
A Case Study for Petascale Applications in Astrophysics:
Simulating Gamma-Ray Bursts

C. D. Ott
Department of Astronomy and

Steward Observatory
The University of Arizona

Tucson, AZ, USA
cott@as.arizona.edu

E. Schnetter
Center for Computation &

Technology
Louisiana State University

Baton Rouge, LA, USA
schnetter@cct.lsu.edu

G. Allen
Center for Computation &

Technology
Louisiana State University

Baton Rouge, LA, USA
gallen@cct.lsu.edu

E. Seidel
Center for Computation &

Technology
Louisiana State University

Baton Rouge, LA, USA
eseidel@cct.lsu.edu

J. Tao
Center for Computation &

Technology
Louisiana State University

Baton Rouge, LA, USA
jtao@cct.lsu.edu

B. Zink
Center for Computation &

Technology
Louisiana State University

Baton Rouge, LA, USA
bzink@cct.lsu.edu

ABSTRACT
Petascale computing will allow astrophysicists to investigate
astrophysical objects, systems, and events that cannot be
studied by current observational means and that were pre-
viously excluded from computational study by sheer lack of
CPU power and appropriate codes. Here we present a prag-
matic case study, focussing on the simulation of gamma-ray
bursts as a science driver for petascale computing. We es-
timate the computational requirements for such simulations
and delineate in what way petascale and peta-grid comput-
ing can be utilized in this context.

1. INTRODUCTION
The past decades have seen a quasi-exponential increase
in theoretical peak single CPU performance and an even
greater performance increase in the integral (theoretical)
peak performance of massively-parallel supercomputers.
Soon the first machines will reach the 1-petaflop mark, then
being more than 4.2 million times faster than 30 years ago
the Cray-1 (peak performance 240 Megaflop/s)1, arguably
the world’s first true supercomputer.

Computer software, in particular scientific software and
scientist-developed code, is in the main unable to keep up
with the exploding computing power. In fact, many physics
codes that ran on the Cray-1 thirty years ago can still be
found in nearly unaltered form running on modern quasi-
scalar desktop CPUs or as modules of large simulation codes
running on massively-parallel systems. Such codes typically

1See http://en.wikipedia.org/wiki/Cray-1

To appear in: Proceedings of the 15th Mardi Gras Conference, Baton Rouge
(2008), ACM SIGAPP

are not well optimized for modern-day architectures, leading
to severe limitations on resource efficiency (sustained flop/s
vs. peak flop/s) and parallel scaling.

To profit fully from the extreme hardware performance in-
crease we are witnessing, science codes must be upgraded,
optimized and enabled for petascale computing. Only with
petascale-enabled codes utilizing the full potential of peta-
scale platforms will it be possible to tackle the next gener-
ation of computational complex scientific problems (science
drivers).

Hundreds of millions of dollars are being targeted at de-
signing and deploying petascale hardware and developing
new programming languages and models, yet there is a lack
of understanding of how they will be employed for real-life
applications, or rather, real science, applications. In this
paper, we describe in some detail the computational needs
of a challenging problem in astrophysics – the modeling of
gamma-ray bursts (GRBs, introduced in section 2) – which
is motivating this group of authors to be ready to exploit
petascale computers.

Although solving this GRB simulation problem is likely to
be a decade long challenge, requiring advances in physics and
algorithms as well as computer science, we believe that con-
tinuing to develop our scientific software through the com-
ponent framework Cactus [14, 11] will provide a path to
petascale, and we describe some initial steps that we are
taking in this direction.

Much of the discussion in this paper will be in the context
of the Cactus Computational Infrastructure [11] and codes
that build upon it, including the general-relativistic (GR)
spacetime curvature evolution code Ccatie [2, 1, 13], the
adaptive mesh-refinement driver Carpet [22, 12], and the
GR hydrodynamics code Whisky [5, 26] as well as their
combination put to work in the context of massive star col-
lapse [19]. Cactus is used by more than two dozen groups
worldwide and is part of the petascale tool development for

mailto:cott@as.arizona.edu
mailto:schnetter@cct.lsu.edu
mailto:gallen@cct.lsu.edu
mailto:eseidel@cct.lsu.edu
mailto:jtao@cct.lsu.edu
mailto:bzink@cct.lsu.edu
http://en.wikipedia.org/wiki/Cray-1
scmofr
MG '08, January 29-February 3 2008, Baton Rouge, LA, USACopyright (c) 2008 ACM 978-1-59593-835-0/08/02... $5.00

scmofr

NSF’s Blue Waters petascale facility2.

In the following we discuss our specific example of the nu-
merical modeling of gamma-ray bursts (GRBs) as a sci-
ence driver for petascale computing. In the next section we
provide a concise scientific motivation of the problem and
then go on to discuss the problem’s computational complex-
ity in section 3. Section 4 introduces our computational
tools as examples for codes that may find application in the
GRB context. In section 5 we go on to present strategies
to petascale GRB codes, discussing parallel-scaling issues,
as well as resource efficiency, (meta-)data handling require-
ments and technologies, and the possibility for spawning off
sub-simulations or parts of simulations via grid technology,
combing the computational power of multiple supercomput-
ers or delegating dynamically irrelevant parts of the simula-
tions to distributed computing. We summarize and discuss
our concepts and efforts in section 6.

2. A GRB PRIMER
Gamma-Ray Bursts (GRBs) are intense narrowly-beamed
flashes of γ-rays (very high-energy photons) of cosmological
origin. The riddle concerning their central engines and emis-
sion mechanisms is one of the most complex and challenging
problems of astrophysics today.

GRBs last between 0.5–1000 secs and have a bimodal dis-
tribution of durations [15], indicating two distinct classes of
mechanisms and central engines powering the bursts. The
short-hard (duration <∼ 2 secs) group of GRBs (hard, be-
cause their γ-ray emissions peak at higher frequency) pre-
dominantly occurs in galaxies with old stellar populations
at moderate astronomical distances [27, 15]. The energy re-
leased in a short-hard GRB and its duration suggest [27,
15] a black hole with a ∼0.1 solar-mass (1 M� = 1.99×1033

grams) accretion disk as the central engine. Such a BH–
accretion-disk system is likely to be formed by the coales-
cence of NS–NS or NS–BH systems (e.g. [24]).

Long-soft (duration ∼2–1000 secs) GRBs on the other hand
seem to occur exclusively in galaxies with young stellar
populations and low metallicity Observations that have re-
cently become available (see [15] for reviews) indicate fea-
tures in the x-ray and optical afterglow spectra and lumi-
nosity evolutions of long-soft GRBs that show similarities
with spectra and light curves obtained from Type-Ib/c core-
collapse supernovae whose progenitors are evolved massive
stars (M >∼ 25M�) that have lost their extended hydrogen
envelopes and probably also a fair fraction of their helium
shell. These observations support the collapsar model ([27],
see fig. 1) of long-soft GRBs that envisions a stellar-mass
black hole formed in the aftermath of a stellar core-collapse
event with a massive (∼1 M�) rotationally-supported ac-
cretion disk as the central engine, powering the GRB jet
that punches through the stellar envelope reaching ultra-
relativistic velocities [15].

Although observations are aiding our theoretical under-
standing, much that is said about the GRB central en-
gine will remain speculation until it is possible to self-
consistently model (i) the processes that lead to the forma-

2http://www.ncsa.uiuc.edu/BlueWaters/

H e

O/Ne /Mg

Si
Fe -group nucle i

~ 107 k m

C

(not draw n to scale)

Iron Core Collapse

Accre tionAccre tion

Collapse to a Black H ole

Protone utron Star

w ith Accre tion D isk

Je t Form ation and

Sustainm e nt

Je t Propagation / Bre ak out

Afte rglow Em ission

Disruption of Star

Figure 1: Schematic view of a collapsar-type GRB
and its multiple phases. See text for details.

tion of the GRB central engine and (ii) the way the central
engine utilizes gravitational (accretion) and rotational en-
ergy to launch the GRB jet via magnetic stresses and/or
polar neutrino pair-annihilation processes. The physics nec-
essary in such a model includes general relativity, relativis-
tic magneto-hydrodynamics, nuclear physics (describing nu-
clear reactions and the equation of state of dense matter),
neutrino physics (weak interactions), and neutrino and pho-
ton radiation transport. In addition, it is necessary to ade-
quately resolve physical processes with characteristic scales
from ∼25–100 meters near the central engine to ∼5–10 mil-
lion kilometers, the approximate radius of the collapsar pro-
genitor star.

3. GRBS AND PETASCALE:
A MULTI-COMPONENT APPROACH

In this case study we aim at a comprehensive approach, con-
sidering the computational modeling of a GRB from the
onset of its progenitor star’s collapse to the break-out of
GRB jet from the stellar envelope to the modeling of the
GRB afterglow emissions in x-ray, optical and radio bands.
We envision a computational scenario in which the entire
GRB event is treated by multiple physics codes but within
one computational infrastructure, responsible for workflow
and data management, coordinating the action of individual
physics modules.

Simulating a long-soft GRB means capturing the physics and
dynamics occurring over a multitude of spatial and temporal
scales with each temporal and spatial scale and physical pro-

http://www.ncsa.uiuc.edu/BlueWaters/

cess having different relevance at different times of the GRB
evolution. For example, photon transport in the outer stel-
lar envelope and the outer envelope dynamics are irrelevant
in the collapse phase of the stellar core embedded deeply
inside the star. On the other hand, neutrino transport, cru-
cially important in the initial collapse phase and at later
times near the central engine, is utterly irrelevant for the
jet propagation, breakout and GRB afterglow phases, all of
which need a detailed photon-transfer treatment.

Hence, quite naturally, the GRB modeling is broken down
into multiple components, each component being associated
with a specific epoch and/or physical process in the over-
all GRB evolution and requiring physics that is partly (or
completely) different from what is needed in different GRB
components.

We identify the following components of the GRB problem,
schematically depicted in figure 1, and delineate their main
physics inputs and modules. We also estimate roughly and
only accurate to an order-of-magnitude their computational
requirements in terms of memory and floppage.

3.1 Iron Core Collapse, Supernova Evolution,
and Black Hole Formation

In this GRB component the collapse of the stellar iron core
and overlying silicon and oxygen layers to a protoneutron
star (PNS) are tracked. A supernova shock is launched, but
quickly stalls due to energy losses to neutrinos and dissoci-
ation of heavy nuclei. Material accretes onto the PNS and
eventually leads to its collapse to a black hole that is quickly
accreting from a massive accretion disk.

The key physics components are nuclear equation of state
(EOS), neutrino physics and transport, GRMHD, and GR
curvature evolution. The physical domain of relevance en-
compasses (in radius) ∼109 cm (10,000 km), and scales down
to ∼25 m (in the black hole (BH)-formation phase) must
be resolved to capture the physical dynamics. Assuming a
basegrid (= largest grid) spacing of 50 km, 11 levels of mesh
refinement (each level yielding a factor of 2 increase in reso-
lution) are required to resolve 25 m scales. Experience from
stellar collapse calculations [20, 19] shows that each level
of refinement requires about the same number of computa-
tional zones, cutting the computational domain covered in
half for each refinement level added. The total number of
computational zones with all refinement levels active is then
4003 × 11 = 640 million. Assuming parallel execution on
1000 cores, each core will have a load of∼11×403 zones, with
3 inter-process ghost zones (see section 4) on each face, the
total number of zones on a core will be ∼11×463, yielding a
total number of ∼1.1 billion zones.

Memory Requirements. The GR curvature evolution part
requires typically ∼200 3D arrays (grid functions [GFs],
including 2 previous time levels for the evolved fields),
GRMHD (including the nuclear EOS) also requires ∼200
GFs, neutrino radiation transport (with neutrino physics
and in the multi-group flux-limited diffusion approximation,
see e.g. [10]) requires ∼1700 GFs (assuming 32 neutrino en-
ergy groups and 3 neutrino flavors). Assuming double pre-
cision real numbers, the total memory requirement will be
near 18 TByte.

Sustained Performance Requirements.3 Assuming a time in-
tegration step that is half the light-crossing time of each grid
cell, the basegrid timestep is 1.7 milliseconds. The physical
period to be covered during this GRB stage is ∼2 seconds,
leaving us with 2400 base grid time steps, 211−1 × 2400
finest grid time steps and, summing over all refinement lev-
els (211 - 1) × 2400 ∼5 million total updates of ∼4603 points.
The GR curvature evolution and GRMHD both require each
∼20 kflop for the update of a single point, the EOS calls
from the GR hydrodynamics and neutrino transport mod-
ules require an additional ∼10 kflop per single-point update
while the radiation transport and neutrino interaction mod-
ule will consume no less than ∼500 kflop per single-point
as its time-integration and coupling with matter must be
performed time-implicitly, requiring the inversion of large
semi-sparse matrices.

The total required floppage is then ∼270,000 Pflop. Hence,
a supercomputer on which the GRB simulation could run at
1 Pflop/s sustained performance would require 3 days, and
on a 1 Pflop/s peak performance machine, this part of the
GRB evolution would require ∼30 days of wall time.

3.2 Accretion Dynamics, Jet Formation, Jet
Sustainment

This GRB simulation component tracks the long-term (1 s
– >∼200 s) accretion dynamics onto the black hole and cap-
tures the initial formation and the sustainment of the MHD
and/or neutrino-driven GRB jet. Scales on the order of
∼25 m near the BH horizon must be resolved and a physi-
cal domain of ∼1000 km3 must be covered. Critical physics
components are GR curvature evolution, GRMHD, and neu-
trino radiation transport. The entire post-BH formation
epoch of the GRB, up to times on the order of ∼200 s in
physical time after BH formation must be covered providing
continuous input to the jet propagation component of the
GRB simulation discussed in the next subsection.

Memory Requirements. Using a 10-level AMR hierarchy
with a 2003 points on each level and distributing the grid
over 1000 CPU cores yields a local load of 10×263 zones
(including 3 inter-process ghost zones on each face). As-
suming the same number of GFs as used in the first stage of
the GRB simulation, the total memory requirement will be
∼3 TByte.

Sustained Performance Requirements. Evolving the AMR
hierarchy for 200 s in physical time corresponds to 6×105

base grid timesteps and a total of 6×108 updates of a set of
2603 grid points. This maps to a total floppage of 6 million
Pflop, requiring a total of ∼70 days on a supercomputer
on which this GRB simulation component runs at sustained
1 Pflop/s.

3.3 Jet Propagation and Break Out
This component follows the jet propagation through the low-
density polar regions of the stellar envelope. This and the
previous simulation component coincide in time and bound-

3The performance requirements quoted here are based on
actual measurements (with extrapolation) using the Ccatie
spacetime evolution code and the GR hydrodynamics pack-
age Whisky; see http://www.cactuscode.org/Benchmarks/.

http://www.cactuscode.org/Benchmarks/

ary information for the energy input into the jet is required.
High-resolution tracking of the propagating GRB fireball
via AMR techniques is crucial in this epoch and angle-
dependent photon transport will be necessary to track the
jet’s traversal from the optically-thick stellar envelope to
the optically thin regime at jet breakout. Neutrino trans-
port and GR curvature evolution are not required at this
stage and are replaced by photon transport whose computa-
tional complexity is in the same ballpark as that of neutrino
transport. In addition to tracking the jet propagation, this
simulation component will receive boundary hydrodynamics
data from the accretion dynamics and jet sustainment com-
ponent and will capture the spatial widening of the explosion
that will eventually tear the star apart.

Tracer-particle trajectories may be saved and later fed into
specialized and computationally-intensive chemical element
synthesis (nucleosynthesis) codes that require only a subset
of the hydrodynamic data. Alternatively, small independent
nucleosynthesis jobs taking data directly from the GRB sim-
ulation may be spawned-off via the grid (see also section 5.3).

Using a 15-level AMR hierarchy to cover scales from ∼1 km
and extend out to 10 million km with a base grid spacing
of 25000 km, we have (using 1000 CPU cores) a total of
15×4603 grid points in this part of the GRB simulation that
must be tracked for ∼200 s after BH formation in conjunc-
tion with the GRB simulation component discussed in the
previous section.

Memory Requirements. Assuming a comparable number of
GFs to previous phases and with the increased number of
refinement levels leading to a total number of 1.5 billion grid
points, we estimate a memory requirement of ∼25 TByte.

Sustained Performance Requirements. 200 s in physical
time must be covered. This converts to ∼170 coarse grid
timesteps and a total number of 5.5 million updates of
4603 points. Adopting a similar computational complex-
ity to the other phases (here dominated by photon trans-
port) of ∼500 kflop per grid point update, we obtain a total
floppage of ∼300,000 Pflop. On a machine with 1 Pflop/s
sustained this corresponds to ∼3.5 days of continuous com-
putation. On a machine with 1 Pflop/s peak performance
and 0.1 Pflop/s sustained, the computation would require 30
days of wall time, assuming one can achieve 10% of the peak
performance. Note, however, that because of physical coin-
cidence, this and the previously discussed component must
be run simultaneously, but could, possibly, be run on sepa-
rate machine as the amount of communication necessary is
limited to the exchange of boundary information.

3.4 Late-time, post GRB evolution: Afterglow
This phase sets in after the GRB central engined has stopped
operating, the powerful GRB jet has died away, and the
entire star has been disrupted, leaving behind the central
black hole and many solar masses of debris material that
is ejected at varying velocities. While the hydrodynam-
ics of the ejecta is moderately simple and does not require
the full GRMHD treatment, photon transport and photon
absorption/re-emission by debris material as well as pho-
ton creation in nuclear decay are complicated aspects of
this late-time phase in the GRB evolution. A detailed, 3D

photon transport scheme is necessary and dominates mem-
ory requirements and computational complexity. Moreover,
the afterglow evolution must – in principle – be followed
for months of physical time, making this a formidable task
not even accomplishable in all details with petascale super-
computers. A typical and well suited approximation is the
adoption of the Monte-Carlo method for radiation trans-
port in which the scattering, emission/absorption random-
walks of test particles are followed (e.g.,[7]). This approach
scales very well to large computers but can be memory in-
tensive. Detailed memory and performance requirements
depend strongly on the level of approximation and on how
well photon emission and absorption lines are resolved. The
authors cannot claim expertise in this particular aspect of
the GRB, hence cannot make reliable estimates for its com-
putational needs.

Sections 3.1–3.4 show that performing a simulation of even
a single phase of the GRB phenomenon requires petascale
computing power. The estimates that we have made on
memory and sustained performance requirements are opti-
mistic and they may in fact be underestimating the real com-
putational cost of such simulations as on-line analysis rou-
tines and I/O are not included in our order-of-magnitude es-
timates and may contribute significantly to the overall cost.

We are also optimistic in terms of performance – the first
petascale machines are unlikely to provide 1 Pflop/s sus-
tained performance and the resource efficiency of GRB codes
may be worse than our optimistic estimate of ∼10% of peak
performance. In particular resource efficiency and parallel
scaling must be optimized in present codes. We discuss pos-
sible paths to peta-enable present codes in section 5 below.

Finally, we point out that any long-term simulation tends to
amplify the small numerical errors acquired in each iteration
by accumulation, sometimes to significant magnitudes (say,
10% or more). A conservative estimate of the accumulated
error can be obtained from a linear growth model, although
the actual time dependence may be sub-linear or super-
linear depending on the quantity and the physical model.
In the finite-difference and finite-volume schemes, the errors
obtained from each iteration directy depend on the resolu-
tion, so, given an error limit, there is a direct relation be-
tween the total physical simulation time and the resolution
required in the computational domain - more directly, in the
GRB problem, a simulation time of 200 seconds may well re-
quire a much higher resolution than a simulation time of 2
seconds.

A linear growth model estimates the total error after phys-

ical time t to E(t) = E0
t
t0

“
h
h0

”α

, where E(t) is the error

after the physical time t, h is the spatial resolution in one
direction, and E0 is the growth rate, i.e., the error accu-
mulated in time t0 at resolution h0. The number α de-
termines how quickly the error diminishes with resolution,
and is also called the order of convergence of the numer-
ical scheme. From this formula, we can obtain estimates
for the maximal error growth rates given a physical time by

solving for E0: E0 = E(t)t0
t

`
h0
h

´α
. As reference time to

measure the growth rate we will use 100µs, which is typical
timescale for neutron stars. Therefore, for a maximum error

Figure 2: A sample 2D grid hierarchy with 3 re-
finement levels and a refinement factor of 2. Proper
nesting (see main text) requires that the fine grids
are wholly contained in coarser grids.

of E(t) = 10% and a physical time of 2 seconds, the scheme
must not exceed a relative error accumulation of 5 · 10−6

per 100µs in all relevant quantities, and for 200 seconds the
limit is accordingly 5 · 10−8. The error can be reduced by
(i) using an adapted grid (i.e., reducing E0) [29], (ii) using
more cells (i.e., reducing h) or (iii) using high-order schemes
(i.e., increasing α).

4. COMPUTATIONAL
INFRASTRUCTURE

In this section we discuss the basics of our computational ap-
proach to the GRB problem. We introduce adaptive-mesh
refinement (AMR), the central component of the GRB simu-
lations discussed here. AMR allows for the computationally
efficient resolution of dynamics on many length scales. Fur-
thermore, we introduce our computational framework Cac-
tus and a subset of the physics codes necessary in the GRB
simulations.

4.1 3D Cartesian Meshes with Adaptive Re-
finement

The block-structured AMR method, introduced by Berger
and Oliger (B&O) in 1984 [6] to solve hyperbolic PDEs,
is one of the most widely used AMR algorithms. It is built
upon one or more nested grid hierarchies of rectangular grids
with increasing resolution. The B&O AMR algorithm is
adaptive in both space and time, making it very efficient.

The B&O algorithm starts from a given base grid. Begin-
ning with the data on the base grid, some specified criteria
estimates the discretization error and flags those grid points
requiring higher accuracy. The flagged points are clustered
into rectangular blocks, and new grids with higher resolu-
tion are generated to cover those blocks. This regridding
procedure continues recursively until the criteria are met or
the maximum number of refinement levels is reached. The
proper nesting property of the B&O algorithm requires that
the grids on a refinement level must reside inside the region
covered by the grids on the next coarser level, though it is
possible for a grid to reside in more than one grid on the next
coarser level. Figure 2 shows an example hierarchy, where
G2

1 overlaps indeed with both G1
0 and G1

1. This whole regrid-
ding procedure is repeated every so often to keep the grid
structure adapted to the solution’s resolution requirements.

A constant ratio between the time step ∆t and grid spacing
∆x of different levels is often used to simplify scheduling
the time integration of different levels. Such a constant ra-
tio follows also naturally from the Courant-Friedrichs-Levy
criterion for hyperbolic evolution equations. In this case, all
the grids are guaranteed to arrive at the same time at every
base time step.

4.2 Computational Framework and Compo-
nents

The Cactus Framework [14, 11] was developed to reduce the
development time for creating simulation codes, to shield
developers from changes in system properties, and to en-
able large-scale science collaborations. Cactus and other
modular, component-based frameworks allow scientists and
engineers to develop their own application modules and as-
semble them with a body of existing components, creating
applications that can solve complex multi-physics computa-
tional problems. Cactus runs on a wide range of hardware
ranging from desktop PC’s to the largest supercomputers
and grid environments.

Carpet [22, 12] is a layer which implements Berger–Oliger
mesh refinement (see above). Carpet refines parts of the
simulation domain in space and/or time, where each refined
region is a block-structured regular grid, allowing for effi-
cient internal representations e.g. as Fortran arrays. In ad-
dition to mesh refinement, Carpet also provides parallelism
and load distribution by distributing grid functions onto pro-
cessors. Our finite differencing stencils require an overlap of
3 ghost zones between neighboring processors’ subdomains.

Our spacetime evolution component Ccatie uses a variant
of the BSSN formulation of the Einstein equations [2, 1, 25,
13]. These are a set of 25 coupled hyperbolic partial differ-
ential equations which we discretize with high-order finite
differences and evolve in time using explicit integrators.

The Whisky code [5, 26] is a GR hydrodynamics code.
While Ccatie evolves the curvature part of spacetime,
Whisky evolves the “right-hand side”, the matter part of
the Einstein equations. Whisky computes the update terms
for the hydrodynamic variables via a flux-conservative finite-
volume method, exploiting the characteristic structure of the
equations of GR hydrodynamics.

Combined, these four existing implementations provide a
state-of-the-art general relativistic hydrodynamics code that
can handle large spatial and temporal scale differences. To-
gether with a radiation transport module (under develop-
ment) and a component of Whisky that can handle mag-
netic fields (under development), these form the basis of our
proposed petascale application.

5. DEVELOPING FOR PETASCALE
Petascale architectures will differ from current terascale ar-
chitectures in several important respects. Current code ar-
chitectures will need to be updated to cope with the chal-
lenges that these new hardware architectures pose.

5.1 Hybrid Communication Schemes

Within the next few years, systems are projected to have
between 16 or 64 cores (or more) per node. Such multi-
processor systems are both a blessing and a burden. Com-
bining multiple cores into one node reduces the cost for mem-
ory and network interfaces, and it reduces fragmentation of
the total memory. On the other hand, it increases the al-
ready large pressure onto the memory and network systems.
It is therefore necessary to orchestrate memory and network
usage within a node very carefully to avoid bottlenecks.

Virtually all modern high-performance codes are designed
for distributed memory systems, based on MPI [16]. Since
MPI can handle communication between nodes, it is natural
to use MPI also to parallelize the code within a node. This is
certainly the easiest approach from a code architecture point
of view, and the resulting memory fragmentation within the
node can help efficiency. However, this approach does not
scale beyond a few cores per node for several reasons:

Memory per core. Because it is cheaper to just add cores
to a node than to also increase the memory per node, and
because TOP500 pressure asks for cores, not memory, the
amount of memory per core will likely decrease in the future.
Fragmenting a node’s memory also means that each core can
handle only a very small part of the overall problem, which
increases the MPI overhead and eventually leads to loss of
scaling.

MPI overhead. If there are many cores per node, then using
multi-threading instead of MPI can actually remove existing
intra-node MPI overhead, increasing the performance. Such
overhead consists e.g. of the memory required to store ghost
zones for domain-decomposed grid functions, which is sig-
nificant for higher order methods and physical systems with
many independent variables.

Total number of cores. The total number of cores in peta-
scale systems will be orders of magnitude larger than on
current systems.4 It is very difficult to make MPI codes
scale to such numbers; each incremental increase in scala-
bility needs to be bought through a dedicated development
effort, and most codes will have to cover a factor of 100 or
1000 in scalability. Reducing the number of MPI processes
by using multi-threading seems a very viable approach.

Presently, we find that our codes work best with at least
1 GByte of memory per core. Given that each process also
requires memory for the executable, static variables, I/O
buffers etc., and that the MPI parallelization overhead in-
creases when the problem size per core decreases, this makes
it very difficult to use low-per-core memory machines.

We performed tests on Abe (one of our main produc-
tion platforms) at the National Center for Supercomput-
ing Applications (NCSA) with a model equation, comparing
straight MPI parallelization vs. hybrid parallelization com-
bining MPI and OpenMP [18]. We used the Cactus frame-
work [11], the Carpet mesh refinement driver [22, 12], and
solved a scalar wave equation in the unit cube as model prob-
lem. Figure 3 shows results, comparing the efficient unigrid
MPI solver PUGH and the mesh refinement solver Carpet.

4NSF assumes O(1, 000, 000) processors per system; see
http://www.nsf.gov/pubs/2007/nsf07559/nsf07559.htm.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 4 16 64 256 1024 4096

w
al

l t
im

e
/ g

rid
 p

oi
nt

 [µ
s]

processors

1003 WaveToy on Abe

PUGH, MPI only
Carpet, 1 level, MPI only

Carpet, 1 level, MPI+OpenMP

Figure 3: Benchmark results from Abe at NCSA,
comparing straight MPI parallelization with a hy-
brid approach combining MPI and OpenMP. The
graphs show the time per grid point vs. the
number of cores used. The hybrid solver Car-
pet/MPI+OpenMP is faster and scales further than
Carpet/MPI. For comparison, results from the un-
igrid solver PUGH are also shown. The efficiency
loss between using 4 and 8 cores is likely caused by
memory contention within a node; Abe has 8 cores
per node. For additional details see the main text.

This figure includes three graphs showing the time per grid
point vs. the overall number of cores. As expected, the un-
igrid solver PUGH scales well; this solver is very mature
and has been optimized for a wide range of architectures.
The mesh refinement solver Carpet/MPI ceases to scale
at about 1024 cores. This is due to increasing communica-
tion and administrative overhead as the number of domains
increases. (Understanding and improving this is the topic
of ongoing research.) However, the mesh refinement solver
Carpet/MPI+OpenMP scales up to at least 8192 cores,
and it is also about 20% faster when 8 or more cores are
used. These improvements are due to two different factors.
The efficiency gain within a single node is caused by reducing
memory contention via additional cache optimizations. Such
optimizations can be more powerful when OpenMP is used,
since then the application’s memory space within a node is
not fragmented as with pure MPI. The non-scaling of Car-
pet/MPI for large numbers of nodes is remedied in Car-
pet/MPI+OpenMP since there are fewer MPI processes,
and the application’s administrative overhead is smaller.

5.2 Future Hybrid Accelerated Architectures
Future multi-core architectures may also be supplemented
by computational accelerators like the NVIDIA Tesla and
the AMD FireStream solutions. These are multiproces-
sors evolved from the traditional graphics accelerators, now
called graphics processing units or GPUs, which achieve
high computational throughput by parallel computation on
a large number of stream processors. Current products like
the Tesla GPUs achieve a peak performance of about 350
GFlop/s, though this is limited to single-precision float-
ing point operations. The FireStream GPUs and future
NVIDIA products will support double-precision operations
as well, and are therefore an interesting target for scientific
computation.

http://www.nsf.gov/pubs/2007/nsf07559/nsf07559.htm

Taking advantage of these GPUs poses a major challenge,
however. These architectures do currently not admit to port
standard OpenMP/MPI code in an efficient manner, which
is partly related to the fact that several stream processors
share instruction units, and partly to the requirement of im-
plementing manual caching schemes for accessing the frame
buffer memory. In fact, programming interfaces similar to
standard languages like C have only become available re-
cently (e.g. NVIDIA CUDA), replacing earlier attempts to
use the graphics API (shaders) for general purpose comput-
ing.

One of the authors has recently demonstrated that a general
relativistic evolution code can be accelerated substantially
by using an NVIDIA Quadro FX 5600 GPU [28]. Com-
pared to a serial code running on an AMD Opteron 2.4 GHz,
the parallel GPU code using CUDA can run up to 26.5
times faster. While the actual acceleration can vary signif-
icantly with the particular problem, this shows that future
CPU/GPU hybrid architectures can potentially increase the
performance of scientific codes to the Petascale range even
in medium-sized clusters (assuming a double-precision peak
performance of about 2 TFlop/s in GPUs within the next 3
years, a petaflop machine can be built from only 500 GPUs).

A likely scenario is that highly parallel problems, like calcu-
lating the right hand side of a system of partial differential
equations, are off-loaded to a GPU kernel, while the CPU
asynchronously takes care of inter-GPU/inter-node commu-
nication, analysis and output. This, of course, requires an
appropriate computational infrastructure and standard ab-
stractions to achieve portability for the kernel codes between
different GPUs (or CPUs). Therefore, we expect this aspect
of software architecture and computational middleware to
be an important facet of future petascale computation.

5.3 Multi-Machine Simulations
Another approach towards petascale computing is to take
advantage of the combined power of multiple geographically-
distributed machines. Numerical relativity has long been a
driving application for Grid computing [4], and here we de-
scribe several scenarios where Grid technologies could con-
tribute to petascale-enabling the GRB problem.

Distributed “metacomputing” simulations. In this paper we
describe a science driver requiring petascale capabilities. Al-
though planned, such machines will not be available in the
short term, and even when available it may be hard to sched-
ule the use of whole machines. An alternative approach is to
combine several large more available machines into a single
“virtual” petascale computer which is then used for a tightly
coupled GRB simulation [17, 23, 9].5

Coupled models. Multi-machine simulations can also be a
good way to handle multi-model simulations, e.g. in order
to calculate the steps described in sections 3.2 and 3.3 at
the same time. Different physics models will exhibit very
different execution characteristics, and may well best be ex-
ecuted on different architectures – e.g., one on a large shared

5Such a simulation using the Cactus framework won the
2001 Gordon Bell prize for this; see http://www.cactuscode.
org/News/Archives2001/GordonBell2001/.

memory machine such as an SGI Altix, the other on a cycle
powerhouse such as the BlueGene.

Task Spawning. In section 3.3 we described how part of the
simulation process could be calculated off-line. This can be
achieved by automated task spawning – moving a part of
an application to an appropriate remote resource, while the
core simulation continues. This approach can also be used
to spawn general analysis tasks which are carried out fre-
quently (potentially at every iteration) during a simulation,
for example, to locate a black hole horizon or compute the
emitted gravitational waves. These time consuming tasks
do not feed back to the main simulation, or may not be
easily parallelized, and hence can be spawned to a more ap-
propriate resource, allowing the primary resource to fully
concentrate on its task of advancing the main simulation,
improving efficiency and throughput. Spawning scenarios
were demonstrated at SC01, where a black hole simulation
running in Germany was able to automatically spawn anal-
ysis tasks to resources in Europe, Asia, and North America
[3, 21].

5.4 Data and Metadata
The GRB simulations will generate large amounts of output
data. Checkpoint/Restart files of size ∼20 TByte will be pe-
riodically generated and potentially transported to alterna-
tive machines for restart. Total output of order 5 PByte per
simulation (assuming output every 10 basegrid iterations)
will be generated containing data which must be analyzed
and visualized (often by several different members of a re-
search group) for physical results, and archived for later use.
Each simulation can generate hundreds of files with different
file formats, and the discovery and manipulation of these
files is complicated by the fact that users are running on
different machines, with different filesystems, quotas, and
archiving possibilities. For multi-machine Grid scenarios,
the data management problem is exacerbated; users will not
necessarily even know on which machine their simulation is
running, or the simulation could even be moving between
resources leaving data in multiple locations.

Scientific results also need to be validated and cross-checked,
often requiring several simulations at different resolutions
for every data point. A single physics paper in numerical
relativity can currently take many months of dedicated use
of a TOP500-class machine, and the access to and manage-
ment of the data becomes crucially important. A scientific
group must be able to defend its results not only to the
paper referee, but also months and years after publication.
One approach would be to simply store source code and re-
run simulations as required, however this in turn leads to
challenges in providing a complete description of the run in-
cluding exact machine architecture, operating system, com-
pilers, compiler and OS configuration options etc as well as
simulation input files — with no guarantee that it will be
possible to replicate the run on contemporary hardware.

These needs necessitate advances in efficient parallel file I/O,
automated management of data including metadata genera-
tion, and fast networks for data transport, as well as strate-
gies for long term data archival.

Metadata are central to the management, archival and re-

http://www.cactuscode.org/News/Archives2001/GordonBell2001/
http://www.cactuscode.org/News/Archives2001/GordonBell2001/

trieval of simulation data. In the metadata model currently
under development for Cactus, we define for each simulation
extendable alphanumeric and machine-parsable key–value
sets of core and key metadata: Core metadata describe the
basic and generic characteristics of the simulation, including
all parameter settings, information on active Cactus thorns,
size of the simulation, machine and performance informa-
tion, source code tags, etc. Key metadata, on the other
hand, consist of application-specific key–value sets, for ex-
ample, for a GRB simulation, may contain a short descrip-
tion of the progenitor star characteristics (mass/rotational
configuration etc), information on when the black hole hori-
zon first appeared or when the GRB jet broke through the
stellar envelope. Each key and core metadata key–value pair
may be classified static (cannot change during the simula-
tion) or dynamic (can change during the simulation). In this
way, the simulation metadata can in addition be used easily
for on-line remote monitoring of central characteristics while
the simulation is running [8].

Cactus binaries that include metadata management contain
their source code and build information. Once invoked, Cac-
tus writes its complete source tree in compressed archive
format, as well as static key and core metadata into the
output directory. It also announces the starting simulation
and transfers metadata (including a source code fingerprint)
to a metadata server. Dynamic metadata are updated pe-
riodically for simulation monitoring. Unique identifiers are
included in output file headers, allowing connecting it to the
stored metadata. Upon simulation termination, the output
data are transferred to a mass storage system and their de-
tailed location is announced to the metadata server.

6. CONCLUSIONS
We have described above what we take to be the current
trend of technology, how we intend to take advantage of it,
and what pitfalls it will present. We have been somewhat
conservative in our assumptions. Are more radical changes
possible? Certainly. For example, a switch to many-core
architectures with disjoint, small memories, such as IBM’s
Cell architecture, could become reality, much to the horror
of application developers used to current concepts. Is it
likely? We hope not, unless there is a viable programming
model, which is, in our opinion, not in sight for the majority
of applications.

The old way to describe performance is in terms of “flop”,
on which the TOP500 and all current supercomputer allo-
cations are based. A newer terminology includes terms like
“memory latency”, “cache access”, “communication band-
width”, etc., which are now used by programmers, but not
yet in accounting. Recently the expression“power consump-
tion” came into play, leading to multi-core architectures.
What terms could a radically new architecture introduce?
Will it be “MTBF”, the mean time between failures? Or
“data mobility”, the ease with which data can be moved to a
different device? Or maybe “elasticity”, the ability of hard-
ware to reconfigure itself to changing application needs or
parital system failures?

We have outlined some of the effects that coming petascale
computing environment will have on computational science
and on science applications. We have presented a case study

of a particular petascale computing problem. Using the sim-
ulation of gamma-ray bursts as a science driver, we have
examined how petascale computing can help solve problems
that are currently computationally impossible. Our com-
putational scenario treats GRBs by multiple physics codes
which are embedded within one computational infrastruc-
ture. We have also briefly described the computational al-
gorithms for these individual codes, and have given order-
of-magnitude estimates for CPU and memory requirements.

Our estimates show that this kind of new (astro-)physics is
indeed possible on future petascale architectures. Petascale
computing will allow astrophysicists, but, of course, also sci-
entists from other disciplines, to study and solve problems
that are impossible to access and solve by any other means.

7. ACKNOWLEDGMENTS
We thank the organisers of the 15th Mardi Gras Confer-
ence in Baton Rouge. This work used the resources of
the machine Abe at the NCSA under the LRAC allocation
MCA02N014. C.D.O. acknowledges support through a Joint
Institute for Nuclear Astrophysics postdoctoral fellowship,
sub-award no. 61-5292UA of NFS award no. 86-6004791.

8. REFERENCES
[1] M. Alcubierre, B. Brügmann, P. Diener, M. Koppitz,

D. Pollney, E. Seidel, and R. Takahashi. Gauge
conditions for long-term numerical black hole
evolutions without excision. Phys. Rev. D, 67:084023,
2003.

[2] M. Alcubierre, B. Brügmann, T. Dramlitsch, J. A.
Font, P. Papadopoulos, E. Seidel, N. Stergioulas, and
R. Takahashi. Towards a stable numerical evolution of
strongly gravitating systems in general relativity: The
conformal treatments. Phys. Rev. D, 62:044034, 2000.

[3] G. Allen, T. Dramlitsch, I. Foster, N. Karonis,
M. Ripeanu, E. Seidel, and B. Toonen. Supporting
efficient execution in heterogeneous distributed
computing environments with cactus and globus. In
Proceedings of Supercomputing 2001, Denver, USA,
2001. http://www.cactuscode.org/Articles/Cactus
Allen01e.pre.pdf.

[4] G. Allen and E. Seidel. The Grid: Blueprint for a New
Computing Infrastructure (2nd Edition), chapter
Collaborative Science: Astrophysics Requirements and
Experiences, pages 201–213. Morgan Kaufmann, 2004.

[5] L. Baiotti, I. Hawke, P. J. Montero, F. Löffler,
L. Rezzolla, N. Stergioulas, J. A. Font, and E. Seidel.
Three-dimensional relativistic simulations of rotating
neutron star collapse to a Kerr black hole. Phys. Rev.
D, 71:024035, 2005.

[6] M. J. Berger and J. Oliger. Adaptive mesh refinement
for hyperbolic partial differential equations. J.
Comput. Phys., 53:484–512, 1984.

[7] C. Bernes. A Monte Carlo approach to non-LTE
radiative transfer problems. Astron. Astrophys., 73:67,
1979.

[8] R. Bondarescu, G. Allen, G. Daues, I. Kelley,
M. Russell, E. Seidel, J. Shalf, and M. Tobias. The
astrophysics simulation collaboratory portal: a
framework for effective distributed research. Future
Generation Computer Systems, 2003. Accepted.

http://www.cactuscode.org/Articles/Cactus_Allen01e.pre.pdf
http://www.cactuscode.org/Articles/Cactus_Allen01e.pre.pdf

[9] R. Bondarescu, G. Allen, G. Daues, I. Kelley,
M. Russell, E. Seidel, J. Shalf, and M. Tobias. The
Astrophysics Simulation Collaboratory portal: a
framework for effective distributed research. Future
Generation Computer Systems, 21:259–270, 2005.

[10] S. W. Bruenn, C. J. Dirk, A. Mezzacappa, J. C.
Hayes, J. M. Blondin, W. R. Hix, and O. E. B.
Messer. Modeling core collapse supernovae in 2 and 3
dimensions with spectral neutrino transport.
arXiv:0709.0537 [astro-ph], 2007.

[11] Cactus Computational Toolkit home page,
http://www.cactuscode.org/.

[12] Mesh Refinement with Carpet,
http://www.carpetcode.org/.

[13] Spacetime evolution with CCATIE,
http://numrel.aei.mpg.de/Research/codes.html.

[14] T. Goodale, G. Allen, G. Lanfermann, J. Massó,
T. Radke, E. Seidel, and J. Shalf. The Cactus
framework and toolkit: Design and applications. In
Vector and Parallel Processing – VECPAR’2002, 5th
International Conference, Lecture Notes in Computer
Science, Berlin, 2003. Springer.

[15] P. Mészáros. Gamma-ray bursts. Reports of Progress
in Physics, 69:2259, 2006.

[16] MPI: Message Passing Interface Forum,
http://www.mpi-forum.org/.

[17] L. Oliker, A. Canning, J. Carter, C. Iancu,
M. Lijewski, S. Kamil, J. Shalf, H. Shan,
E. Strohmaier, S. Ethier, and T. Goodale. Scientific
Application Performance on Candidate PetaScale
Platforms. In International Parallel and Distributed
Processing Symposium (IPDPS), Long Beach, Ca.,
March 24-30 2007. Winner Best Paper.

[18] OpenMP: Simple, Portable, Scalable SMP
Programming, http://www.openmp.org/.

[19] C. D. Ott. Stellar Iron Core Collapse in 3+1 General
Relativity and The Gravitational Wave Signature of
Core-Collapse Supernovae. PhD thesis, Universität
Potsdam, Potsdam, Germany, 2006.

[20] C. D. Ott, H. Dimmelmeier, A. Marek, H. T. Janka,
I. Hawke, B. Zink, and E. Schnetter. 3D Collapse of
Rotating Stellar Iron Cores in General Relativity
including Deleptonization and a Nuclear Equation of
State. Phys. Rev. Lett., 98:261101, 2007.

[21] M. Ripeanu, A. Iamnitchi, and I. Foster. Performance
predictions for a numerical relativity package in grid
environment. In International Journal of High
Performance Computing Applications, volume 15,
pages 375–387. Sage Publications, 2001.
http://people.cs.uchicago.edu/˜matei/PAPERS/.

[22] E. Schnetter, S. H. Hawley, and I. Hawke. Evolutions
in 3D numerical relativity using fixed mesh refinement.
Class. Quantum Grav., 21:1465–1488, 2004.

[23] E. Schnetter, C. D. Ott, G. Allen, P. Diener,
T. Goodale, T. Radke, E. Seidel, and J. Shalf. Cactus
Framework: Black holes to gamma ray bursts. In
D. A. Bader, editor, Petascale Computing: Algorithms
and Applications, chapter 24. Chapman & Hall/CRC
Computational Science Series, 2007.

[24] S. Setiawan, M. Ruffert, and H.-T. Janka.
Three-dimensional simulations of non-stationary
accretion by remnant black holes of compact object

mergers. Astron. Astrophys., 458:553–567, 2006.

[25] J. van Meter, J. G. Baker, M. Koppitz, and D.-I.
Choi. How to move a black hole without excision:
gauge conditions for the numerical evolution of a
moving puncture. Phys. Rev. D, 73:124011, 2006.

[26] Whisky, EU Network GR Hydrodynamics Code,
http://www.whiskycode.org/.

[27] S. E. Woosley and J. S. Bloom. The Supernova
Gamma-Ray Burst Connection. Ann. Rev. Astron.
Astrophys., 44:507, 2006.

[28] B. Zink. A general relativistic evolution code on cuda
architectures. (In preparation), 2008.

[29] B. Zink, E. Schnetter, and M. Tiglio. Multi-patch
methods in general relativistic astrophysics – i.
hydrodynamical flows on fixed backgrounds.
arXiv:0712.0353, 2007.

http://www.cactuscode.org/
http://www.carpetcode.org/
http://numrel.aei.mpg.de/Research/codes.html
http://www.mpi-forum.org/
http://www.openmp.org/
http://people.cs.uchicago.edu/~matei/PAPERS/
http://www.whiskycode.org/

	Introduction
	A GRB Primer
	GRBs and Petascale: A Multi-Component Approach
	Iron Core Collapse, Supernova Evolution, and Black Hole Formation
	Accretion Dynamics, Jet Formation, Jet Sustainment
	Jet Propagation and Break Out
	Late-time, post GRB evolution: Afterglow

	Computational Infrastructure
	3D Cartesian Meshes with Adaptive Refinement
	Computational Framework and Components

	Developing for Petascale
	Hybrid Communication Schemes
	Future Hybrid Accelerated Architectures
	Multi-Machine Simulations
	Data and Metadata

	Conclusions
	Acknowledgments
	References

