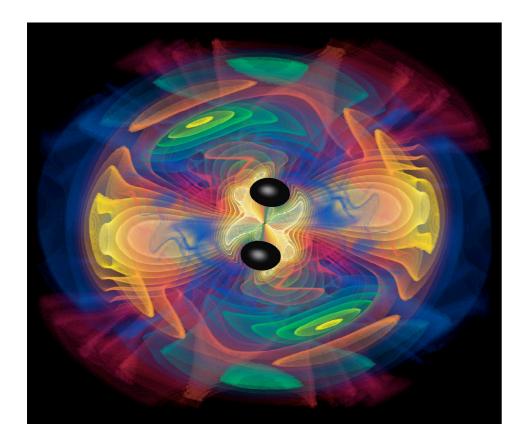
The Final Spin of Black Hole Binaries

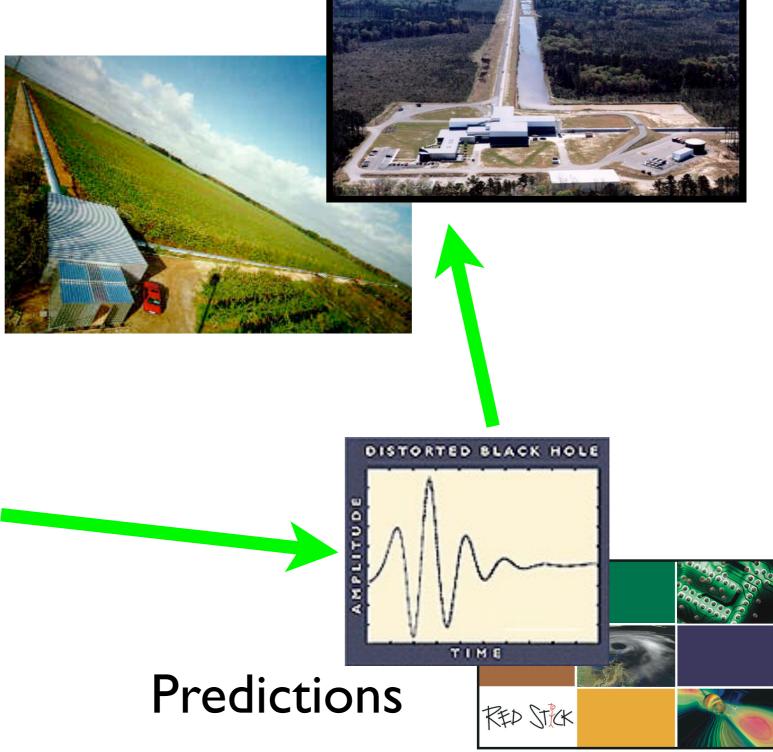
Erik Schnetter Rochester, NY, January 2008

Collaborators: E. N. Dorband, P. Diener, D. Pollney, C. Reisswig, L. Rezzolla, J. Seiler, B. Szilágyi

Outline

- 1. Introduction: Binary black hole systems
- 2. Modelling merger events as black box
 - a. Unequal spin case
 - b. Unequal mass case
- 3. Current work: generalisations
- 4. Peeking behind the scenes: numerical and computational infrastructure
- 5. Future infrastructure development



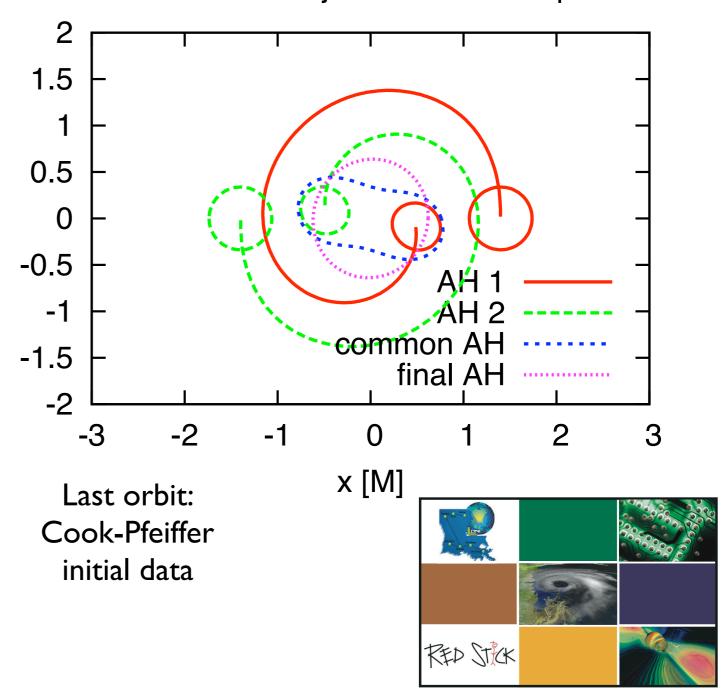


Gravitational Wave Physics

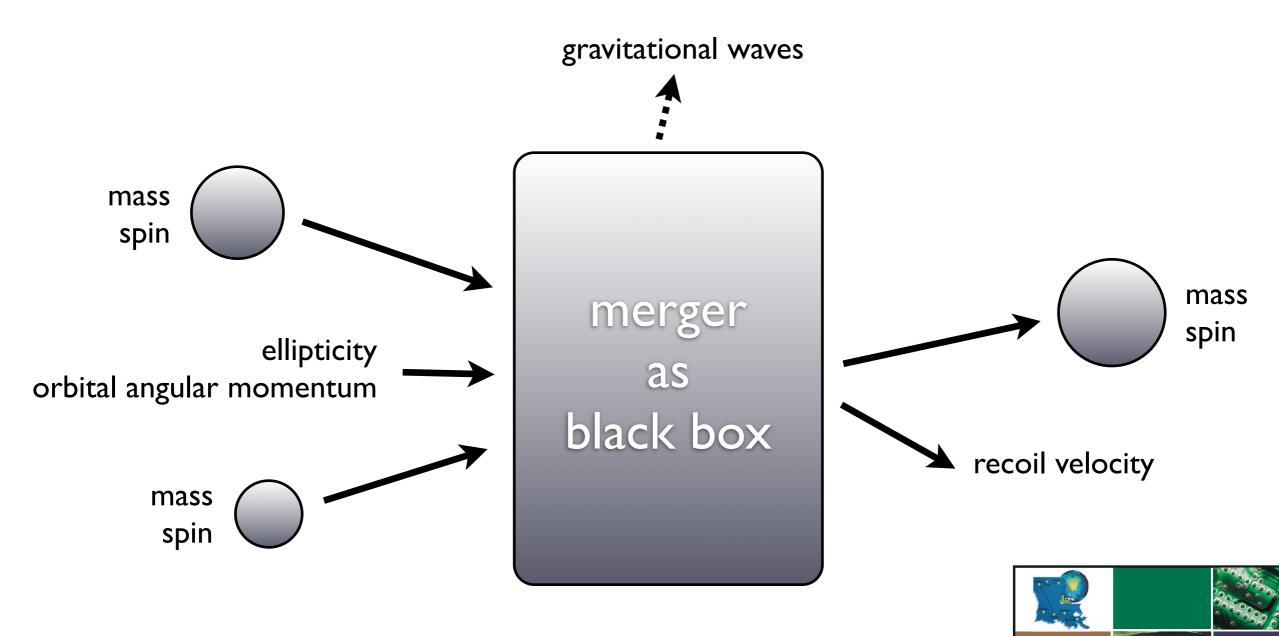
Observations

Binary Black Holes

- Very "simple" system only Einstein equations
- Interesting to relativists: two-body problem, determined by very few parameters; still open questions regarding trapped regions
- Interesting to astrophysicists: fine source of gravitational radiation for LIGO and LISA; first step towards binaries with matter



Phenomenology of Binary Black Hole Mergers


- Inspiral (red/green),
 here: slightly eccentric
- Common horizon (blue)
- 3. Final state (magenta)
- Not shown:
 possible recoil ("kick"),
 if system is not
 symmetric

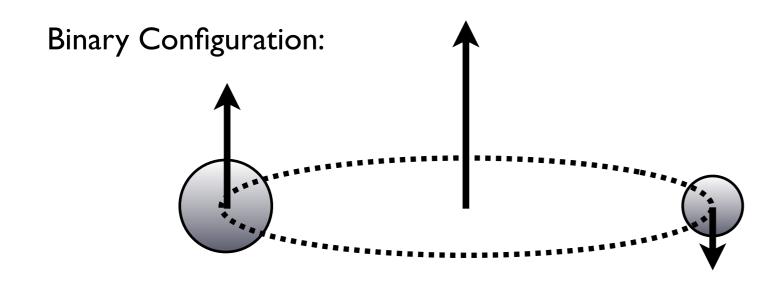
Black hole trajectories and shapes

Binary Black Hole Mergers as Black Box

Merger determined by nine parameters

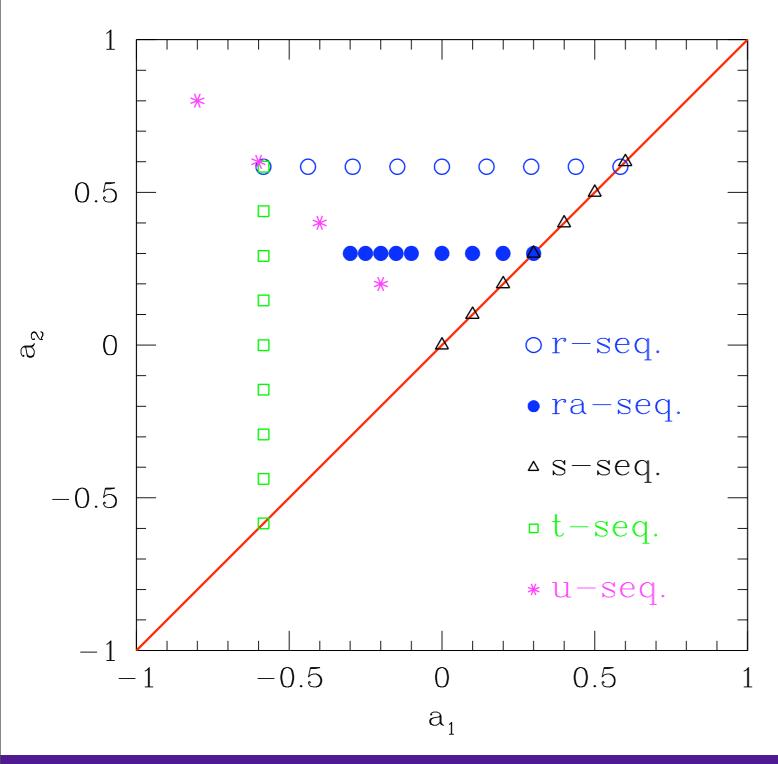
RED STICK

Goal: Find Analytic Description for Final State


- Full numerical treatment for all parameter values is too expensive – use fitting functions instead
- Previous work: Campanelli et al. 2007 (large recoils), González et al. 2007 (non-spinning)
- Take analytic approximations for special cases (e.g. extreme mass ratios) into account
- Initially, restrict parameter space

Assumptions

- Masses equal or unequal
- Circular orbits
- Spins aligned and/or anti-aligned with orbital angular momentum



Some Arguments for these Assumptions

- Altogether, considering 3 out of 9 parameters
- However, these may well represent preferred configurations, especially for SMBH:
- PN spin-spin and spin-orbit interactions align spins for small inclinations (Schnittmann 2007)
- In discs (expected for SMBH), torques exerted by the matter produce alignment before merger (Bogdanović et al. 2007)
- Most galaxies have SMBH, i.e.,
 there were no large recoils in mergers

Equal Mass Case: Spin Diagrams

	$\pm x/M$	$\pm p/M$	m_1/M	m_2/M	a_1	a_2	$\widetilde{M}_{\mathrm{ADM}}$	$\widetilde{J}_{ ext{ADM}}$	$ v_{\rm kick} $	$ v_{\text{kick}}^{\text{fit}} $	err. (%)	$a_{ m fin}$	$a_{ m fin}^{ m fit}$	err. (%)
r0	3.0205	0.1366	0.4011	0.4009	-0.584	0.584	0.9856	0.825	261.75	258.09	1.40	0.6891	0.6883	0.12
r1	3.1264	0.1319	0.4380	0.4016	-0.438	0.584	0.9855	0.861	221.38	219.04	1.06	0.7109	0.7105	0.06
r2	3.2198	0.1281	0.4615	0.4022	-0.292	0.584	0.9856	0.898	186.18	181.93	2.28	0.7314	0.7322	0.11
r3	3.3190	0.1243	0.4749	0.4028	-0.146	0.584	0.9857	0.935	144.02	146.75	1.90	0.7516	0.7536	0.27
r4	3.4100	0.1210	0.4796	0.4034	0.000	0.584	0.9859	0.971	106.11	113.52	6.98	0.7740	0.7747	0.08
r5	3.5063	0.1176	0.4761	0.4040	0.146	0.584	0.9862	1.007	81.42	82.23	1.00	0.7948	0.7953	0.06
r6	3.5988	0.1146	0.4638	0.4044	0.292	0.584	0.9864	1.044	45.90	52.88	15.21	0.8150	0.8156	0.07
r7	3.6841	0.1120	0.4412	0.4048	0.438	0.584	0.9867	1.081	20.59	25.47	23.70	0.8364	0.8355	0.11
r8	3.7705	0.1094	0.4052	0.4052	0.584	0.584	0.9872	1.117	0.00	0.00	0.00	0.8550	0.855	0.00
ra0	2.9654	0.1391	0.4585	0.4584	-0.300	0.300	0.9845	0.8250	131.34	132.58	0.95	0.6894	0.6883	0.16
ra1	3.0046	0.1373	0.4645	0.4587	-0.250	0.300	0.9846	0.8376	118.10	120.28	1.85	0.6971	0.6959	0.17
ra2	3.0438	0.1355	0.4692	0.4591	-0.200	0.300	0.9847	0.8499	106.33	108.21	1.77	0.7047	0.7035	0.17
ra3	3.0816	0.1339	0.4730	0.4594	-0.150	0.300	0.9848	0.8628	94.98	96.36	1.46	0.7120	0.7111	0.13
ra4	3.1215	0.1321	0.4757	0.4597	-0.100	0.300	0.9849	0.8747	84.74	84.75	0.01	0.7192	0.7185	0.09
ra6	3.1988	0.1290	0.4782	0.4602	0.000	0.300	0.9850	0.9003	63.43	62.19	1.95	0.7331	0.7334	0.04
ra8	3.2705	0.1261	0.4768	0.4608	0.100	0.300	0.9852	0.9248	41.29	40.55	1.79	0.7471	0.7481	0.13
ra10	3.3434	0.1234	0.4714	0.4612	0.200	0.300	0.9853	0.9502	19.11	19.82	3.72	0.7618	0.7626	0.11
ra12	3.4120	0.1209	0.4617	0.4617	0.300	0.300	0.9855	0.9750	0.00	0.00	0.00	0.7772	0.7769	0.03
s0	2.9447	0.1401	0.4761	0.4761	0.000	0.000	0.9844	0.8251	0.00	0.00	0.00	0.6892	0.6883	0.13
s1	3.1106	0.1326	0.4756	0.4756	0.100	0.100	0.9848	0.8749	0.00	0.00	0.00	0.7192	0.7185	0.09
s2	3.2718	0.1261	0.4709	0.4709	0.200	0.200	0.9851	0.9251	0.00	0.00	0.00	0.7471	0.7481	0.13
s3	3.4098	0.1210	0.4617	0.4617	0.300	0.300	0.9855	0.9751	0.00	0.00	0.00	0.7772	0.7769	0.03
s4	3.5521	0.1161	0.4476	0.4476	0.400	0.400	0.9859	1.0250	0.00	0.00	0.00	0.8077	0.8051	0.33
s5	3.6721	0.1123	0.4276	0.4276	0.500	0.500	0.9865	1.0748	0.00	0.00	0.00	0.8340	0.8325	0.18
s6	3.7896	0.1088	0.4002	0.4002	0.600	0.600	0.9874	1.1246	0.00	0.00	0.00	0.8583	0.8592	0.11
t0	4.1910	0.1074	0.4066	0.4064	-0.584	0.584	0.9889	0.9002	259.49	258.09	0.54	0.6868	0.6883	0.22
t1	4.0812	0.1103	0.4062	0.4426	-0.584	0.438	0.9884	0.8638	238.37	232.62	2.41	0.6640	0.6658	0.27
t2	3.9767	0.1131	0.4057	0.4652	-0.584	0.292	0.9881	0.8265	200.25	205.21	2.48	0.6400	0.6429	0.45
t3	3.8632	0.1165	0.4053	0.4775	-0.584	0.146	0.9879	0.7906	174.58	175.86	0.73	0.6180	0.6196	0.26
t4	3.7387	0.1204	0.4047	0.4810	-0.584	0.000	0.9878	0.7543	142.62	144.57	1.37	0.5965	0.5959	0.09
t5	3.6102	0.1246	0.4041	0.4761	-0.584	-0.146	0.9876	0.7172	106.36	111.34	4.68	0.5738	0.5719	0.33
<i>t</i> 6	3.4765	0.1294	0.4033	0.4625	-0.584	-0.292	0.9874	0.6807	71.35	76.17	6.75	0.5493	0.5475	0.32
<i>t</i> 7	3.3391	0.1348	0.4025	0.4387	-0.584	-0.438	0.9873	0.6447	35.36	39.05	10.45	0.5233	0.5227	0.11
<i>t</i> 8	3.1712	0.1419	0.4015	0.4015	-0.584	-0.584	0.9875	0.6080	0.00	0.00	0.00	0.4955	0.4976	0.42
u1	2.9500	0.1398	0.4683	0.4685	-0.200	0.200	0.9845	0.8248	87.34	88.39	1.20	0.6893	0.6883	0.15
u2	2.9800	0.1384	0.4436	0.4438	-0.400	0.400	0.9846	0.8249	175.39	176.78	0.79	0.6895	0.6883	0.17
u3	3.0500	0.1355	0.3951	0.3953	-0.600	0.600	0.9847	0.8266	266.39	265.16	0.46	0.6884	0.6883	0.01
u4	3.1500	0.1310	0.2968	0.2970	-0.800	0.800	0.9850	0.8253	356.87	353.55	0.93	0.6884	0.6883	0.01

Fitting Functions (Recoil)

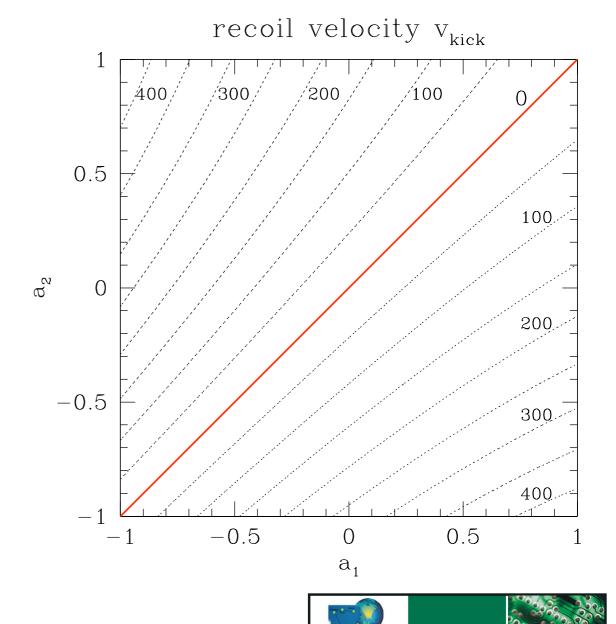
Generic quadratic ansatz:

$$|v_{\text{kick}}| = |c_0 + c_1 a_1 + c_2 a_1^2 + d_0 a_1 a_2 + d_1 a_2 + d_2 a_2^2|$$

Using symmetries of the system, and assuming that no kick is produced when the spins are equal and opposite:

$$c_0 = 0$$
, $c_1 = -d_1$, $c_2 = -d_2$, $d_0 = 0$,
 $|v_{\text{kick}}| = |c_1(a_1 - a_2) + c_2(a_1^2 - a_2^2)|$

Least square fitting result:


$$c_1 = -220.97 \pm 0.78$$
, $c_2 = 45.52 \pm 2.99$

Fitting Functions (Recoil)

- Results consistent with bruteforce fitting functions
- Maximum recoil about 440 km/s for anti-aligned spins
- Quadratic behaviour: improvement over linear PN predictions
- Very good agreement with other numerical studies

RED STICK

Fitting Functions (Final Spin)

Final spin can be treated equivalently:

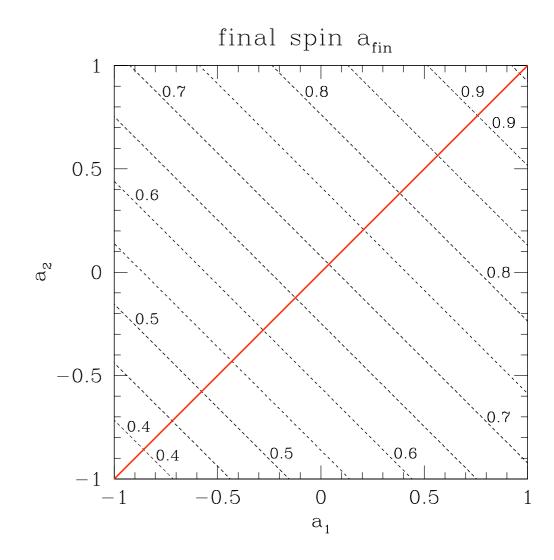
$$a_{\text{fin}} = p_0 + p_1 a_1 + p_2 a_1^2 + q_0 a_1 a_2 + q_1 a_2 + q_2 a_2^2$$

Using symmetries, and assuming that equal and opposite spins cancel:

$$p_1 = q_1, \quad p_2 = q_2 = q_0/2$$

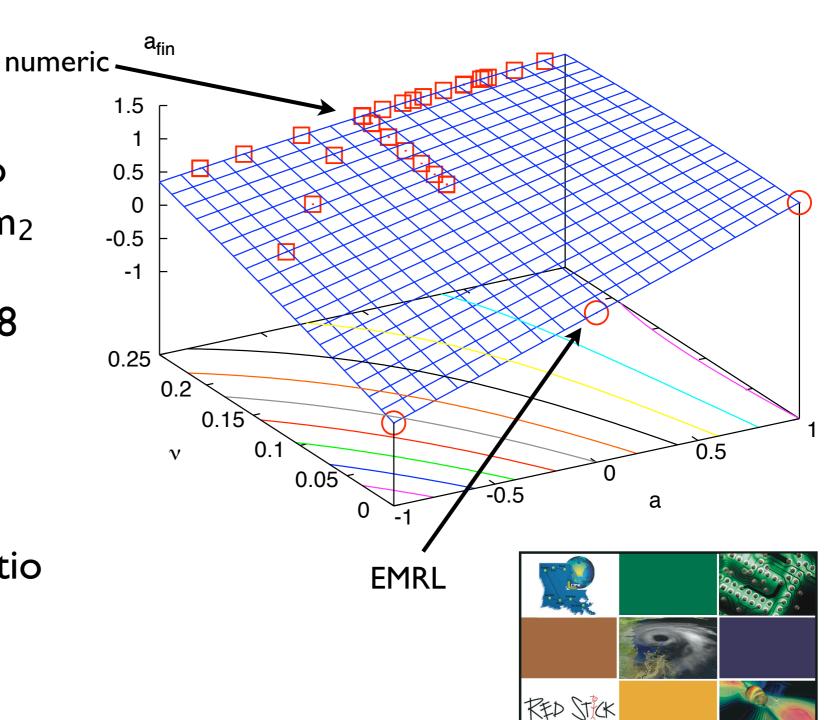
 $a_{\text{fin}} = p_0 + p_1(a_1 + a_2) + p_2(a_1 + a_2)^2$

Least square fitting result:


$$p_0 = 0.6883 \pm 0.0003$$
, $p_1 = 0.1530 \pm 0.0004$, $p_2 = -0.0088 \pm 0.0005$,

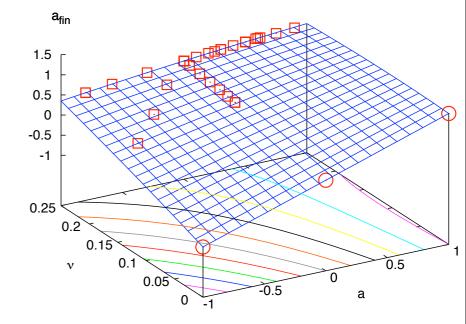
Fitting Functions (Final Spin)

- Again, results consistent with brute-force fitting functions
- Possible final spins approximately in [0.35 ... 0.96]
- Quadratic term possibly zero
- No local maxima as suggested by EOB (Damour 2001)



Unequal Mass, Equal Spin Case

- V: symmetric mass ratio $V = q/(1+q)^2$, $q = m_1/m_2$
- v < ~0.16 and |a| > ~0.8 difficult to access for numerical relativity
- Use analytic knowledge about extreme mass ratio limit (v=0)


Unequal Mass Case (Final Spin)

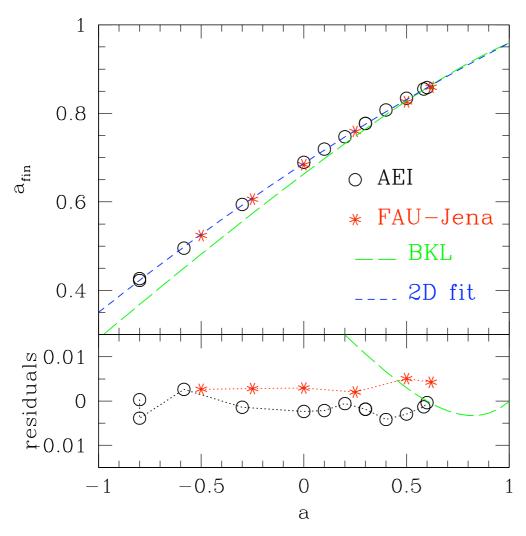
Generic cubic ansatz:

$$a_{\text{fin}} = s_0 + s_1 a + s_2 a^2 + s_3 a^3 + s_4 a^2 \nu + s_5 a \nu^2 + t_0 a \nu + t_1 \nu + t_2 \nu^2 + t_3 \nu^3.$$

EMRL:
$$a_{fin}(a, \nu = 0) = a$$

$$s_0 = s_2 = s_3 = 0$$
, $s_1 = 1$

Choose also t_1 from EMRL via Taylor expansion about v=0


$$a_{\text{fin}} = a + s_4 a^2 \nu + s_5 a \nu^2 + t_0 a \nu + 2\sqrt{3}\nu + t_2 \nu^2 + t_3 \nu^3$$

- Cubic spin dependence drops out
- Possible final spins approximately in [0.35 ... 0.96]

Comparison with Numerical Results

0.6

0.4

0.2

*Goddard

-- E0B 1D fit

--- 2D fit

0.01

0.05

0.01

0.05

0.1

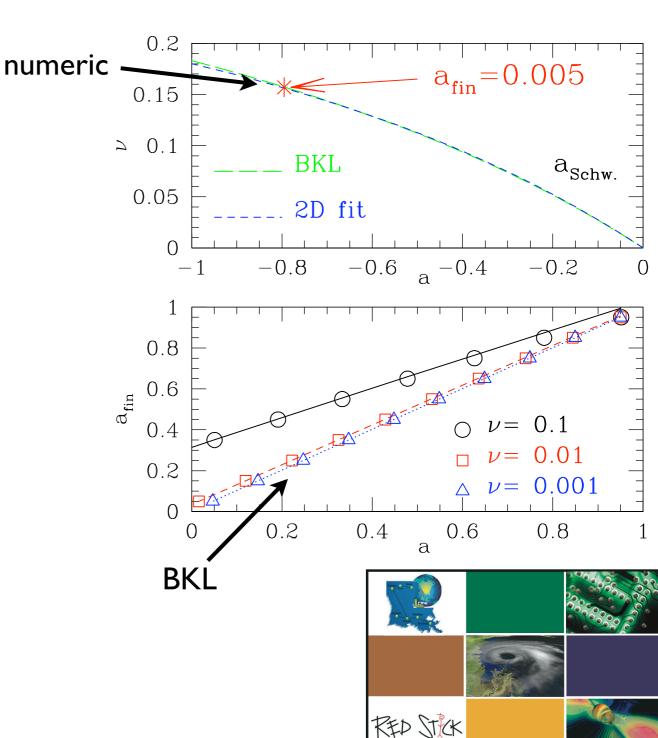
0.15

0.2

0.25

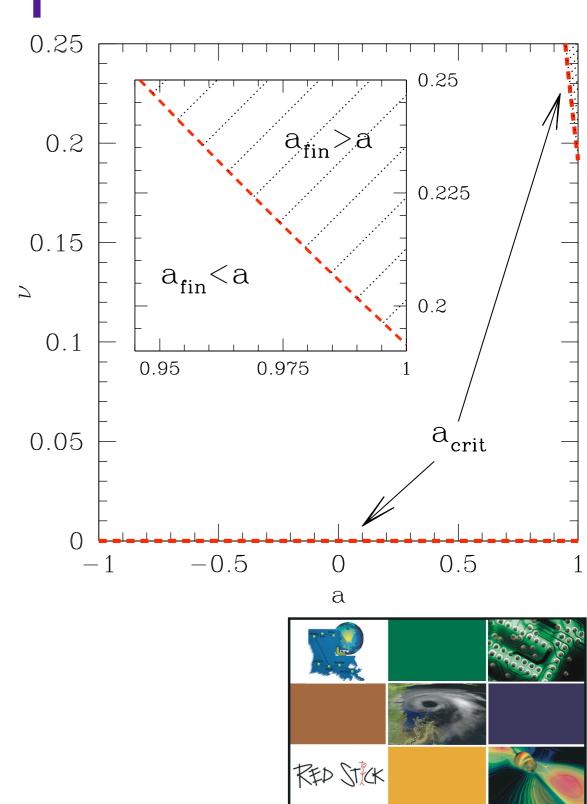
equal mass

non-spinning



Impressive accuracy!

Producing a Schwarzschild Black Hole


- Just ask for a[fin] = 0 in fitting function
- Producing a non-spinning final black hole requires both unequal masses and initial non-zero spin
- Confirmed by Berti et al.
 2007

Spin-Up or Spin-Down?

- Just ask for a[fin] = a in fitting function
- Almost all equal-spin configurations are spun down
- Note: fitting function is unphysical near |a| = 1, probably due to extrapolation

Consistency Check

We have now two expressions for the final spin:

Equal mass (v=0.25):

$$a_{\text{fin}} = p_0 + p_1(a_1 + a_2) + p_2(a_1 + a_2)^2$$

Equal spin $(a_1=a_2)$:

$$a_{\text{fin}} = a + s_4 a^2 \nu + s_5 a \nu^2 + t_0 a \nu + 2\sqrt{3}\nu + t_2 \nu^2 + t_3 \nu^3$$

Are they consistent?

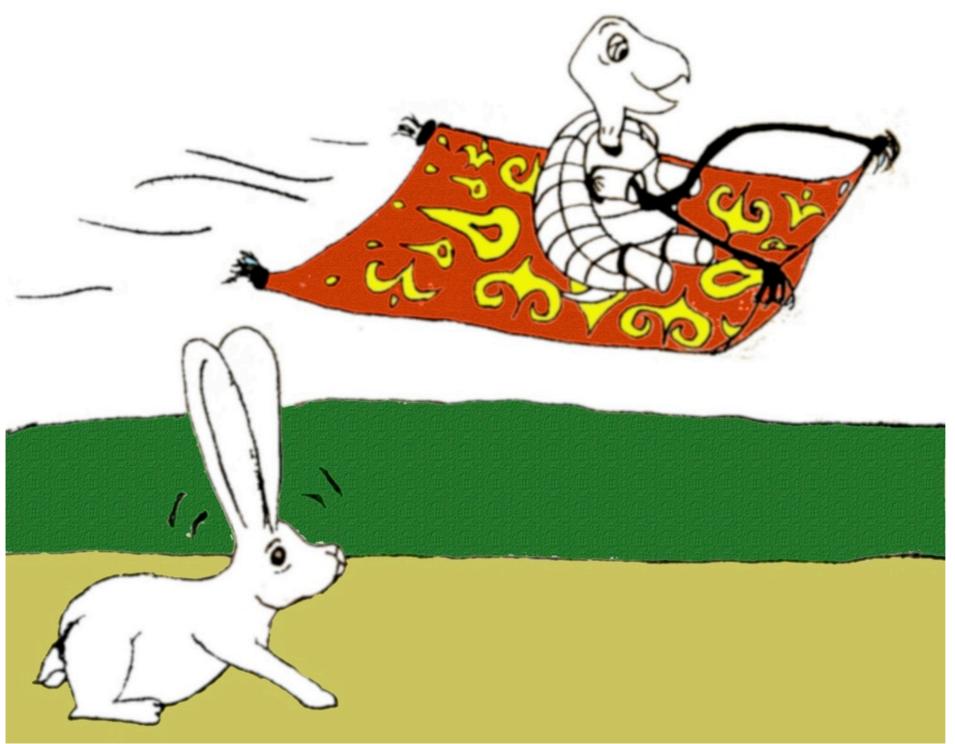
Answer: yes, to within the numerical error bars!

Generalisation: Unequal Mass and Unequal Spin Case

 Simplest ansatz to handle both unequal masses and unequal spins, and which recovers the correct limits:

Replace a by
$$(a_1 + a_2q^2) / (I+q^2)$$
, $q = m_1/m_2$

- Work underway to verify this ansatz
- Work underway to handle misaligned spins (see arXiv:0712.3541 [gr-qc])


Summary: Black Box Binaries

- Consider binary black hole mergers as black box
- Model final state using generic fitting function depending on initial state – cheaper and more accurate than other approximations
- Could e.g. be used for N-body simulations
- Excellent agreement between fitting function and numerical results for unequal (aligned) spins and for unequal masses
- Work underway to generalise this to arbitrary configurations

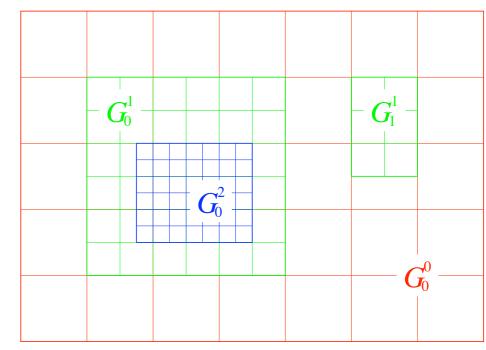
RED STICK

Behind the Scenes

J. Seiler

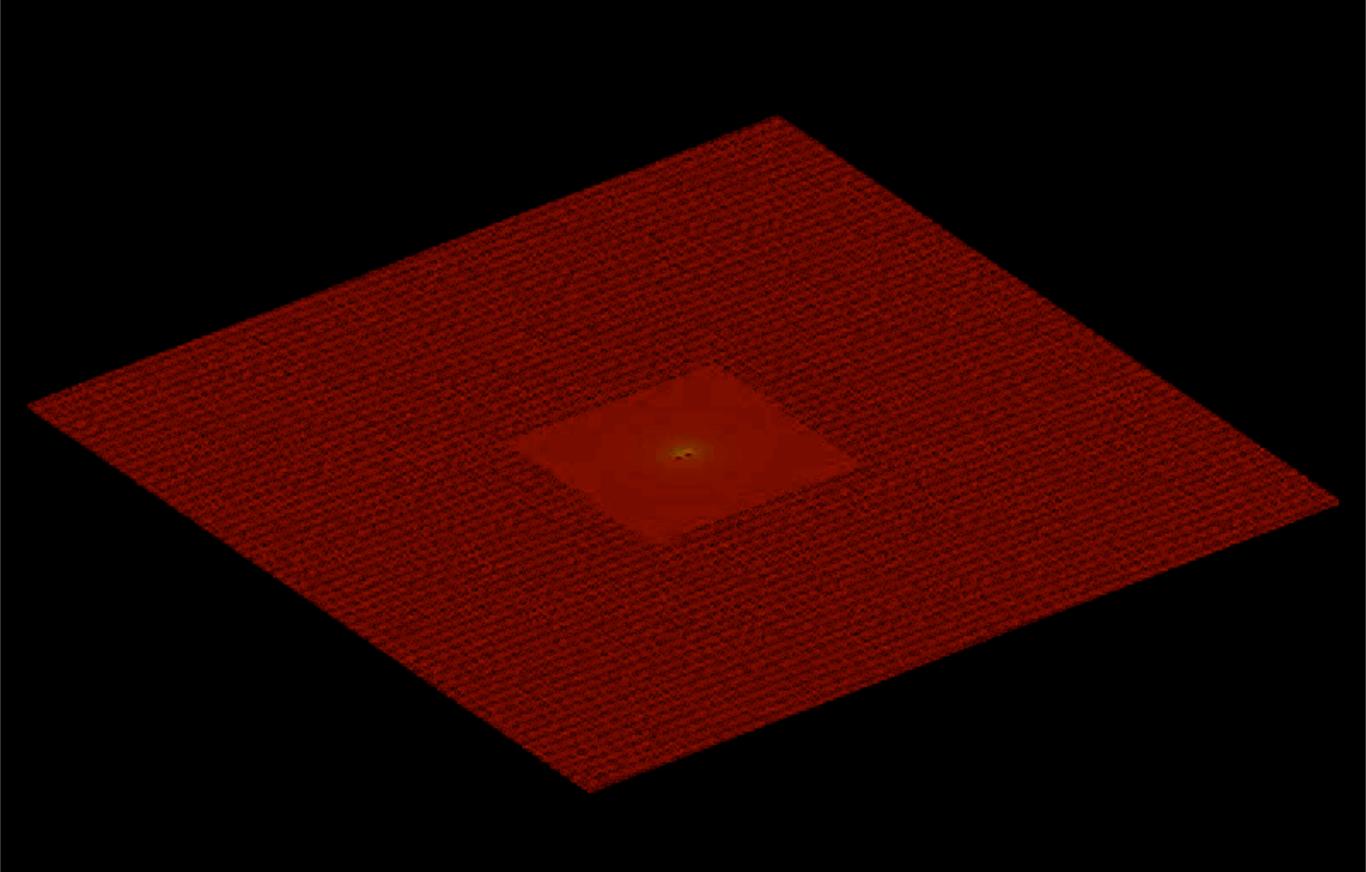
Behind the Scenes: Numerical Infrastructure

- Initial data solver for quasi-circular configuration
- CCATIE: Efficient 4th order BSSN code for time evolution
- Horizon finding, measuring horizon quantities
- Wave extraction (not used here)
- Much of the above is public, part of the Einstein Toolkit



Behind the Scenes: Computational Infrastructure

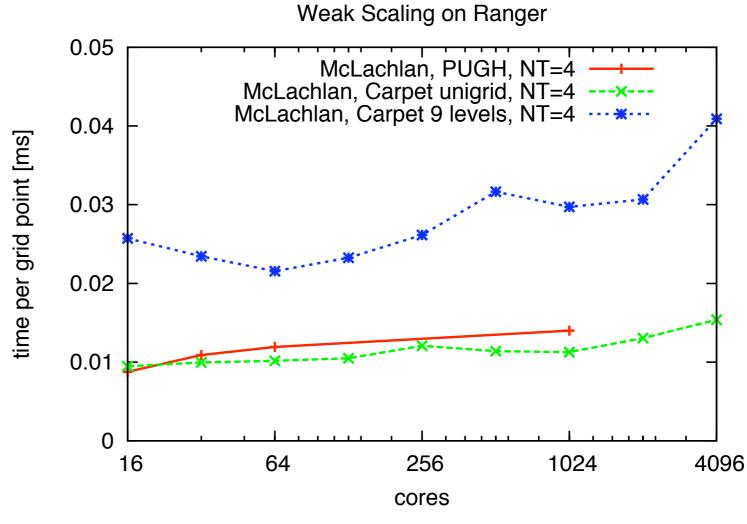
- Large scale differences and moving objects require adaptive mesh refinement (AMR)
 [typical: L=1000, h=0.02, using 9 refinement levels]
- Long time evolutions and desired accuracy require high order methods (4th order or higher)
- Same infrastructure (Cactus, Carpet) also used for GRMHD simulations
- Computation time/efficiency still an issue



Carpet: Mesh Refinement

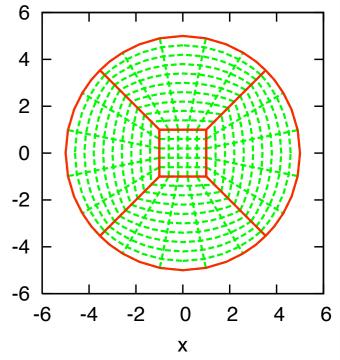
- Berger-Oliger AMR with subcycling in time
- Using buffer zones for stable AMR boundaries
- Domain decomposition parallelisation (typically 3 ghost zones – expensive!)
- [Using tapered grids to improve accuracy]
- AMR tracks physics features explicitly, refining e.g. around black holes

Efficiency and Scalability


- Many variables (~25 evolved, ~250 in total, many ghost zones (higher order):
 - requires much memory
 - few evolved grid points per node inefficient
- Reduce amount of communication or interpolation
- [Use multi-threading on multi-core machines]
- Currently, a very simple AMR testcase requires already 8 GByte memory

AMR Parallel Scaling on Ranger (TACC)

- Ranger is new petascale machine at TACC with 60,000 cores, still in friendly user mode
- Using OpenMP with 4 threads to reduce parallelisation overhead
- McLachlan: New BSSN code for experimenting with performance (XiRel)



Ranger produces 45 MSU/month!

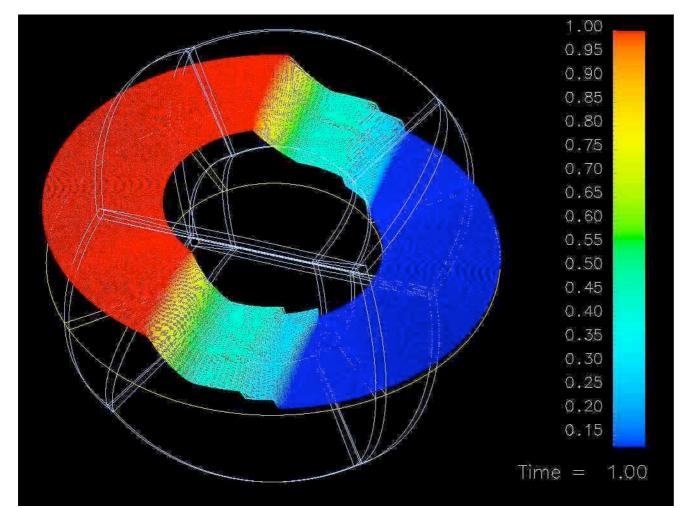
Multi-Patch Methods

not just for spectral codes!

- Increasing AMR domain size scales with O(L³), increasing resolution scales with O(I/h⁴)
- Multi-patch systems separate radial and angular resolutions: significantly more efficient
- With MP: increasing domain size is only O(L), increasing radial resolution is only O(I/h²)
- Plus, outer boundary is spherical no useless corners, better boundary conditions, better wave extraction ...

Multi-Patch Methods

you can do spectral, too!


- Finite differencing is independent of AMR and MP infrastructure
- FD also independent of formulation, of singularity handling, of inter-patch boundary conditions
- Can use spectral methods with MP
- Could also combine spectral angular with FD radial derivatives

RED STICK

Multi-Patch Methods GRMHD

- MP-GRMHD code under development (B. Zink)
- Need to be careful with flux reconstruction on distorted grids and on interfaces

Sod test (ID shock) – no artefacts at MP boundaries visible

Other Infrastructure

- BBH Factory: scripts/middleware to manage source trees and simulations on many different machines, with a common user interface
- LoopControl: automatic dynamic cache optimisations on multi-core machines
- Kranc (by I. Hinder, S. Husa): automatic code generation, enabling optimising transformations
- Vislt (LLNL): (remote) visualisation tool for time-dependent AMR data

XiRel:

Cyberinfrastructure for Numerical Relativity

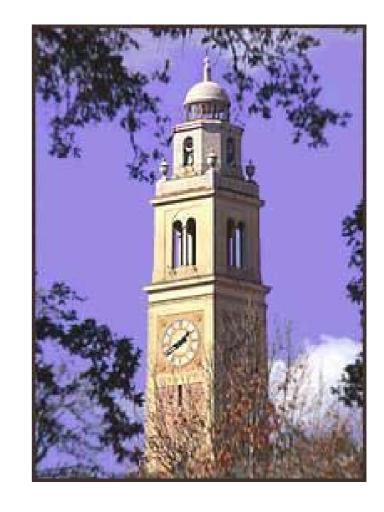
- Collaborative project including CCT, AEI, PSU, RIT
- 3 goals:
 - Improve efficiency of computational infrastructure (AMR etc.)
 - Design and implement data and metadata management infrastructure for large simulations
 - Work with community to update and expand the Einstein Toolkit

Alpaca:

Application Level Profiling and Correctness Analysis

- Observation: writing correct large programmes is very difficult, even when they are modular (Cactus)
- Observation: making parallel programmes efficient is not easy
- Alpaca (NSF SDCI, 3 years) will provide tools to profile and debug Cactus applications on a very high level (scheduled routines, variables declared in interface)
- Goal: debugging at the algorithmic level

RED STICK


Summary

- Efficient numerical and computational infrastructure, used by many groups in the field (Einstein Toolkit, Cactus, Carpet)
- Collaboration on infrastructure, sharing the cost and beginning to create a "community feeling"
- Significant recent improvements in efficiency
- Ideas and projects for future methods (e.g. multi-patch, pseudo-spectral)

T. Sterling

References

- Spin Diagrams for Equal-Mass Black-Hole Binaries with Aligned Spins, arXiv:0708.3999 [gr-qc]
- The final spin from the coalescence of aligned-spin black-hole binaries, arXiv:0710.3345 [gr-qc]
- On the final spin from the coalescence of two black holes, arXiv:0712.3541 [gr-qc]

References

- Cactus: http://www.cactuscode.org/
- Carpet: http://www.carpetcode.org/

