1:30pm - 2:30pm

• Course web page: http://www.cct.lsu.edu/~kosar/csc4101

• Provide me with your active email address to be added to the class mailing list.

Roadmap

- Meet the Professor
 - Background
 - Teaching philosophy
- Motivation for the Course
 - What expect to learn?
- Introduction to the Course Material
- Administrative details
- Take Photos

3

Tevfik Kosar

- Joined LSU in August 2005
- Education:
 - PhD: University of Wisconsin-Madison (CS)
 - MS: Rensselaer Polytechnic Institute, NY (CS)
 - BS: Bosporus University, Turkey (CompE)
- Teaching
 - This semester:
 - CSC 4101 Programming Languages
 - Next year:
 - CSC 4103: Operating Systems
 - CSC 7700: Data Intensive Distributed Computing

Research

- Grid Computing
 - Analogy to the Power Grid
 - A special case for Distributed Computing
 - Spans wide area networks and multiple administrative domains
- The Center for Computation & Technology
 - Spend half of my time there
 - Office: Johnston 333
 - Multi-disciplinary research
 - http://www.cct.lsu.edu

5

The Imminent Data "deluge" • Exponential growth of scientific data - 2000: ~0.5 Petabyte Growth of Gen

2000: ~0.5 Petabyte
2005: ~10 Petabytes
2010: ~100 Petabytes
2015: ~1000 Petabytes

- "I am terrified by terabytes"
 - -- Anonymous
- "I am petrified by petabytes"
 - -- Jim Gray

 Moore's Law outpaced by growth of scientific data!

A High Energy Physics Project: LHC

- The detectors at the LHC will probe fundamental forces in our Universe, such as search for the yet-undetected Higgs Boson.
- Starting in 2006 the LHC accelerator will produce protonproton collisions with a rate of 109 events/s.
- Four detectors:
 - ATLAS, CMS, ALICE, LHC-B
- LHC Challenges:
 - 11 Petabytes of data per year
 - 100,000 CPUs
 - 5000 physicists, in 300 institutes in 50 countries

7

A Bioinformatics Project: BLAST

- Goal: decode genetic information and map the genomes of humans, and other species.
- Uses comparative genomics: compares unknown genetic sequences (~billions) to known genomes in search of similarities.
- Current dataset:
 - Several Petabytes
- Future:
 - Exponential Growth: SCARY!

An Educational Technology Project: WCER Educational Video Processing

- Build histories of student learning for use in education research and instruction relying on video data.
- Analyze and share large amount of video.
- 1 hour DV video is ~13 GB
 - A typical educational research video uses 3 cameras => 39 GB for 1 hour
- Current data set:
 - > 500 Terabytes
- Future:
 - Several Petabytes

9

Astronomy

 Mapping of Universe, detection of new galaxies and stars...

Current Datasets

Project	Data Volume
DPOSS	3 TB
2MASS	12 TB
SDSS	40 TB

Future Productions

Project	Data Volume
WFCAM	20 TB/year
VISTA	100 TB/year
LSST	1000 TB/year

Interested?

- Send an email to kosar@lsu.edu
- Register for a independent study (CSC 4999)
- Take 3 credits for doing research in one of these interesting topics during one semester

Teaching Philosophy

- Goal:
 - For instructor: teaching the material
 - For student: learning and applying the material in real life
- Grades are of second degree importance
- Do not memorize, understand the material
 - Exams may be openbook!
- You are only responsible from material
 - Covered in the class
 - Part of projects or homework assignments

13

Programming Languages

- How many different programming languages are there?
 - More than 200!
- Can you name some of them?
- Which ones have you used before?
 - Java
 - C++
 - C
 - Lisp/Scheme
 - Prolog
 -

Language of the Computer

- Machine Language
 - Consists of 0's and 1's
 - Which refers to high and low voltage states
 - 0010 0111 1010 1101 1111 1111 1101 0000
 - 27bdffd0 afbf0014 0c1002a8 ...
- Assembly Language
 - push bx
 - mov bx
 - div bx
 - add dx
 - Direct mapping to machine language
- Higher Level Languages
 - C, C++, Java, Pascal, Scheme, Prolog..
 - First one: Fortran

15

Why are there so many programming languages?

- Special Purposes
 - Each language is designed to solve a certain problem:
 - Perl for string parsing and manipulation
 - C/C++ for systems programming
 - Java for platform independent programs
 - · Prolog for logic programming and AI
 - Fortran for numerical computations
- Personal Preferences
- Evolution
 - Learn better ways of doing things over time..
 - eg. from "go to" to "while" loops, "case" statements

What makes a language successful?

- easy to learn (BASIC, Pascal, LOGO, Scheme)
- easy to express things, easy use once fluent, "powerful" (C, Common Lisp, APL, Algol-68, Perl)
- easy to implement (BASIC, Forth)
- possible to compile to very good (fast/small) code (Fortran)
- backing of a powerful sponsor (COBOL, PL/1, Ada, Visual Basic)
- wide dissemination at minimal cost (Pascal, Turing, Java)

17

Programming Paradigms

- Group languages as
 - declarative

functional (Scheme, ML, pure Lisp, FP)
 logic, constraint-based (Prolog, VisiCalc, RPG)

- imperative

von Neumann (Fortran, Pascal, Basic, C)
 object-oriented (Smalltalk, Eiffel, C++)
 scripting languages (Perl, Python, JavaScript, PHP)

Why study programming languages?

- Help you choose a language
- Make it easier to learn new languages
 - Syntactic similarities
 - C++ vs Java
 - Conceptual siilarities
 - C vs Pascal
- Help you make better use of whatever language you use
 - Choose among alternative ways
 - · Using arrays vs pointers
 - Loops vs Recursion
 - Simulate useful features in languages that lack them
 - Faking pointers
 - · Faking modularity

19

Textbooks

- Required text:
 - Programming Language Pragmatics (2nd edition)
 - by Michael Scott, Morgan Kauffman Publishers, 2005
- Recommended text:
 - Concepts of Programming Languages (6th edition)
 - Robert W. Sebesta, Addison-Wesley, 2003
- There will be additional links for supplementary course material on the course web page

Grading

• The end-of-semester grades will be composed of:

Popup Quizzes : 5%
Active Contribution : 5%
Homework : 15%
Projects : 30%
Midterm : 20%
Final : 25%

2

Reading Assignment

• Read chapter 1 from Programming Language Pragmatics (PLP).

