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Near-optimal Character Animation with Continuous Control
Adrien Treuille Yongjoon Lee Zoran Popović

University of Washington

Figure 1: Spin and Avoid. A character spins while following a straight line. When fixed obstacles suddenly appear in the path, the character automatically switches to obstacle
avoidance mode and navigates around the obstacles.

Abstract

We present a new approach to realtime character animation with
interactive control. Given a corpus of motion capture data and a de-
sired task, we automatically compute near-optimal controllers us-
ing a low-dimensional basis representation. We show that these
controllers produce motion that fluidly responds to several dimen-
sions of user control and environmental constraints in realtime. Our
results indicate that very few basis functions are required to create
high-fidelity character controllers which permit complex user navi-
gation and obstacle-avoidance tasks.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Optimal Control, Motion with Constraints, Human
Animation

1 Introduction

Despite decades of advances, interactive character animation still
lacks the fluidity and variability of real human motion. Capturing
the fine nuances of human motion requires a high-dimensional mo-
tion repertoire and a multivariate space of input parameters which
can change continuously, often unpredictably. For example, a hu-
man might fluidly move to avoid unexpected moving obstacles
while approaching an exit and walking next to another person. Un-
fortunately, algorithms for solving such problems remain highly
sensitive to the size of the state space and number of concurrent
goals.

In this paper, we look at these issues through the lens of a dif-
ficult and important subproblem in character animation: synthesis
of a kinematic controller that blends precaptured motion clips to

achieve complex multi-objectives in realtime. In particular, we as-
sume continuously changing environmental conditions and several
dimensions of user control over the character’s motion. For exam-
ple, a virtual sports application might require that the character’s
speed, direction, and torso orientation all be independently control-
lable. Tasks like obstacle avoidance introduce additional control
variables. For simple navigational control, interactive applications
have typically used precomputed motion cycles and carefully con-
structed graphs that blend between these cycles. However building
appropriate graphs and transitions requires a great amount of skill
and manual adjustment. For complex objectives, researchers have
also studied learning algorithms that automatically determine opti-
mal sequences of actions. The primary challenges for both manual
and learning approaches are high-dimensionality and the need for
both rapid and natural changes in motion.

This paper argues that low-dimensional reinforcement learning
presents an attractive unifying approach to these problems. This
approach outperforms greedy methods for navigational problems
while retaining the low memory overhead. At the same time, de-
spite the compact representation, we can still solve difficult prob-
lems such as obstacle avoidance.

Our technique has two components. First, an underlying motion
model stitches together captured motion clips in realtime. Second,
a controller selects sequences of clips to achieve some goal. The
controller is based on a compact, parametric value function over
all possible states and goals. This approach has the following
advantages: given a corpus of motion capture data and a set of
controller objectives, we automatically produce a highly compact
realtime controller that blends motion near-optimally to achieve
user goals. There is no need to explicitly construct walk cycles or
otherwise edit the underlying data. We show that our technique is
also expandable, in that we can construct a set of controllers sepa-
rately for different tasks, then transition between these controllers
near-optimally, even if they were learned on different underlying
sets of motion. This greatly reduces the cost of constructing
complex controllers, as each individual task can be optimized
separately before connecting the controllers together. A similar
idea allows us to parallelize precomputation along dimensions
that do not change over time. We demonstrate our technique for
a number tasks including navigational control of a character and
moving obstacle avoidance. The latter allows us to create crowd
simulations in which each character fits a local linear model to
the movement of near characters, then avoids those characters in
realtime without an explicit collision avoidance algorithm.
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Contributions. Our main contribution is to show that the inherent
smoothness of the value function for many tasks in character ani-
mation enables the construction of low-dimensional, near-optimal
controllers for these tasks. We also focus on controllers that can
be optimized in parallel for a subset of input parameters, allowing
us further to increase the dimensionality of the controller. We hope
these ideas will extend the applicability of optimal control theory
to more problems in motion synthesis.

2 Related Work

Human motion capture data provides an effective basis for creat-
ing new animations. By interpolating and concatenating motions,
realistic new animation can be generated. A graph representation
often describes allowable transitions between poses. Pullen and
Bregler [2002] segmented motion data into small pieces and rear-
ranged them to meet user-specified keyframes. Kovar et al. [2002]
generated a graph structure from motion data allowing characters to
follow sketched paths using a branch and bound algorithm. Arikan
and Forsyth [2002] created a hierarchy of graphs and employed a
randomized search algorithm for synthesizing a new motion sub-
ject to temporal and position constraints. These algorithms employ
complex graph search and optimization techniques to produce an-
imations and are not well suited for interactive control. Lee et al.
[2002] use a local on-line search algorithm which is demonstrated
to generate 5 to 8 frames of motion per second when the search
horizon is limited. The graph search can be made more efficient
by using a simple cyclic graph structure [Gleicher et al. 2003],
by composing the world from smaller environment-specific graphs
[Lee et al. 2006], by precomputing search trees [Lau and Kuffner
2006], and by grouping similar motion segments into parametrized
graph nodes and building sparse hierarchical motion graphs [Kwon
and Shin 2005]. Choi et al. [2003] generated environment-specific
graph representations that enable biped locomotion through a com-
plex environment with obstacles. Arikan et al. [2003] showed that
motion synthesis from a graph structure can be cast as dynamic pro-
gramming. Our motion model uses a graph structure, but the blend-
ing algorithm admits blends between any two clips of motion and
automatically prevents foot-skate without inverse kinematics for a
wide class of motion. Researchers have also generalized transition
graphs to form richer, more complete motion spaces [Shin and Oh
2006; Safonova and Hodgins 2007]. It would be highly interesting
to extend our idea to these more general spaces.

Our controller uses reinforcement learning methods, which are
well studied in the control community. Kaelbling et al. [1996] pro-
vide a good overview of the discrete reinforcement learning prob-
lem. Bertsekas [2001] presents in-depth coverage of the continu-
ous case, as well as of the delayed rewards model which we use.
LaValle [2006] provides a good overview with many applications
to robotics and motion planning. Atkeson et al. [1997] frame re-
inforcement learning in the broader context of function approxima-
tion. However, these techniques suffer acutely from dimensionality,
making control difficult or impossible in high-dimensional spaces.
Moore and Atkeson [1995] address this problem specifically with
a multi-resolution reinforcement learning algorithm; however this
method relies heavily on storing samples which can become in-
tractable for the large-scale problems we wish to solve. Researchers
have explored linear programming to efficiently solve reinforce-
ment learning problems [Singh and Yee 1994; Trick and Zin 1997].
In this vein, Pucci de Farias presented a linear programming ap-
proach that uses basis functions to compactly approximate the value
function without storing samples [2002]. This algorithm forms the
basis for our approach to character animation because it greatly mit-
igates the cost of dimensionality by avoiding runtime sampling. In
this paper, we also reduce the dimensionality burden by learning
optimal controllers only within certain subspaces, while paralleliz-

ing precomputation along other dimensions.
Reinforcement learning is increasingly appearing in the graph-

ics literature, for example to create video textures [Schödl and Essa
2001] or for local character navigation [Ikemoto et al. 2005]. The
closest work to our own is that of Lee and Lee [2004] which used
value iteration to construct a sample-based value function for box-
ing. Relative to this method, our precomputations are 7× faster on
comparably sized problems, but require more memory. At runtime,
however, our basis approximation requires 30-90× less memory
than Lee and Lee’s sample representation. To be similarly compact,
sample-based methods such as Lee and Lee’s would require very
coarse discretizations, incurring significant risk of missing minima
and other important features of the value function. Concurrently
with our work, McCann and Pollard [2007] have integrated a model
of user behavior into reinforcement learning, enabling highly re-
sponsive realtime character animation.

3 Motion Model

Our approach has two main components: a motion engine blends
through captured motion clips to produce realtime human anima-
tion, while a control policy determines the best sequence of clips to
achieve some multivariate control objective. We begin by describ-
ing the motion engine.

Our model generates poses in realtime by blending sequences of
prerecorded motion clips. Unlike standard motion graphs [Kovar
et al. 2002; Arikan and Forsyth 2002; Lee et al. 2002], we allow
transitions between any two clips, and our method automatically
prevents foot-skate for a large class of motion. Our model assumes
that we have captured a set C of motion clips, where each clip C ∈ C
consists of a sequence of poses: C = (p1, . . . ,pm). Each pose p ∈
Rn is a vector specifying all joint positions in a kinematic skeleton.
We further assume that each clip C covers a single walk cycle and
is divided into two subsequences Cin and Cout. The subsequences
start and end during flight or mid-stance, and each covers one foot
plant. We specify one constraint frame in each subsequence that
occurs during the middle of the ground contact phase (Figure 2).

Figure 2: A clip. The first subsequence Cin runs from (a) to (c), while the second Cout

comprises (c) through (e). The constraint frames are (b) and (d).

To create longer motions, we partially overlap successive clips
and blend between them. The constraint frames allow us to prevent
foot-skate during the foot plant without inverse kinematics. Two
realizations make this possible. First, when blending from C to C′,
we may mirror or arbitrarily reorient the root of C′ while preserving
continuity. Second, kinematic blending is linear in the root of the
skeleton (although nonlinear in all other skeletal nodes). Therefore,
if we properly orient the foot and “re-root” the skeleton at its foot,
we can satisfy a foot position constraint. Blending between clips C
and C′ is a four step process. First, clip C′ is mirrored if necessary
to blend along the same foot. Second, we overlap the constraint
frames from Cout and C′in (Figure 3). Third, clip C′ is reoriented so
that its ground-contact foot coincides with that of C at the constraint
frame. Finally, we blend from Cout to C′in, with the ground contact
foot treated as the root of the kinematic skeleton. By the linearity
of blending at the root, if the foot is fixed during interval [ta, tb] of
Cout and during [t ′a, t

′
b] of C′in, then there cannot be foot-skate on the

interval [ta, tb]∩ [t ′a, t
′
b] of the blended animation.
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In summary, in our model, any subsequence of clips produces a
valid animation. Because our control algorithm avoids nonsmooth
blends, we do not need an explicit graph structure to ensure good
transitions, yet our model’s high branching factor allows for quick
motion changes. Another advantage of this model is that maximum
blending occurs during ground contact when ground forces can ac-
count for changes in direction; minimal blending occurs during the
flight phase, better preserving the linear and angular momentum of
correct motion. The major drawback is that we can enforce only
one constraint per blend, thus preventing foot-skate for only one
foot at a time. When two feet are on the ground, one foot might
slide unless all double-stance clips have the feet spaced at a fixed
distance. Nonetheless, we believe our model is highly useful for
realtime foot-skate prevention for the wide class of motions which
do not have double stance, such as walking and running.

A in

B in

C in E in

D in

A out

B out D out

E outC out

time

bl
en

d

: constraint frames
Figure 3: Clip blending. We blend the sequence A,B,C,D,E ⊆ C. Constraint frames
(shown as solid vertical bars) are aligned across successive clips. Blending occurs
where two clips overlap.

4 Control

The motion model described above creates a valid motion for any
sequence of clips. The controller must decide which sequence best
achieves it goals quickly and naturally. Before explaining the con-
trol algorithm itself, we describe the state space S on which the
controller is defined.

Since our model blends through sequences of clips, it would
seem natural to define the state X ∈ S as the current clip. Un-
fortunately, this representation is insufficient for many tasks. For
example, if the character is to walk along a line, the state must keep
track of the character’s orientation relative to this line. Other tasks
may require other state variables. Therefore, although our control
formulation is general, the specific state representation depends on
our controller’s objectives. In our results, we learned four tasks:

• Navigation. We divide the clips into several gaits, including
standing, walking, and running. The user controls the gait,
linear motion path, and torso orientation.

• Spinning Navigation. The user controls the motion direction
as the character spins in circles (Figure 1, left).

• Fixed Obstacle Avoidance. The character follows a line,
avoiding a fixed planar obstacle (Figure 1, right).

• Moving Obstacle Avoidance. The character follows a direc-
tion, avoiding a planar obstacle with linear motion.

Although we learn these objectives independently, we consider
them jointly in the state:

X =
(
C,x,z,θ ,u,v, u̇, v̇, Ĝ, τ̂, ω̂

)
. (1)

Here, C ∈ C is the current clip, (x,z,θ) is the character’s position
and orientation on the x-z plane, (u,v) is the relative position of
the obstacle, and (u̇, v̇) is the obstacle’s speed (Figure 4). Finally
Ĝ, τ̂ , and ω̂ are the character’s desired gait, torso orientation, and
spin, respectively. The latter three variables represent intentions,
and only change if the user directly edits them (for example, by
pushing the button to change the desired gait speed). Nonetheless,
it will be useful to consider these part of the state.

root

desired path

x
z

z

x

torso

motion
ρ
τ θ

u
v

(a) (b)

′

′

v.

u.

Figure 4: State Variables. Root orientation θ is measured relative to the desired path
(along the positive x-axis). The torso orientation τ and actual motion direction ρ are
measured relative to the root.

For every pair of clips, the blending algorithm (Section 3) deter-
mines the length of the blend ∆t, as well as the linear and angular
change (∆x,∆y,∆θ) in the character’s position. Suppose we transi-
tion from clip C to C′. Then the state changes from X = (C, · · ·) to
X ′ = (C′, · · ·) according to the transition function f : S×C→ S as
follows:

f (X ,C′)=X ′=



C′
x′
z′
θ ′

u′
v′
u̇′
v̇′

Ĝ′
τ̂ ′

ω̂ ′


=



C′
x+ cos(θ)∆x− sin(θ)∆z
z+ sin(θ)∆x+ cos(θ)∆z

θ +∆θ

u+ u̇∆t− cos(θ)∆x+ sin(θ)∆z
v+ v̇∆t− sin(θ)∆x− cos(θ)∆z

u̇
v̇
Ĝ
τ̂

ω̂


. (2)

4.1 Cost

We express goals by assigning a cost to each state and transition

cs : S→ R : State cost
ct : S×S→ R : Transition cost (3)

which are inversely proportional to how well these fulfill the goal.
This framework is very broad and can handle a great number of
objectives. We now describe the costs used specifically for our four
tasks. Again, although we learn these tasks independently (Table
1), we consider them jointly for now.

The gaits partition the clip set C into different kinds of motion.
For the navigation task, we treat the desired gait Ĝ as a hard con-
straint so that if X = (C, · · ·) but C /∈ Ĝ, then cs(X) = ∞. Otherwise,
we ignore the gait and orient the coordinate system so that the de-
sired path coincides with x-axis. We penalize deviation from this
path and proximity to the obstacle:

cs(X) = γx|x|︸ ︷︷ ︸
deviation

+γO exp
(
− (u2 + v2)σ−2

O

)
︸ ︷︷ ︸

obstacle

. (4)

Here, γx and γO are scaling parameters, and σO controls the width
of the obstacle. The transition cost ct ensures smooth character
motion in the right direction and with the correct torso orientation
and spin:

ct(X ,X ′) = γΨΨ(C,C′)︸ ︷︷ ︸
Physics.

+γρ |θ +ρ|︸ ︷︷ ︸
Direction.

+γτ |τ− τ̂|︸ ︷︷ ︸
Torso.

+γω |ω− ω̂|︸ ︷︷ ︸
Spinning.

. (5)

Again, γΨ, γρ , γτ , and γω are scaling constants. The physics cost Ψ :
C×C→R measures the “physical error” in blending from C to C′ as
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a weighted sum of squared differences of the position and velocity
across all joints. The motion direction ρ is measured relative to the
the root (Figure 4). Finally, the average of torso direction τ and
torso spin ω are compared to the desired torso angle and spin, τ̂

and ω̂ , respectively.

5 Policies

Having cast our goals in terms of numerical costs, we now look
at strategies for achieving these goals. We formalize this idea as a
policy Π : S → C, a function that picks the next clip based on the
current state. The most obvious policy is greedy:

Πgreedy(X) = argmin
C′∈C

{
ct(X ,X ′)+ cs(X ′)

}
, (6)

where X ′ is given by the transition function X ′ = f (X ,C′) as in
Equation (2). This policy simply chooses the clip that directly min-
imizes our state and transition costs. In most cases this policy does
not produce good results because motion requires planning: sacri-
ficing short-term objectives to achieve more efficient results in the
long run. For example, when told to turn around, a digital character
with planning will step so as to produce a sharper, more realistic
turn than under greedy control (Figure 5).

Figure 5: Planning vs. greedy controllers. This graph compares the cost cs + ct

of a greedy navigational controller (Equation (6)) with our planning controller. The
characters act almost identically until the user reverses the intended motion direction
(A). The planning controller then chooses a high cost step (B) to enable a sharp and
realistic turn one step later.

5.1 The Optimal Policy

Instead of minimizing the immediate cost, we will minimize the
entire policy cost, taking into account the future. Suppose policy Π

produces the sequence (X0,X1,X2, . . .) with Xt = f (Xt−1,Π(Xt−1)).
We measure the cost cΠ(X0) of this sequence as:

cΠ(X0) =
∞

∑
t=0

α
t[cs(Xt)+ ct(Xt ,Xt+1)

]
. (7)

The discount factor α ∈ [0,1) accounts for future uncertainty and
conveniently also ensures that the series converges. However, the
main reason for this functional form is that it can be rewritten re-
cursively:

cΠ(Xt) = cs(Xt)+ ct(Xt ,Xt+1)+αcΠ(Xt+1). (8)

Under general conditions, minimizing Equation (7) for each initial
state results in the optimal policy Π? [Bertsekas 2001]. This allows
us to define a value function V : S→R that measures the long-term
state cost under the optimal policy: V (X) = cΠ?

(X). Thus for all X
we can rewrite (8) as:

V (X) = cs(X)+ ct(X ,X ′)+αV (X ′). (9)

where X ′ = f (X ,C′) and C′ = Π?(X) is the optimal next clip. An
ingenious and well known reversal of logic turns this equation into
a formula for the optimal policy. If Equation (9) truly reflects the
optimal long-term cost, then the best policy must be to minimize
the right hand side of this expression:

Π?(X) = argmin
C∈C

{
ct(X ,X ′)+αV (X ′)

}
. (10)

Thus, the value V (X) completely specifies the optimal controller.

5.2 Near-optimal Policy

We generally cannot compute the exact value for continuous state
spaces, and must content ourselves with near-optimal policies based
on some approximation of the value function. Sample-based ap-
proaches work well, but are efficient neither in learning time nor in
controller memory costs. We instead adapt a linear programming
approach used primarily in operations research [de Farias 2002].
The idea is to define basis Φ = [φ1, · · · ,φn] for the value function
where each basis function φi : S → R can be evaluated in closed
form, such as polynomials or Gaussians. We then approximate the
value function by a linear combination of these basis functions:

V ≈ r1φ1 + · · ·rnφn = Φr. (11)

Thus, we have reduced the problem of solving for the complete
value function to the much simpler (and lower dimensional) prob-
lem of solving for the n-dimensional vector r to approximate it.

To derive this approximation, we draw draw a set of state sam-
ples S̄ ⊂ S at which we will evaluate the value function. We also
consider a set L ⊆ S̄ ×S of state transition pairs, each starting at
a sample point. The algorithm starts with L← {} and r← 0, and
iterates towards a better value of r by alternating between the fol-
lowing two steps until convergence.

1. Compile a set of optimal actions according to the current V
from every sample in S̄ and add them as constraints:

L← L∪{(X ,X ′) | X ∈ S̄}

where X ′ is the optimal next state from X given our value
function approximation V ≈Φr.

2. Find V by solving the linear program

max
r ∑

X∈S̄
V (X)

s.t. V (X)≤ cs(X)+ ct(X ,X ′)+αV (X ′) ∀(X ,X ′) ∈ L.

Step 2 essentially inflates the value function as much as possible
subject to the bounds. These inequality constraints generalize (9)
to the case where the transition (X ,X ′) ∈ L may not be optimal.
This technique has proved very successful for our purposes. The
convex optimization step of the algorithm yields globally optimal
approximations of the value function, up to the representative power
of the basis and constraint sampling. Moreover, we can discard all
samples after optimization, retaining only the highly compact basis
coefficient vector r.
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5.3 Runtime Control

The runtime control algorithm is extremely fast and simple: every
time a clip finishes, the controller scans through all clips, picking
the minimum value transition as in Equation (10). User inputs such
as changing the desired gait, torso orientation, or motion path alter
the underlying state variables in Equation (1), and thus affect the
next state transition.

5.4 Dimensionality

Despite the advantages of approximate dynamic programming,
high dimensional control remains challenging. Basis approxima-
tions use far fewer variables than sample-based approaches, but the
number of bases must generally still grow exponentially with the
size of the state. We mitigate this problem by employing two re-
lated but subtly different concepts: switchability and separability.

Both techniques exploit the property that some quantities remain
constant through clip transitions. For example, Equation (2) tells us
that the desired gait Ĝ does not change. Somewhat more subtly, the
expression x + u (the distance between the object and the desired
path along the x-axis) also remains unchanged, but only in the case
of a stationary obstacle. Since the controller cannot affect these
quantities, we do not need to couple them during optimization. In-
stead, we tabulate the value function along these dimensions and
learn them separately. The difference between switchability and
separability is in how we recombine the value function afterwards.
• Switchability simply means switching between the tabulated

value functions. This is well suited to discrete dimensions such as
the desired gait Ĝ. We can even produce near-optimal transitions
across value functions that were optimized with different param-
eters or used different clips. This is because Equation (10) holds
even if state X is drawn from a different value function than X ′.
For example, when transitioning from a walking gait to a running
gait, the optimal policy is still to pick the running clip with low-
est value. This feature enables us to optimize the parameters of
several controllers independently, and automatically combine them
with near-optimal transitions.
• Separability means blending the value function, producing a

continuous value along the separable dimension. For example, we
can learn separate value functions for various fixed obstacle loca-
tions and blend between these for intermediate obstacle positions.
Separability can be interpreted as learning a single value function
with linear interpolation (or “hat”) bases along the separable di-
mension. The space of value functions is particularly well suited
for blending for the same reason that the value functions can be
represented with a small number of bases: the value functions for
character animation tend to be smooth.

Switchability and separability do not fundamentally solve the di-
mensionality problem inherent in reinforcement learning. Nonethe-
less, they allow for some degree of sub-exponential memory con-
sumption (in serial implementations) or sub-exponential time usage
(in parallel implementations). Intrinsically dependent dimensions
still require exponential resources, however.

6 Results

To produce our results, we learned four controllers (Section 4) to
which we give the following symbolic names: navigation (N), spin-
ning navigation (SN), fixed obstacle avoidance (FOA), and moving
obstacle avoidance (MOA).

Table 1 summarizes the controllers. Columns 2-4 indicate the
active variables for each task. Variables that are neither switch-
able nor separable are dependent and must be coupled during value
function optimization. Note that for FOA, the distance between the
the obstacle and the desired motion line x + u is fixed. Therefore,

Figure 6: Moving obstacle avoidance. Moving obstacle avoidance allows us to model
short-horizon crowd dynamics. Each character who is viewed as an obstacle by another
is marked by a cylinder. Thus, characters automatically avoid one another.

we treat this expression as separable. For moving obstacles, this
expression is not fixed and cannot be treated as separable. In fact,
to save memory in MOA, we ignore deviation from the desired path
and measure only the character’s angular direction.

The current clip C is both discrete and dependent. Therefore, we
tabulate the value function along this dimension, but optimize for
all clips at once. For our results we used 384 clips, manually par-
titioned into gaits by speed: 18 standing clips, 87 slow walks, 124
normal walks, 65 fast walks, and 90 runs. In practice, we allowed
adjacent gaits to share some clips, smoothing gait transitions. The
navigation (N) task used all these clips, SN used a subset of only 60
walking clips, while FOA and MOA used a set of 18 walking clips.

The rest of the dependent dimensions are continuous and we
learn continuous functions along these dimensions drawn from one
of two families. The first is the polynomials:

PN(x)≡
{

f (x) = xk ∣∣ k = 0, . . . ,N
}

.

The second is a family of N Gaussian bumps evenly spaced along
the interval [a,b]:

Ga,b,N(x)≡
{

f (x) = e
−(x−x̄)2

σ2

∣∣∣ x̄ = a+ i
b−a
N−1

, i = 0, . . . ,N−1
}

,

where σ2 = 2 throughout this paper. Multivariate families of func-
tions are defined through outer products. For example, we denote:

Q(x)R(y)≡
{

f (x,y) = q(x)r(y)
∣∣ q ∈Q, r ∈R

}
.

The bases for each task are shown in the last column of Table 1.
In FOA for example, we used the basis P4(u)P2(v) of polynomials
(Figure 8, (1)-(15)) for general control, and added a set of Gaussian
bases G0,- 3

2 ,4(u)Gx+u,x+u,1(v) (Figure 8, (16)-(18)) to improve the
resolution of the value function in the crucial region around the
obstacle.

All optimizations were performed with samples uniformly cov-
ering each dimension, with between 5 and 8 samples per dimension.
For cyclic dimensions, samples divide up the interval [-π,π), while
along linear dimensions samples cover a 4 meter interval about the
origin. Our sampling is therefore much higher resolution than the
value function bases. In fact, we found we could delete up to 50%
of the samples at random without appreciable detriment to the con-
troller. Because of our low-dimensional value function representa-
tion, learning the controllers was relatively quick: our 2D naviga-
tional controllers with several hundred clips never took longer than
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Task Active State Variables Cost Terms Continuous Basis Functions
Switchable Separable Dependent γx γO γΨ γρ γτ γω

N Ĝ τ̂ C, x, θ • - • • • - P2(x)P2(θ)
SN - - C, θ - - • • - • P2(θ)
FOA - x+u C, u, v, θ • • • • - -

(
P4(u)P2(v) ∪ G0,- 3

2 ,4(u)Gx+u,x+u,1(v)
)
P2(θ)

MOA - u̇, v̇ C, u, v, θ - • • • - - P2(θ) ∪ G-2,2,5(u)G-2,2,5(v)P2(θ)
Table 1: Tasks. Columns 2-4: Active state variables. Columns 5-10: Nonzero cost terms are indicated by bullets. Column 11: Continuous basis functions. (See Section 6.)

45 minutes nor more than 2GB of memory to learn. Our more com-
plicated obstacle avoidance controllers never took longer than one
hour to learn, and also required about 2GB of memory. Precompu-
tation time is measured as the longest single process runtime when
parallelizing along separable and switchable dimensions.

Figure 7: Value function convergence. This graph varies the degree d of the root
orientation polynomialPd(θ) for a simple navigational controller. Errors are measured
relative to the 10th-degree approximation as the sum of squared differences over a set
of samples along the θ axis.

Our runtime controller requires 0.101 ms to choose state transi-
tions and can blend poses at 0.04 ms per frame (not including ren-
dering) on a Dual Core 3.5 GHz Intel Xeon processor. Because of
our compact basis representation, the runtime memory costs of our
method are low. Navigational controllers require less than 13KB
of memory while our avoidance controllers require less than 18KB
with double precision floating point numbers. In fact, these num-
bers were dwarfed by the cost of storing the motion clips, which is
23MB for our navigational controller and 1.1MB for our avoidance
controller. Note that these costs are amortized across all characters.
The per-character memory footprint can be measured in bytes.

Examples of our controllers can be seen in the accompanying
video. Compared to greedy methods, our planning algorithm pro-
duces better motion with sharper turns, an effect shown in the video
and demonstrated numerically in Figure 5. Surprisingly few bases
are required to capture these results. We varied the polynomial
degree along the θ axis for a simple navigational controller and
compared the value at sample points to the 10th-degree approxima-
tion. While quadratic polynomials are about 11% different from the
10th-degree value, they nonetheless produce motion visually indis-
tinguishable in quality to higher degrees. Our results also demon-
strate successful avoidance of fixed and moving obstacles. The lat-
ter allows us to create simple crowd simulations. Specifically, each
character fits a moving obstacle model to all neighbors within a
threshold distance. The highest value neighbor is then treated as
a moving obstacle. This avoidance approach is heuristic and can
fail in situations with too many neighbors. However, we found it
worked well at medium densities.

7 Conclusion and Future Work

This paper presents a new control model for realtime character an-
imation subject to high dimensional, continuously changing user
control. The underlying motion model enables rapid transitions

while enforcing foot-skate constraints for a wide class of motion.
The control mechanism chooses sequences of clips using a com-
pact, continuous value function representation that admits fast, near
optimal control, even in high dimensional spaces.

Our solution by no means solves the fundamental problem of
dimensionality in control. However we show that by combining
a number of different strategies, we mitigate this problem. Fore-
most is our use of basis functions to represent the value space. This
has several advantages: the basis functions can correlate informa-
tion between dimensions, reducing the pure dimensional explosion
of sampling, while the wide support of each function enables sig-
nificant reduction in required samples. Also, parallelizing along
constant dimensions allows us to further increase the dimensional-
ity of our controllers. This has allowed us to create complex high
dimensional controllers in less than one hour of optimization.

Our framework automatically produces near-optimal controllers
given a set of objectives. There is no need to explicitly construct
walk cycles or otherwise edit the underlying data. Our system is
able to blend through ground contact points, preventing foot-skate
for single-stance motions in realtime without post-processing such
as inverse kinematics. We show that our technique is also expand-
able, in that we can construct a set of controllers separately for dif-
ferent tasks, then transition among these controllers near optimally,
even when they were learned on different underlying sets of motion.
This greatly reduces the cost of constructing complex controllers,
as each individual task can be optimized separately before connect-
ing the results together. Finally we demonstrate our technique for a
number of tasks including navigation with independent control over
gait and torso orientation, as well as 2D obstacle avoidance. The
latter allows us to create crowd simulations in which each char-
acter fits a local linear model to the movement of near characters
and then avoids those characters in realtime, all without explicitly
defining collision avoidance strategies.

We believe that the major limitation of our technique is that it is
too closely tied to blending precaptured motion data, thus requiring
large amounts of such data to produce highly varied controllers. For
example, our navigational controllers require the motion capture
subject to perform a large number of actions: locomoting and turn-
ing at a variety of speeds and torso orientations. Ideally, we would
like to determine automatically the minimal set of clips that would
guarantee good controllers, perhaps computing additional clips via
a synthesis process. A related problem is that while our system
has a very high branching factor (transitions are possible between
any two clips), we are still limited to a discrete number of tran-
sitions. This makes it harder to achieve very fine control such as
stepping exactly on certain points or walking on a narrow bar. In
fact, we found that our system always achieved better motion when
given more clips, implying that even with several hundred clips, we
had not yet reached diminishing marginal returns. This is a situa-
tion where a more general notion of blending, such as “fat graphs”
[Shin and Oh 2006] or multi-way blending [Safonova and Hodgins
2007] might prove useful. We note that our foot-skate constraint
could be generalized to handle multi-way blends. Also, we expect
that blending techniques which always produce physically correct
motion [Safonova and Hodgins 2005] would enable more low-cost
transitions and therefore better motion with fewer clips.

Another important advance would be to treat the clips as samples
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Figure 8: Bases functions for fixed obstacle avoidance. (1)-(15) are the polynomial bases for fixed obstacle avoidance (FOA). (16)-(18) are three of the four Gaussian bases. All
bases are shown as slices through the u-v plane, holding θ , C, and x+u constant. Our method solves for the linear superposition of basis functions shown on the right.

from a continuous manifold of human motion. This would allow us
to define continuous bases along this manifold, further mitigating
the curse of dimensionality.

Looking further, the next major advance would be to allow full
kinematic motion based on the degrees of freedom in the skeleton.
The principle obstacle to this research direction is the vast dimen-
sionality of the human skeleton. In addition, human motion is based
on a set of highly interconnected biomechanical systems such as
bones, muscles, and tendons, has much to do with robustness and
styles that are learned over years of practice. These issues add to
the difficulty of the problem, and we are still far from producing
motion this way. With this goal in mind, however, we think it is
especially important to explore strategies that address the dimen-
sional explosion inherent in motion controllers. We hope that the
work presented here will provide a first step in that direction.
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