Applications of Passivity Theory to the Active Control of Acoustic Musical Instruments

Edgar Berdahl, Günter Niemeyer, and Julius O. Smith III

Acoustics '08 Conference, Paris, France

June 29th-July 4th, 2008

Outline

Introduction

Passivity For Linear Systems

PID Control

Other Passive Linear Controllers

Nonlinear PID Control

Project goal: To make the acoustics of a musical instrument programmable while the instrument retains its tangible form.

- Project goal: To make the acoustics of a musical instrument programmable while the instrument retains its tangible form.
- We use a digital feedback controller.

- Project goal: To make the acoustics of a musical instrument programmable while the instrument retains its tangible form.
- We use a digital feedback controller.
- ▶ The resulting instrument is like a haptic musical instrument whose interface is the whole acoustical medium.

- Project goal: To make the acoustics of a musical instrument programmable while the instrument retains its tangible form.
- We use a digital feedback controller.
- ➤ The resulting instrument is like a haptic musical instrument whose interface is the whole acoustical medium.
- We apply the technology to a vibrating string, but the controllers are applicable to any passive musical instrument.

System Block Diagram

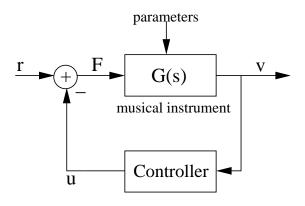


Figure: System block diagram for active feedback control

▶ We would like the controller to be robust to changes in G(s).

Outline

Introduction

Passivity For Linear Systems

PID Control

Other Passive Linear Controllers

Nonlinear PID Control

▶ We operate in the Laplace *s*-domain.

- ▶ We operate in the Laplace s-domain.
- ▶ A function *G*(*s*) is positive real if
 - 1. G(s) is real when s is real.

- ▶ We operate in the Laplace s-domain.
- A function G(s) is positive real if
 - 1. G(s) is real when s is real.
 - 2. $Re\{G(s)\} \ge 0$ for all s such that $Re\{s\} \ge 0$.

- We operate in the Laplace s-domain.
- ▶ A function *G*(*s*) is positive real if
 - 1. G(s) is real when s is real.
 - 2. $Re\{G(s)\} \ge 0$ for all s such that $Re\{s\} \ge 0$.
- Some consequences are
 - 1. $|\angle G(j\omega)| \leq \frac{\pi}{2}$ for all ω .

- We operate in the Laplace s-domain.
- A function G(s) is positive real if
 - 1. G(s) is real when s is real.
 - 2. $Re\{G(s)\} \ge 0$ for all s such that $Re\{s\} \ge 0$.
- Some consequences are
 - 1. $|\angle G(j\omega)| \leq \frac{\pi}{2}$ for all ω .
 - 2. 1/G(s) is positive real.

- ▶ We operate in the Laplace s-domain.
- A function G(s) is positive real if
 - 1. G(s) is real when s is real.
 - 2. $Re\{G(s)\} \ge 0$ for all s such that $Re\{s\} \ge 0$.
- Some consequences are
 - 1. $|\angle G(j\omega)| \leq \frac{\pi}{2}$ for all ω .
 - 2. 1/G(s) is positive real.
 - 3. If *G*(*s*) represents either the driving-point impedance or driving-point mobility of a system, then the system is passive as seen from the driving point.

- We operate in the Laplace s-domain.
- ▶ A function G(s) is positive real if
 - 1. G(s) is real when s is real.
 - 2. $Re\{G(s)\} \ge 0$ for all s such that $Re\{s\} \ge 0$.
- ▶ Some consequences are
 - 1. $|\angle G(j\omega)| \leq \frac{\pi}{2}$ for all ω .
 - 2. 1/G(s) is positive real.
 - 3. If *G*(*s*) represents either the driving-point impedance or driving-point mobility of a system, then the system is passive as seen from the driving point.
 - 4. G(s) is stable.

- ▶ We operate in the Laplace s-domain.
- ▶ A function G(s) is positive real if
 - 1. G(s) is real when s is real.
 - 2. $Re\{G(s)\} \ge 0$ for all s such that $Re\{s\} \ge 0$.
- Some consequences are
 - 1. $|\angle G(j\omega)| \leq \frac{\pi}{2}$ for all ω .
 - 2. 1/G(s) is positive real.
 - 3. If *G*(*s*) represents either the driving-point impedance or driving-point mobility of a system, then the system is passive as seen from the driving point.
 - 4. G(s) is stable.
 - 5. G(s) is minimum phase.

- We operate in the Laplace s-domain.
- A function G(s) is positive real if
 - 1. G(s) is real when s is real.
 - 2. $Re\{G(s)\} \ge 0$ for all s such that $Re\{s\} \ge 0$.
- ▶ Some consequences are
 - 1. $|\angle G(j\omega)| \leq \frac{\pi}{2}$ for all ω .
 - 2. 1/G(s) is positive real.
 - 3. If *G*(*s*) represents either the driving-point impedance or driving-point mobility of a system, then the system is passive as seen from the driving point.
 - 4. G(s) is stable.
 - 5. G(s) is minimum phase.
- Note: The bilinear transform preserves s-domain and z-domain sense positive realness.

▶ If the sensor and actuator are not collocated, then there is a propagation delay between them.

- ▶ If the sensor and actuator are not collocated, then there is a propagation delay between them.
- ➤ To minimize the delay (phase lag), we should collocate the sensor and actuator.

- ▶ If the sensor and actuator are not collocated, then there is a propagation delay between them.
- To minimize the delay (phase lag), we should collocate the sensor and actuator.
- ▶ $|\angle G(j\omega)| < \frac{\pi}{2}$ for all ω .

- If the sensor and actuator are not collocated, then there is a propagation delay between them.
- To minimize the delay (phase lag), we should collocate the sensor and actuator.
- ▶ $|\angle G(j\omega)| < \frac{\pi}{2}$ for all ω .
- ▶ If $|\angle K(j\omega)| \le \frac{\pi}{2}$ for all ω , then no matter how large the loop gain $K_0 \ge 0$ is, the controlled system will be stable.

- ▶ If the sensor and actuator are not collocated, then there is a propagation delay between them.
- To minimize the delay (phase lag), we should collocate the sensor and actuator.
- ▶ $|\angle G(j\omega)| < \frac{\pi}{2}$ for all ω .
- ▶ If $|\angle K(j\omega)| \le \frac{\pi}{2}$ for all ω , then no matter how large the loop gain $K_0 \ge 0$ is, the controlled system will be stable.
- ▶ If we choose a positive real controller K(s), then we can turn up the loop gain $K_0 \ge 0$ as much as we want.

- ▶ If the sensor and actuator are not collocated, then there is a propagation delay between them.
- To minimize the delay (phase lag), we should collocate the sensor and actuator.
- ▶ $|\angle G(j\omega)| < \frac{\pi}{2}$ for all ω .
- ▶ If $|\angle K(j\omega)| \le \frac{\pi}{2}$ for all ω , then no matter how large the loop gain $K_0 \ge 0$ is, the controlled system will be stable.
- ▶ If we choose a positive real controller K(s), then we can turn up the loop gain $K_0 \ge 0$ as much as we want.
- This property is known as unconditional stability.

▶ We first model a single resonance.

- ▶ We first model a single resonance.
- ► Given a mass *m*, damping parameter *R*, and spring with parameter *k*, we have

$$m\ddot{x} + R\dot{x} + kx = -F \tag{1}$$

- ▶ We first model a single resonance.
- Given a mass m, damping parameter R, and spring with parameter k, we have

$$m\ddot{x} + R\dot{x} + kx = -F \tag{1}$$

▶ For F = 0, fundamental frequency $f_0 \approx \frac{1}{2\pi} \sqrt{\frac{k}{m}}$,

- We first model a single resonance.
- ▶ Given a mass m, damping parameter R, and spring with parameter k, we have

$$m\ddot{x} + R\dot{x} + kx = -F \tag{1}$$

- ▶ For F = 0, fundamental frequency $f_0 \approx \frac{1}{2\pi} \sqrt{\frac{k}{m}}$,
- ▶ and the envelope of the impulse response decays exponentially with time constant $\tau = 2m/R$.

Outline

Introduction

Passivity For Linear Systems

PID Control

Other Passive Linear Controllers

Nonlinear PID Control

$$F \stackrel{\triangle}{=} P_{DD}\ddot{x} + P_D\dot{x} + P_Px \tag{2}$$

$$F \stackrel{\Delta}{=} P_{DD}\ddot{x} + P_{D}\dot{x} + P_{P}x \tag{2}$$

$$(m+P_{DD})\ddot{x}+(R+P_{D})\dot{x}+(k+P_{P})x=0$$
 (3)

$$F \stackrel{\Delta}{=} P_{DD}\ddot{x} + P_D\dot{x} + P_Px \tag{2}$$

$$(m+P_{DD})\ddot{x}+(R+P_{D})\dot{x}+(k+P_{P})x=0$$
 (3)

With control we have

$$\hat{\tau} = \frac{2(m + P_{DD})}{R + P_D} \tag{4}$$

$$F \stackrel{\Delta}{=} P_{DD}\ddot{x} + P_D\dot{x} + P_Px \tag{2}$$

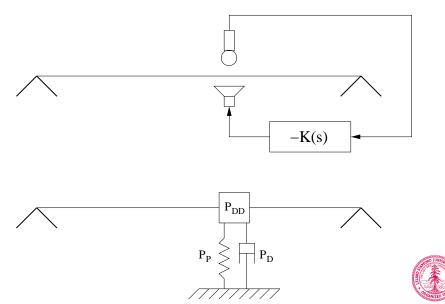
$$(m+P_{DD})\ddot{x}+(R+P_{D})\dot{x}+(k+P_{P})x=0$$
 (3)

With control we have

$$\hat{\tau} = \frac{2(m + P_{DD})}{R + P_D} \tag{4}$$

$$\hat{f}_0 pprox rac{1}{2\pi} \sqrt{rac{k + P_P}{m + P_{DD}}}$$

PID Control Mechanical Equivalent



Outline

Introduction

Passivity For Linear Systems

PID Control

Other Passive Linear Controllers

Nonlinear PID Control

Other Passive Linear Controllers

- Observations:
 - 1. Feedback signal leads by $\pi/2$ radians \Rightarrow resonance frequency increases

Other Passive Linear Controllers

- Observations:
 - 1. Feedback signal leads by $\pi/2$ radians \Rightarrow resonance frequency increases
 - 2. Feedback signal lags by $\pi/2$ radians \Rightarrow resonance frequency decreases

Observations:

- 1. Feedback signal leads by $\pi/2$ radians \Rightarrow resonance frequency increases
- 2. Feedback signal lags by $\pi/2$ radians \Rightarrow resonance frequency decreases
- 3. Feedback signal is out of phase ⇒ resonance is damped

D JUNOS BEN STATE OF STATE OF

- Observations:
 - 1. Feedback signal leads by $\pi/2$ radians \Rightarrow resonance frequency increases
 - 2. Feedback signal lags by $\pi/2$ radians \Rightarrow resonance frequency decreases
 - 3. Feedback signal is out of phase ⇒ resonance is damped
- Other positive real controllers:
 - 1. Leads and lags

- Observations:
 - 1. Feedback signal leads by $\pi/2$ radians \Rightarrow resonance frequency increases
 - 2. Feedback signal lags by $\pi/2$ radians \Rightarrow resonance frequency decreases
 - 3. Feedback signal is out of phase ⇒ resonance is damped
- Other positive real controllers:
 - Leads and lags
 - 2. Band pass filter

- Observations:
 - 1. Feedback signal leads by $\pi/2$ radians \Rightarrow resonance frequency increases
 - 2. Feedback signal lags by $\pi/2$ radians \Rightarrow resonance frequency decreases
 - Feedback signal is out of phase ⇒ resonance is damped
- Other positive real controllers:
 - 1. Leads and lags
 - Band pass filter
 - 3. Band stop filter

- Observations:
 - 1. Feedback signal leads by $\pi/2$ radians \Rightarrow resonance frequency increases
 - 2. Feedback signal lags by $\pi/2$ radians \Rightarrow resonance frequency decreases
 - 3. Feedback signal is out of phase ⇒ resonance is damped
- Other positive real controllers:
 - 1. Leads and lags
 - 2. Band pass filter
 - 3. Band stop filter
 - 4. Feedforward comb filters

- Observations:
 - 1. Feedback signal leads by $\pi/2$ radians \Rightarrow resonance frequency increases
 - 2. Feedback signal lags by $\pi/2$ radians \Rightarrow resonance frequency decreases
 - 3. Feedback signal is out of phase ⇒ resonance is damped
- Other positive real controllers:
 - 1. Leads and lags
 - Band pass filter
 - Band stop filter
 - 4. Feedforward comb filters
 - 5. Filter alternating between $\pm \pi/2$ radians

▶ We limit the control energy to a small frequency region.

- We limit the control energy to a small frequency region.
- ▶ If the Q is large and the center frequency ω_c is aligned with an instrument partial, this partial is damped, while other partials are left unmodified.

- ▶ We limit the control energy to a small frequency region.
- ▶ If the Q is large and the center frequency ω_c is aligned with an instrument partial, this partial is damped, while other partials are left unmodified.
- If we invert the loop gain, then we can selectively apply negative damping.

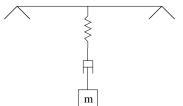
- ▶ We limit the control energy to a small frequency region.
- ▶ If the Q is large and the center frequency ω_c is aligned with an instrument partial, this partial is damped, while other partials are left unmodified.
- ▶ If we invert the loop gain, then we can selectively apply negative damping.
- Multiple bandpass filters may placed in parallel in the signal processing chain.

- We limit the control energy to a small frequency region.
- ▶ If the Q is large and the center frequency ω_c is aligned with an instrument partial, this partial is damped, while other partials are left unmodified.
- If we invert the loop gain, then we can selectively apply negative damping.
- Multiple bandpass filters may placed in parallel in the signal processing chain.

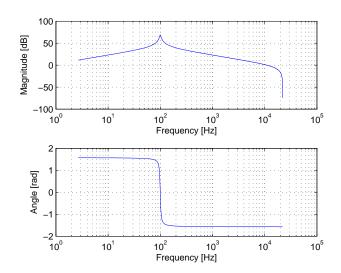
$$ightharpoonup K_{bp}(s) = rac{rac{\omega_{\mathcal{C}}s}{Q}}{s^2 + rac{\omega_{\mathcal{C}}s}{Q} + \omega_{\mathcal{C}}^2}$$

- We limit the control energy to a small frequency region.
- ▶ If the Q is large and the center frequency ω_c is aligned with an instrument partial, this partial is damped, while other partials are left unmodified.
- If we invert the loop gain, then we can selectively apply negative damping.
- Multiple bandpass filters may placed in parallel in the signal processing chain.

$$ightharpoonup K_{bp}(s) = rac{rac{\omega_c s}{Q}}{s^2 + rac{\omega_c s}{Q} + \omega_c^2}$$



Bandpass Filter



Notch Filter Control

▶ We damp over all frequencies except for a small region.

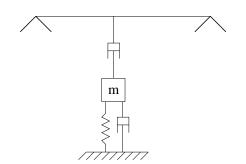
Notch Filter Control

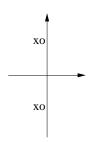
- ▶ We damp over all frequencies except for a small region.
- Multiple band stop filters may be placed in series in the signal processing chain.

Notch Filter Control

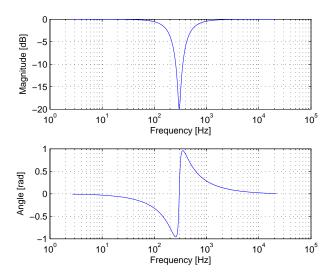
- We damp over all frequencies except for a small region.
- Multiple band stop filters may be placed in series in the signal processing chain.

$$\blacktriangleright K_{notch}(s) = \frac{s^2 + \frac{\omega_c s}{\alpha Q} + \omega_c^2}{s^2 + \frac{\omega_c s}{Q} + \omega_c^2}$$



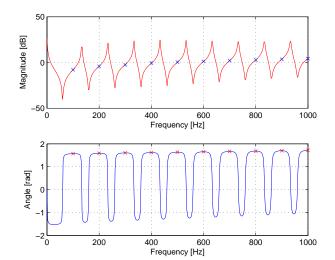


Notch Filter

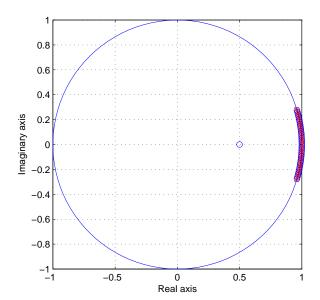


Alternating Filter

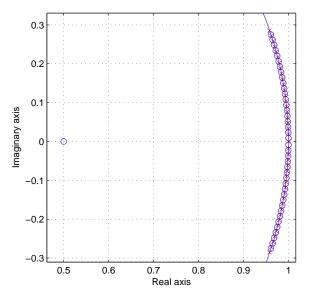
► The frequency response shown below is such that partials at *n*100Hz (shown by *x*'s) will be pushed flat.



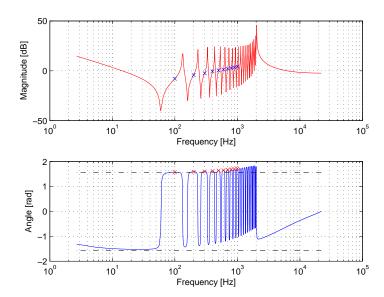
Alternating Filter Implementation



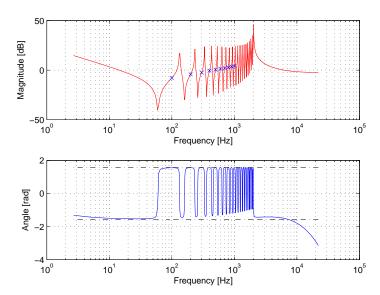
Alternating Filter Implementation (Zoomed)



Wideband Idealized Frequency Response



Wideband Frequency Response Including Delay



Outline

Introduction

Passivity For Linear Systems

PID Control

Other Passive Linear Controllers

Nonlinear PID Control

Nonlinear PID Control

➤ Since PID control works so well, let's try collocated nonlinear PID control by feeding back the displacement and velocity.

Nonlinear PID Control

- Since PID control works so well, let's try collocated nonlinear PID control by feeding back the displacement and velocity.
- Given our single-resonance model, we obtain

$$m\ddot{x} + R(\dot{x}, x) + K(x) = 0 \tag{6}$$

Nonlinear PID Control

- Since PID control works so well, let's try collocated nonlinear PID control by feeding back the displacement and velocity.
- Given our single-resonance model, we obtain

$$m\ddot{x} + R(\dot{x}, x) + K(x) = 0 \tag{6}$$

There are many methods for analyzing the behavior of second-order nonlinear systems.

Linear Dashpot

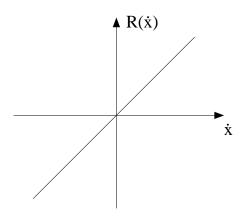


Figure: Linear Dashpot

Linear Dashpot

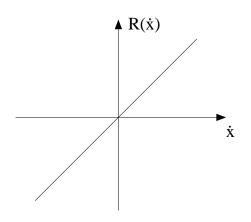


Figure: Linear Dashpot

 $ightharpoonup R(\dot{x},x) = R\dot{x}$ for some constant R

Saturating Dashpot

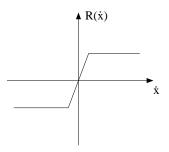


Figure: Saturating Dashpot

Saturating Dashpot

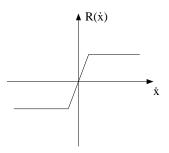


Figure: Saturating Dashpot

- ▶ Damping is *passive* if $\dot{x}R(\dot{x},x) \ge 0$ for all \dot{x} and x.
 - $R(\dot{x},x) > 0 \text{ for } \dot{x} > 0$
 - $R(\dot{x},x) < 0 \text{ for } \dot{x} < 0$

Saturating Dashpot

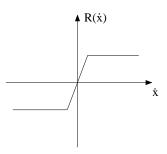


Figure: Saturating Dashpot

- ▶ Damping is *passive* if $\dot{x}R(\dot{x},x) \ge 0$ for all \dot{x} and x.
 - $R(\dot{x}, x) > 0 \text{ for } \dot{x} > 0$
 - $ightharpoonup R(\dot{x},x) < 0$ for $\dot{x} < 0$
- ▶ Damping is *strictly passive* if $\dot{x}R(\dot{x},x) > 0$ for all x and for all $\dot{x} \neq 0$ (i.e. there is no deadband).

Spring

▶ A linear spring behaves according to K(x) = kx for some constant k.

Spring

▶ A linear spring behaves according to K(x) = kx for some constant k.

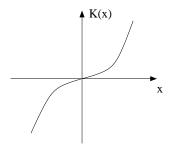


Figure: Stiffening Spring

Spring

A linear spring behaves according to K(x) = kx for some constant k.

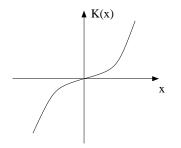


Figure: Stiffening Spring

▶ The spring is *strictly locally passive* if $xK(x) > 0 \ \forall x \neq 0$.

Stability

► The system $m\ddot{x} + R(\dot{x}, x) + K(x) = 0$ is stable if both the spring and dashpot are strictly locally passive.

Stability

- ► The system $m\ddot{x} + R(\dot{x}, x) + K(x) = 0$ is stable if both the spring and dashpot are strictly locally passive.
- You can prove this using the Lyapunov function

$$V = \frac{1}{m} \int_0^x K(\sigma) d\sigma + \frac{1}{2} \dot{x}^2$$
 (7)

Stability

- ► The system $m\ddot{x} + R(\dot{x}, x) + K(x) = 0$ is stable if both the spring and dashpot are strictly locally passive.
- You can prove this using the Lyapunov function

$$V = \frac{1}{m} \int_0^x K(\sigma) d\sigma + \frac{1}{2} \dot{x}^2 \tag{7}$$

$$\dot{V} = -\frac{R(\dot{x}, x)\dot{x}}{m} \le 0 \tag{8}$$

Nonlinear Dashpot for Bow at Rest

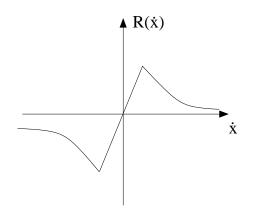


Figure: Bowing Nonlinearity

Nonlinear Dashpot For Moving Bow

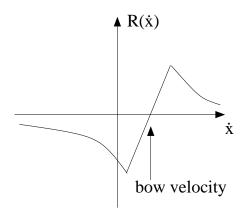


Figure: Bowing Nonlinearity

Nonlinear Dashpot For Moving Bow

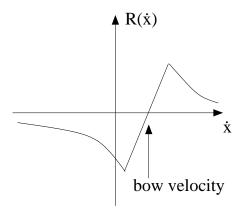


Figure: Bowing Nonlinearity

▶ Now the dashpot is *NOT* passive.

Nonlinear Dashpot For Moving Bow

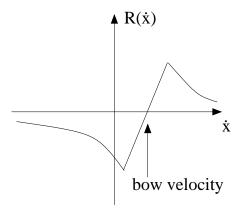


Figure: Bowing Nonlinearity

- ▶ Now the dashpot is *NOT* passive.
- ► The negative damping region adds energy so that the bowed instrument can self-oscillate.

Thanks!

Sound examples are on the website http://ccrma.stanford.edu/~eberdahl/Projects/PassiveControl

Thanks!

- Sound examples are on the website http://ccrma.stanford.edu/~eberdahl/Projects/PassiveControl
- Questions?

Bibliography

- E. Berdahl and J. O. Smith III, *Inducing Unusual Dynamics in Acoustic Musical Instruments*, 2007 IEEE Conference on Control Applications, October 1-3, 2007 Singapore.
- H. Boutin, Controle actif sur instruments acoustiques, ATIAM Master's Thesis, Laboratoire d'Acoustique Musicale, Universite Pierre et Marie Curie, Paris, France, Sept. 2007.
- K. Khalil, *Nonlinear Systems*, 3rd Edition, Prentice Hall, Upper Saddle River, NJ, 2002.
- C. W. Wu, Qualitative Analysis of Dynamic Circuits, Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley and Songs, Inc., Hoboken, New Jersey, 1999.