Singularity replacement for black hole evolutions

Erik Schnetter
P. Diener, I. Hawke, D. Pollney, O. Sarbach, M. Tiglio
Morelia, June 2007
Overview

- Motivation for binary black hole research
- Methods for handling singularities, especially “Moving Punctures”
- Application to binary black hole simulations
CCT

- Interdisciplinary research centre at LSU, about four years old

- Physicists, mathematicians, computer scientists, biologists, ...

- Strong group in numerical relativity

T. Sterling
Simulating Black Holes

- Simulating black holes is easy, because there is only vacuum.
- Simulating black holes is difficult, because the spacetimes have singularities.
Binary Black Holes

- Many stars live in binary systems
- Many black holes are expected to be in binary systems
- They will slowly spiral together ...
- ... and merge to a single black hole ...
- ... releasing a tremendous amount of gravitational radiation. Enter LIGO, LISA.
Numerical Methods for Singularities

- Foliation which avoids singularity
- Factor out singularity and handle it analytically
- Excision, i.e., cut out singularity from domain
- Since recently: *Moving punctures*, which are still somewhat mysterious
History

- Arbona et al. (1997): Stuffed black holes
- Alcubierre et al. (1999): Puncture evolutions
- Brandt et al. (2000): Excision evolutions
- Bona et al. (2004): Free black hole initial data
- Campanelli et al., Baker et al. (2005): Moving punctures
Moving Puncture Recipe

• Begin with puncture initial data (e.g. Brill-Lindquist)

• Use BSSN formulation, 1+log slicing, Gamma-driver shift

• Stagger grid about coordinate singularities

• Sprinkle with a bit of magic

• Evolve and enjoy [movie]
Moving Puncture Interpretation

• David Brown (EGM 10, http://baba.astro.cornell.edu/~ecgm10/):
 • Slicing remains attached to other spacelike infinity
 • Other infinity is not resolved
 • Moving punctures is essentially an excision method
Moving Puncture in Penrose Diagram

D. Brown
Generalisation of Moving Punctures

- Replace singularity in initial data by something non-singular (smoothing), or invent excised initial data
- Accept constraint violation inside horizon
- Ensure constraints do not propagate out
- Ensure discretisation is stable and consistent
- Ensure final state is stationary
Characteristic Speeds

- There are several versions of BSSN; we choose a specific “typical” system
- O. Sarbach found:
 - BSSN itself is strongly hyperbolic almost everywhere
 - Constraint propagation system is symmetric hyperbolic: constraints propagate along the light cone, even if the constraints are violated
Quasi-Equilibrium
Binary Black Holes

- Cook-Pfeiffer data sep_07.00_59a
 http://www.black-holes.org/researchers3.html
Our Magic

• Some artificial dissipation necessary (not much)

• Avoid large initial dynamics: e.g., start with a small lapse inside the horizon

• Often, initial data need not be smooth

• Check convergence inside and outside of horizon separately

• Note: A spike near the origin appears / remains
Later This Week

• Show convergence and accuracy for BBH evolution (in progress)

• Work with Francisco and Olivier on boundary conditions