Simulation in Large Scale Sensor Networks

Barney Maccabe
University of New Mexico

Santa Fe, New Mexico 17 Oct 2006
"I have finally reached the point in my career where I can live on the results of my graduate students"

Collaborators

- **UNM** - sensor network systems software
 - James Horey, PhD Student
 - Jean-Charles Tournier, Postdoc
 - Eric Nelson, MS student
- **LANL** - sensor network system simulation
 - Sean Brennan, MTS (& UNM PhD student)
 - Angela Mielke, project lead
- **SNL** - multi-scale system simulation for MPPs
 - Rolf Riesen
 - Keith Underwood
Multiscale Simulation for Systems Software

- Use simulation to study systems software approaches
 - fault tolerance: simulate a large system and inject faults
 - impact and viability of systems software at scale: how does it work
- More “emulation” than “simulation,” for now
- Traditional use of simulation in sensor networks
 - application testing
 - ad-hoc routing protocols
Basic simulation tools

- **ns-2** - network simulation
 - packet level simulation, great for studying changes to TCP/IP
 - plug-ins for wireless protocols
 - ad-hoc wireless routing protocols
- **Simple Scalar processor simulation**
 - instruction set simulation
 - great for studying branch prediction and out-of-order execution
- **Mambo**
More

- Tiny OS simulation (TOSSIM)
 - http://www.tinyos.net/
 - develop applications, small number of nodes
- EmStar
 - http://cvs.cens.ucla.edu/emstar/
 - sensor networks involving Linux-based platforms
- SWANS
 - http://jist.ece.cornell.edu/
 - like ns2, better scalability, Java apps
- and a whole host of others...
Sensor Network Environment

- Motes - sensing
 - 1,000’s
 - limited compute, communication and, power

- Stargates - compute
 - 100’s
 - more compute, memory, power, and communication

- Computation in the network
Software Stack

- Programming
 - writing the functions that will run on the nodes of a sensor network

- Tasking
 - distributing functions to the nodes of a sensor network

- Groups
 - Static and dynamic
 - Collective operations
Basic Simulation

- Goal: evaluate software stack
- Kensho API library
- Each sensor simulated by a process (linked with the Kensho library)
- Wireless communication provided by a broadcast daemon
- Sensor reads come from environment simulator
Fire Detection: Group Operations

smaller groups: higher resolution, more communication
Motion Tracking: Dynamic Groups

Group is defined by magnetometer activation

Tracking Accuracy

The object starts at position p_3 and moves at a velocity of w_13 units per time interval.
N-Sim: Scalable Simulation

- Goal: run large scale sensor network applications without modification
- Be able to control communication and node faults
- Order of magnitude speedup
- Initial focus on typical software stack: TinyOS and Linux
- Long term will be used to study the Kensho/Kaizen stack
Virtualization using Xen

- Xen provides base level virtualization
 - sharing CPU between multiple OSes
 - Dom 0 provides access to other resources (e.g., network)
- Type 1
- para-virtualization
N-sim: Scalable simulation for sensors

- Simulate each sensor or stargate using a separate virtual machine
- Direct execution of applications
- On modified operating systems
- Simulation daemon runs in Dom 0
 - network and sensing
Scaling: Cluster of nodes

- Use multiple cluster nodes
- Simulation Daemons coordinate and exchange communications
- MPI for communication and coordination
Full system simulation for MPP design
Multiscale issues

- Want full, cycle accurate, simulation
 - from detailed processor simulation
 - device drivers
 - to large scale application
 - including all software layers
 - impact of changing implementation of services
- Also want simple, proof of concept simulation
 - fast, clean and simple
Thanks

- **LANL & NNSA**
- **SSL UNM**
 - Prof Patrick Bridges
 - Postdocs
 - Patricia Crowley (now at Gonzaga)
 - Patrick Widener