High performance computing is at a critical crossroads in at least three areas:

(i) **Hardware**: Radically new petascale architectures exceeding a million processors are being designed for deployment;

(ii) **Software**: Standard approaches to system software are outdated;

(iii) **Complex Applications**: Traditional, simplified, static applications, developed by single groups, are evolving towards highly complex codes that require teams of researchers and computer scientists to develop and use.

Alpaca

Cactus Tools for Application Level Profiling and Correctness Analysis

E. Schnetter (PI), G. Allen, T. Goodale, M. Tyagi

Center for Computation & Technology, LSU

Application of Alpaca

<table>
<thead>
<tr>
<th>Application</th>
<th>Alpaca Users</th>
<th>Abbreviated List of Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Relativity</td>
<td>Pablo Laguna</td>
<td>Large-scale simulations; viscous and gravitating astrophysical algorithms require new architectures and paradigms. Dynamic mesh refinement introduces new performance issues which Alpaca tools can address.</td>
</tr>
<tr>
<td>Computational Fluid Dynamics</td>
<td>Mayank Tyagi (LSU), (PL), Yu-Lin Yang, Kuan Wen-Chao (KISTI)</td>
<td>Multi-block simulations and unstructured meshes lead to difficulties in load balancing. Many existing packages need to be integrated Using the Cactus IDE Toolkit as educational tool.</td>
</tr>
<tr>
<td>Reservoir Simulations</td>
<td>Christopher White (SL), MB microscope (SL), (PL)</td>
<td>High-flowrate simulations, complex geometries, adapting physical models.</td>
</tr>
<tr>
<td>Coastal Modeling</td>
<td>R. Chen (LSU), Mayank Tyagi (LSU), (PL)</td>
<td>Simulations require robustness & reliability. Long-term simulations (many time steps) on massively parallel systems.</td>
</tr>
<tr>
<td>Quantum Gravity</td>
<td>Chris Reading (Imperial College, UK)</td>
<td>Using Alpaca, requires experimentation with a wide variety of algorithms, not necessarily PDE-based. Performance testing of parallelizing modes.</td>
</tr>
<tr>
<td>Astrophysics</td>
<td>Joel Ehlert (LSU)</td>
<td>Large scale simulations. Interest and involvement in new architectures and paradigms. Efficient solvers for elliptic equations need Alpaca tools.</td>
</tr>
</tbody>
</table>

Alpaca

will develop, at the application level:

(i) **New fault tolerant capabilities** that will be needed for increasingly large scale machines

(ii) **New performance monitoring capabilities** which will make it much easier to determine how the more complex application codes perform on current and future hardware

(iii) **New interactive debugging capabilities**, critical to locate and cure software or algorithmic errors

(iv) **Integration with Eclipse**, the increasingly popular code development environment.

Alpaca will be developed with full involvement from application developers across a broad range of areas.